
WABASHA BARGE FACILITY

Draft Environmental Impact Statement

Wabasha Port Authority, City of Wabasha, Minnesota

September 2023

DRAFT ENVIRONMENTAL IMPACT STATEMENT

For

WABASHA BARGE FACILITY

Wabasha Port Authority City of Wabasha, Minnesota

RGU: Wabasha Port Authority

RGU Contact: Caroline Gregerson

900 Hiawatha Drive E

Wabasha, MN 55981

651-565-4568

Proposer: Wabasha Port Authority Proposer's Representative: Caroline Gregerson, City Administrator 900 Hiawatha Drive E Wabasha, MN 55981 651-565-4568 cityadmin@wabasha.org

Abstract:

The City of Wabasha, in cooperation with the Wabasha Port Authority, is proposing to construct a commercial port facility on the Mississippi River in the City of Wabasha, Minnesota. The 8.2-acre Wabasha Barge Facility would facilitate the transfer of materials, to include but not limited to dredge material and other commodities, from river barges to trucks for transport to off-site facilities. The City of Wabasha would own the project site and contract out the port operations and transportation of materials.

Draft EIS Publication Date: October 2, 2023 Draft EIS Public Meeting Date: Tuesday, October 17, 2023 Draft EIS Public Meeting Time: 5:30 pm -7:30 pm Draft EIS Public Meeting Location: 900 Hiawatha Dr E, Wabasha, MN 55981 Draft EIS Comment Deadline: November 1, 2023

TABLE OF CONTENTS

EXECUT	TIVE SUMMARY	9
1.1	Purpose of the Draft Environmental Impact Statement	9
1.2	Project Description	9
1.3	Purpose and Need for the Proposed Action	9
1.4	Alternatives	
1.5	Potential Environmental Effects	
1.6	Project Cost and Funding Source	
1.7	Permits and Approvals	11
1.9	Project Schedule	11
PROJEC	CT DESCRIPTION	
2.1	Project Description	
2.2	Responsible Governmental Unit	13
2.3	Purpose of Draft Environmental Impact Statement	14
2.4	Purpose and Need for the Proposed Action	14
2.5	Project Cost, Funding, and Schedule	16
ALTERN	IATIVES	17
3.1	No-Build Alternative	17
3.2	Alternatives Considered but Dismissed from Consideration	
3.3	Description of Preferred Alternative	21
SOCIAL	, ECONOMIC, AND ENVIRONMENTAL IMPACTS	23
4.1	Permits and Approvals	23
4.2	Cover Types	24
4.3	Economic Environment	25
4.4	Environmental Justice	26
4.5	Utilities	26
4.6	Land Use	27
4.7	Climate Trends and Impacts	

4.8	Greenhouse Gas	45
4.9	Geology, Soils, and Topography/Landforms	51
4.10	Floodplains	56
4.11	Aquifers	57
4.12	Farmlands	59
4.13	Water Resources	60
4.14	Contamination/Hazardous Materials/Wastes	69
4.15	Fish, Wildlife, Plant Communities, and Sensitive Ecological Resources	71
4.16	Historic Resources	87
4.17	Visual Resources	88
4.18	Dust and Odors	
4.19	Noise	89
4.20	Transportation	92
4.21	Cumulative Potential Effects	94
4.22	Other Potential Environmental Effects	95
MITIGA	TION MEASURES	96
PROJE	CT COORDINATION	
6.1	Federal Agencies	
6.2	State Agencies and Organizations	
6.3	Local Agencies and Organizations	
6.4	Other Project Coordination	
UNRES	OLVED OR CONTROVERSIAL ISSUES	
7.1	Unresolved or Controversial Issues	

List of Tables

Table 1: Required Permits & Approvals
Table 2: Cover Types – Proposed Barge Facility Site
Table 3: Climate Trends and Impacts
Table 4: Emissions Related to No-Build Alternative
Table 5: Emissions Related to the Proposed Project
Table 6: Soil Types within the Study Area
Table 7: Impaired and Public Waters Within One Mile of Wabasha Barge Facility
Table 8: MPCA "What's In My Neighborhood" Sites within ½ Mile
Table 9: Typical Construction Equipment Noise Levels at 50 Feet
Table 10: Noise Standards (MN Statute 7030.0040)
Table 11: Mitigation Measures

List of Figures

Figure 1: Regional Location

- Figure 2: USGS Location
- Figure 3: Existing Conditions
- Figure 4: Site Layout
- Figure 5: Soils
- Figure 6: Geologic Conditions/Groundwater
- Figure 7: Surface Water
- Figure 8: Wetlands
- Figure 9: Biotic Resources
- Figure 10: Outdoor Recreation
- Figure 11: Potentially Contaminated Sites

List of Exhibits

Exhibit 1: Average Temperature For Mississippi River – Winona; January – December

Exhibit 2: Maximum Temperature For Mississippi River – Winona; January – December

Exhibit 3: Minimum Temperature For Mississippi River – Winona; January – December

Exhibit 4: Precipitation For Mississippi River – Winona; January – December

Exhibit 5: Heat Vulnerability in Minnesota - Counties

Exhibit 6: Recent & Projected Future Average Temperature For Mississippi River - Winona; January - December

Exhibit 7: Recent & Projected Future Precipitation For Mississippi River - Winona; January - December

Exhibit 8: Recent & Projected Future Maximum Temperature For Mississippi River - Winona; January - December

Exhibit 9: Recent & Projected Future Minimum Temperature For Mississippi River - Winona; January - December

Exhibit 10: Section of FEMA Firm Map Showing Project Area

Exhibit 11: Carbon Sequestration Process

Exhibit 12: Prime Farmland Areas

Exhibit 13: Minnesota Well Index

List of Appendices

Appendix A: Figures Appendix B: EPA EJScreen Community Report Appendix C: Preliminary No-Rise Certification Appendix D: Wetlands Appendix E: Preliminary Drainage Memo Appendix F: Mussel Survey Appendix G: MNDNR Correspondence Appendix H: Traffic Impact Memorandum Appendix I: Scoping EAW Appendix J: Comments Received on Scoping EAW

List of Acronyms

ACHP - Advisory Council on Historic Preservation AADT - Annual Average Daily Traffic ADT – Average Daily Traffic APE – Area of Potential Effect AST – Aboveground Storage Tank B/C – Benefit-Cost **BMPs** – Best Management Practices CAAA – Clean Air Act Amendments CCC - Civilian Conservation Corps CEQ - Council on Environmental Quality CO - Carbon Monoxide CR - County Road CRP – Conservation Reserve Program CSAH - County and State Aid Highway CWA – Clean Water Act dBA – A-weighted Decibel DCPT - Dodge County Public Transit DM&E - Dakota, Minnesota, and Eastern EAW - Environmental Assessment Worksheet EIS - Environmental Impact Statement EPA – Environmental Protection Agency ESA - Environmental Site Assessment EQB - Environmental Quality Board FEMA – Federal Emergency Management Agency FHWA – Federal Highway Administration FIRM – Flood Insurance Rate Map FSA – Farm Service Agency GIS – Geographic Information System HCADT – Heavy Commercial Average Daily Traffic HCM – Highway Capacity Manual

I-35 – Interstate 35 IC&E – Iowa, Chicago, and Eastern IRC – Interregional Corridor IRIS – Integrated Risk Information System JD – Jurisdiction Determination LAWCON - Land and Water Conservation LGU – Local Government Unit LOS – Level of Service LUST – Leaking Underground Storage Tank MDA – Minnesota Department of Agriculture MDH - Minnesota Department of Health MEPA - Minnesota Environmental Policy Act Mn/DOT - Minnesota Department of Transportation MNDNR - Minnesota Department of Natural Resources MNRAM – Minnesota Routine Assessment Method MOA – Memorandum of Agreement MPCA – Minnesota Pollution Control Agency MSL – Mean Sea Level MSAT – Mobile Source Air Toxics MVM - Million Vehicle Miles NAAQS – National Ambient Air Quality Standard NATA - National Air Toxics Assessment NEPA - National Environmental Policy Act NHPA – National Historic Preservation Act NHIS – Natural Heritage Information System NHS - National Highway System NPDES – National Pollutant Discharge **Elimination System** NRCS – Natural Resource Conservation Service

NRHP – National Register of Historic Places

NWI – National Wetland Inventory	TMDL – Total Maximum Daily Load
OHW – Ordinary High Water	UP – Union Pacific
OMLS – Online Multiple Listing Service	USACE – United States Army Corps of
PA – Participating Agencies	Engineers
PAC – Project Advisory Committee	USDOT – United States Department of
RCV – Remaining Capital Value	Transportation
RGU – Responsible Governmental Unit	USFWS – United States Fish and Wildlife
ROD – Record of Decision	Service
ROW – Right-of-Way	USGS – United States Geological Service
SAFETEA-LU – Safe Accountable Flexible	UST – Underground Storage Tank
Efficient Transportation Equity Act: A Legacy	VHT – Vehicle Hours Traveled
For Users	VMT – Vehicle Miles Traveled
SCAT – Steele County Area Transit	VPD – Vehicles Per Day
SD – Scoping Document	WCA – Wetland Conservation Act
SDD – Scoping Decision Document	WMA – Wildlife Management Area
SHPO – State Historic Preservation Office	WPA – Waterfowl Production Area
SWPPP – Storm Water Pollution Prevention Plan	WSD – Watershed District
SQG – Small Quantity Generator	
T & E – Threatened & Endangered	

List of Preparers

THPO – Tribal Historic Preservation Officer

Brian Malm, Principal Engineer, Bolton & Menk, Inc.Angie Smith, Senior Environmental Planner, Bolton & Menk, Inc.Lucas Bulger, Environmental Planner, Bolton & Menk, Inc.

EXECUTIVE SUMMARY

1.1 Purpose of the Draft Environmental Impact Statement

The construction of the Proposed Barge Facility site would involve dredging an access channel from the main navigation channel to the Barge Facility with an estimated total of 37,000 cubic yards (CY) of material removed. This exceeds the threshold of dredging 1,000 CY outlined in Minnesota Rules, 4410.4400, Subpart 17, thus requiring the preparation of this environmental impact statement.

1.2 Project Description

The City of Wabasha, in cooperation with the Wabasha Port Authority, is proposing to construct a commercial port facility on the Mississippi River in the City of Wabasha, Minnesota. The 8.2-acre Wabasha Barge Facility would facilitate the transfer of materials, to include but not limited to dredge material and other commodities, from river barges to trucks for transport to off-site facilities. The City of Wabasha would own the project site and contract out the port operations and transportation of materials.

After construction, it is anticipated that the City of Wabasha would partner with the United States Army Corps of Engineers ("USACE," "the Corps") to transfer material that is annually dredged from the Upper Mississippi River 9-foot navigation channel through the Wabasha Barge Facility for transport to off-site facilities. Navigational channel dredging, and all other activities performed by the USACE related to the maintenance of the Mississippi River navigation channel, are federal actions, considered separate from the proposed project, and are addressed in the 2023 Lower Pool 4 Dredged Material Management Plan (DMMP)¹ and integrated Environmental Assessment.

1.3 Purpose and Need for the Proposed Action

The Project Site is located within Lower Pool 4, a portion of the Upper Mississippi River (UMR), which is an important component of the United States' inland navigation system. Periodic removal of sediment material (dredging) deposited within the Lower Pool 4 navigation channel and placement of the material on temporary upland locations is necessary to maintain the navigation channel requirements for commercial vessels. According to the Corps, the navigation channel is currently maintained at minimum acceptable dimensions and any further reductions would lead to an unacceptable risk of tow boat groundings and channel closures. Additionally, the existing upland dredged material placement sites within Lower Pool 4 of the UMR are nearing capacity. The proposed Wabasha Barge Facility project represents a cost-effective strategy for allowing dredged materials to be transferred from the river, ensuring navigability through Lower Pool 4 is maintained, while minimizing impacts to natural, manmade, and community resources within the area to the fullest extent possible.

¹ USACE. 2023. Lower Pool 4 Dredged Material Management Plan.

https://www.mvp.usace.army.mil/Portals/57/docs/Navigation/DMMP/Lower%20Pool%204/Pool%204_Final%20D MMP.pdf?ver=a8kfBkiPjAIcRyF76dhzjg%3d%3d, accessed July 2023.

1.4 Alternatives

Navigation channel dredging planning in Lower Pool 4 was conducted in two phases. Initial work resulted in a draft material management plan that was published in May 2017. The 2017 draft DMMP along with the comments the Corps received about it is available on the St. Paul District website: https://www.mvp.usace.army.mil/DMMP/. The second phase of planning reconsidered dredging methods and revised the alternatives considering the comments received on the May 2017 draft. Alternative geographic sites within Pool 4 were reviewed and dismissed from further consideration based on their assessed operational feasibility, cost effectiveness, and impacts of commercial truck traffic through developed areas within and near the City of Wabasha.²

1.5 Potential Environmental Effects

Anticipated environmental effects include: increase in barge traffic to and from the proposed barge facility site; temporary impacts to aquatic organisms during access channel dredging; change in site flood elevations from site regrading; tree clearing and ground disturbance; one permanently-impacted 0.40-acre wetland; increase in impervious surface; increase in truck traffic during construction and operation; disturbance of and minor reduction in terrestrial organism habitat; altered visual aesthetic of the project site; and temporary noise effects during construction and operation. As proposed, all potential environmental effects from the construction and operation of the Proposed Project would be mitigated to the fullest possible extent through ongoing coordination between the City of Wabasha and applicable local, State, and Federal agencies.

1.6 Project Cost and Funding Source

The estimated total cost of the project is \$4.6 million (2024 dollars). This cost includes construction, contingency, engineering, administrative, and legal costs. Funding for the project currently includes a Port Development Assistance Program (PDAP) grant from the Minnesota Department of Transportation in the amount of \$754,876. Remaining project funding is anticipated to come from potential additional MnDOT PDAP grant funding, potential US Department of Transportation Maritime Administration (MARAD) Port Infrastructure Development Program (PIDP) grant funding³, and Wabasha Port Authority and/or City of Wabasha bond sales.

² USACE. 2023. Lower Pool 4 Dredged Material Management Plan. <u>https://www.mvp.usace.army.mil/Portals/57/docs/Navigation/DMMP/Lower%20Pool%204/Pool%204 Final%20D</u> MMP.pdf?ver=a8kfBkiPjAIcRyF76dhzjg%3d%3d, accessed July 2023.

³ The City is aware that MARAD PIDP funding, if awarded, will require additional Federal environmental review.

Government Agency	Type of Application/Permit	Status*		
	Federal Agencies			
	Clean Water Act (CWA) Notification	To be updated		
U.S. Army Corps of Engineers (USACE)	No Rise Certification	To be completed		
	Section 10 Rivers & Harbors Appropriation Act	To be updated		
	State Agencies			
	Permit to Take	To be applied for, if necessary		
Minnesota Department of Natural Resources (MNDNR)	Public Waters Work Permit	To be updated		
	Water Appropriations Permit	To be applied for, if necessary		
Minnesota Board of Water and Soil Resources (BWSR)	Minnesota Wetland Conservation Act (WCA) Notification	To be updated		
Minnesota Pollution Control Agency (MPCA)	National Pollutant Discharge Elimination System (NPDES) Construction General Storm Water Permit	To be updated		
МРСА	Industrial Stormwater Permit	To be updated		
Local Agencies				
City of Wabasha	Conditional Use Permit	To be updated		
City of Wabasha	Floodplain Permit / No Rise Certification	To be updated		

1.7 Permits and Approvals

* All permit requirements will be applied for prior to project or specific phase commencing.

1.9 Project Schedule

- Final Design November 2023 April 2024
- Permitting January 2024 June 2024
- Tree Removal Contract Bidding February 2024
- Tree Removal March 2024
- Site, Dock, and Dredging Contract Bidding May 2024
- Site, Dock, and Dredging Construction July 2024 November 2024

PROJECT DESCRIPTION

2.1 Project Description

The City of Wabasha, in cooperation with the Wabasha Port Authority, is proposing to construct a commercial port facility ("Wabasha Barge Facility") at Upper Mississippi River mile 760 in Wabasha, Minnesota. The project site is located on tax parcels R27.00004.00 and R27.00005.03 within the City of Wabasha, Wabasha County, Minnesota (Section 30, Township 111N, Range 010W). These parcels are presently privately owned, and the city anticipates purchasing the requisite area to house the facility from a willing seller prior to construction activities.

The 26.8-acre site ("Study Area," "Project Site") would house the Wabasha Barge Facility on approximately 8.2 acres ("Proposed Barge Facility," "Proposed Project") and would facilitate the transfer of materials, including but not limited to dredge material and other commodities, from river barges to trucks for transport to off-site facilities. The City of Wabasha would own the barge facility site and contract out the port operations and transportation of materials. The city does not currently anticipate expanding the project beyond the proposed 8.2 acres, although that decision will be revisited at a future time if warranted.

Upon environmental clearance and acquisition of all required permits, the work elements to be completed as part of the proposed project include:

- Dredging an access channel from the main Mississippi River navigation channel to the proposed dock area. This will be performed by either hydraulic or mechanical dredging techniques and include deepening the side channel to enable barge traffic to access the proposed fleeting area for loading and unloading material.
- Dredging an area to accommodate barge maneuvering and docking. This will be performed by either hydraulic or mechanical dredging techniques and include widening the area immediately adjacent to the proposed fleeting area for improved barge maneuverability.
- The dredged material would be used as fill material on the barge terminal site to raise the site above the 100-year flood elevation. Initial dredge material offloaded at the site will be used, in addition to regrading the proposed area, to ensure the access road and temporary storage locations are removed from the 100-year floodplain.
- Construct the barge terminal pad and access road. This will include constructing a sheet pile dock face and upstream/downstream steel pipe pile clusters for barge mooring and maneuvering system. Additionally, the access road off of 5th Grant Boulevard West will be improved for truck and vehicle traffic hauling material to and from the proposed barge mooring site.
- Construct footings for conveyors and hoppers for material handling and loadout. These will be located immediately adjacent to the barge terminal pad to enable loading and unloading material from moored barges.

- Install electric, sewer and water utilities to the project site.
- Install a loading scale and construct a scale house/field office building (proposed future action).

The City of Wabasha has prepared this draft Environmental Impact Statement (DEIS) in accordance with Minnesota Rules 4410.4400, Subpart 17, "Barge Fleeting Facilities." This DEIS assesses the potential for the Proposed Project—i.e., the above-listed work elements related to the construction of, and operations within, the Wabasha Barge Facility—to result in significant adverse environmental impacts.

Following Wabasha Barge Facility construction completion, it is anticipated that the City of Wabasha would partner with the United States Army Corps of Engineers ("USACE" or "the Corps"), pursuant to Section 217(d) of the Water Resources Development Act of 1996, to transfer material that is annually dredged from the Upper Mississippi River 9-foot navigation channel through the Wabasha Barge Facility for transport to off-site facilities. Navigational channel dredging and all other activities performed by the USACE under the Section 217(d) agreement related to the maintenance of the Mississippi River navigation channel are federal actions, considered separate from the proposed project, and are addressed in the 2023 Lower Pool 4 Dredged Material Management Plan (DMMP)⁴ and integrated Environmental Assessment.

The Wabasha Barge Facility would facilitate the transfer of dredged material from river barges to trucks for transport to off-site facilities for use as reclamation material for existing sand and gravel mines, local construction material, or other potential beneficial reuse options.

While detailed construction plans have not been completed, conceptual site design plans are provided in Figure 4, "Site Layout." Site design documents are anticipated to be completed in early 2024. The proposed letting date for construction is late Summer 2024. Construction is proposed to be complete with site operations commencing in Summer 2025, pending receipt of all permits and approvals.

2.2 Responsible Governmental Unit

The Wabasha Port Authority is the Responsible Governmental Unit (RGU) and the Proposer for the Wabasha Barge Facility project.

Organization:	Wabasha Port Authority
Contact Person:	Caroline Gregerson
Title:	City Administrator
Address:	900 Hiawatha Drive East
City, State, ZIP:	Wabasha, MN 55981

⁴ USACE. 2023. Lower Pool 4 Dredged Material Management Plan.

https://www.mvp.usace.army.mil/Portals/57/docs/Navigation/DMMP/Lower%20Pool%204/Pool%204_Final%20D MMP.pdf?ver=a8kfBkiPjAIcRyF76dhzjg%3d%3d, accessed July 2023.

Phone: 651-565-4568

Email: cityadmin@wabasha.org

2.3 Purpose of Draft Environmental Impact Statement

Minnesota Rules, 4410.4400, Subpart 17, "Barge Fleeting Facilities," states that an Environmental Impact Statement (EIS) is required for projects involving the construction of a barge fleeting facility at a new off-channel location that involves the dredging of 1,000 or more cubic yards.

The Proposed Project would facilitate dredging an access channel from the main navigation channel to the Barge Facility with an estimated total of 37,000 cubic yards (CY) of material removed. This exceeds the threshold of dredging 1,000 CY outlined in Minnesota Rules, 4410.4400, Subpart 17, thus requiring the preparation of this EIS document.

2.4 Purpose and Need for the Proposed Action

The Project Site is located within Lower Pool 4, a portion of the Upper Mississippi River (UMR), which is an important component of the United States' inland navigation system. Maintaining navigability through this reach is necessary to connect traffic moving between ports upstream as far as the Minneapolis-Saint Paul, Minnesota Metro Area, downstream as far as New Orleans, Louisiana, and to points east and west on the Illinois, Ohio, and Missouri Rivers.

The majority of sediment entering Lower Pool 4 are those carried by the Chippewa River.⁵ Some of this material deposits within the designated navigation channel of Lower Pool 4, reducing the required nine-foot (minimum) clearance for commercial vessels such as barges. Periodic removal of this material (dredging) and placement of the material on temporary upland locations is necessary to maintain the nine-foot navigation channel requirements for commercial vessels, with a minimum width of 300 feet in Lower Pool 4. According to the Corps, the navigation channel is currently maintained at minimum acceptable dimensions and any further reductions would lead to an unacceptable risk of tow boat groundings and channel closures.

Additionally, the existing upland dredged material placement sites within Lower Pool 4 of the UMR are nearing capacity. The lack of conveniently available onshore transfer and placement sites within the area has led to increased management costs and reduced ability for the Corps to effectively manage dredged material and maintain navigability in Lower Pool 4. Additional capacity is needed to manage the approximately 5.3 million CY of dredged material the Corps expects to produce in Lower Pool 4 over the next 20 years.

The City of Wabasha would partner with USACE, pursuant to Section 217(d) of the Water Resources Development Act of 1996, to transfer material that is annually dredged from the Upper Mississippi River

⁵ ibid 1.

9-foot navigation channel through the Wabasha Barge Facility for transport to off-site facilities. City of Wabasha proposes creating a facility that would transfer at least a portion of the 270,000 CY⁶ of dredged materials annually from the Mississippi River. The implementation of the Proposed Project would allow the City to provide the Corps with critical additional capacity to manage dredged material and maintain navigability throughout Lower Pool 4. According to the Corps, the Proposed Barge Facility site is the only feasible, cost-effective location for offloading barges on the Minnesota shoreline of the Mississippi River in Lower Pool 4. Previously proposed transfer facility locations would have been in close proximity to and would have routed relatively high volumes of truck traffic through, residential neighborhoods within the City of Wabasha; therefore, these locations were removed from consideration due to their potential impact to residents within the City of Wabasha.

The Proposed Project represents a cost-effective strategy for allowing dredged materials to be transferred from the river, ensuring navigability through Lower Pool 4 is maintained, while minimizing impacts to natural, man-made, and community resources within the area to the fullest extent possible. Additional barge fleeting operations may also include transfer of agricultural and commercial commodities to and from barges for follow-on transportation to local and regional distribution sites or to other port facilities up and down the Mississippi River system.

Federal Standard and Base Plan

The Corps' dredged material management planning follows federal regulations. Engineering Regulation (ER) 1105-2-100 directs the Corps to define a "Base Plan." 33 C.F.R. 335.7 defines the "Federal standard" (which is the same as the Base Plan) as follows: "Federal standard means the dredged material disposal alternative or alternatives identified by the Corps which represent the least costly alternatives consistent with sound engineering practices and meeting the environmental standards established by the 404(b)(1) evaluation process or ocean dumping criteria."

ER 1105-2-100 requires that all federally maintained navigation projects must demonstrate that there is sufficient dredged material disposal capacity for a minimum of 20 years. Management plans must identify specific measures necessary to manage the volume of material likely to be dredged over a 20-year period. It is the Corps' policy to accomplish the disposal of dredged material associated with the construction or maintenance dredging of navigation projects in the least costly manner. Disposal is to be consistent with sound engineering practice and meet all federal environmental standards including the environmental standards established by Section 404 of the CWA of 1972, as amended. This constitutes the base disposal plan for the navigation purpose. Each management plan study must establish this "Base Plan."

⁶ ibid 2.

2.5 Project Cost, Funding, and Schedule

The estimated total cost of the Proposed Project is \$4.6 million (2024 dollars). This cost includes construction, contingency, engineering, administrative, and legal costs. Funding for the project currently includes a Port Development Assistance Program (PDAP) grant from the Minnesota Department of Transportation in the amount of \$754,876. Remaining project funding is anticipated to come from potential additional MnDOT PDAP grant funding, potential US Department of Transportation Maritime Administration (MARAD) Port Infrastructure Development Program (PIDP) grant funding⁷, and Wabasha Port Authority and/or City of Wabasha bond sales.

The current schedule for the project is as follows:

- Final Design November 2023 April 2024
- Permitting January 2024 June 2024
- Tree Removal Contract Bidding February 2024
- Tree Removal March 2024
- Site, Dock, and Dredging Contract Bidding May 2024
- Site, Dock, and Dredging Construction July 2024 November 2024

Following completion of the site access, dock, and side channel access dredging, the agreement between the Corps and the City of Wabasha is anticipated to go into effect. This would initiate operations of offloading dredge material at the proposed project location, dewatering, and hauling to follow-on sites for potential construction, fill, and other uses based on the material quality.

⁷ The City is aware that MARAD PIDP funding, if awarded, will require additional Federal environmental review.

ALTERNATIVES

This EIS document assesses the potential for the proposed project to result in significant adverse impacts by comparing conditions anticipated during the construction and operation of the Proposed Project ("Preferred Alternative") to conditions otherwise expected without the Proposed Project ("No-Build Alternative"). Alternatives considered, but dismissed from further consideration, are also discussed below.

3.1 No-Build Alternative

In the absence of the Proposed Project, no development is anticipated on the Project Site. Therefore, this EIS assumes that the physical condition of the Project Site without the Proposed Project generally would resemble existing conditions and remain vacant.

Under the No-Action Alternative, currently approved and available sites in Lower Pool 4 project area would not be expected to accommodate dredge material placement needs for the next 20 years. If approved, CMMP sites are not available when dredging is required in Lower Pool 4 due to navigation emergency situations, dredged material may need to be placed at non-CMMP designated placement locations. Non-designated placement sites would likely include temporarily placing dredged material in the aquatic main channel border areas (in-water placement). The use of non-designated placement sites may result in higher costs and greater environmental or social impacts. Presumably though, these instances would be short-term, and USACE would initiate a new planning effort to identify the most acceptable dredged material management methods for the pool.

The use of CMMP-identified sites that would continue under the no action alternative would be dredged material placement in the Read's Landing, Crats Island, Teepeeota Point, and Grand Encampment transfer sites, and in the Wabasha Gravel Pit and Alma Marina upland transfer sites. Also, as happens currently, material would be moved hydraulically to the Wabasha Gravel Pit. The use of the Carrels site, which is identified in the CMMP, is possible but would require acquisition of a real estate interest in the site because it is privately owned. Similarly, the Wabasha Sand and Gravel Pit was evaluated and approved for use in 2015 but is also privately owned. Because these sites are in private ownership, their use is uncertain and cannot be relied upon.

Under existing conditions, dredging activity is conducted proactively to prevent navigation channel closures. Channel conditions are monitored by the Corps to identify areas that are or will soon become problematic for navigation traffic. This allows the Corps to better prioritize efforts and most efficiently maintain the channel when equipment is mobilized in the area. Material is dredged from the navigation channel and temporarily placed on island transfer sites adjacent to the dredge locations. When island sites are nearly full, the Corps moves the dredged material to upland placement sites to restore island capacity. The Wabasha Gravel Pit is currently the only available site in Pool 4 for upland placement, and it is nearing capacity. The recently acquired Rolling Prairie site in Pool 5 could be used for upland placement, as it has ample capacity, but it's distance would make it costly and difficult to efficiently access.

In the best case where placement sites are full, dredging could be temporarily deferred and the navigation channel would remain functional for some period of time. This scenario has potential to occur for short periods of time (e.g., one dredging season at a minimum), but is extremely unlikely to persist based on known dredging requirements in this stretch of river.

Switching to a scenario of dredging only when absolutely necessary would increase the likelihood of experiencing imminent or emergency dredging conditions as described above, as was experienced at Grand Encampment in 2014.

3.2 Alternatives Considered but Dismissed from Consideration

Navigation channel dredging planning in Lower Pool 4 was conducted in two phases. Initial work resulted in a draft material management plan that was published in May 2017. The 2017 draft DMMP along with the comments the Corps received about it is available on the St. Paul District website: https://www.mvp.usace.army.mil/DMMP/.

The second phase of planning reconsidered dredging methods and revised the alternatives considering the comments received on the May 2017 draft.

Alternative geographic sites within Pool 4 were reviewed and dismissed from further consideration based on their assessed operational feasibility, cost effectiveness, and impacts of commercial truck traffic through developed areas within and near the City of Wabasha.⁸

The Corps developed a list of potential dredged material placement sites based on publicly available aerial imagery and property records. Consideration was given to the full range of measures for dredged material management including federally owned islands and upland placement sites, new sites, and potential future placement sites that could be made available for both mechanical and hydraulic placement. The reasoning for site dismissals are further discussed below.

St. Paul District Channel Maintenance Management Plan (CMMP)

Published in 1997, the CMMP and accompanying Final Environmental Impact Statement (FEIS), is the St. Paul District's plan for management of channel maintenance (USACE 1997). Much of the plan is devoted to the designation and design of dredged material placement sites. Included in the report is a discussion of the district's program for channel management. This DMMP for Lower Pool 4 is part of that program. The CMMP defines criteria to be used to evaluate and compare the various sites and alternatives in dredged material management plans. The Corps considered all of these criteria when evaluating sites for this DMMP. The criteria are as follows:

Cost

⁸ USACE. 2023. Lower Pool 4 Dredged Material Management Plan.

https://www.mvp.usace.army.mil/Portals/57/docs/Navigation/DMMP/Lower%20Pool%204/Pool%204_Final%20D MMP.pdf?ver=a8kfBkiPjAIcRyF76dhzjg%3d%3d, accessed July 2023.

- Natural Resources
- Beneficial Use
- Cultural Resources
- Social Impacts
- Recreation

The social impacts criterion includes the following categories of socioeconomic factors to consider:

- Business and industrial activity and employment
- Community cohesion: proximity to residential development, landowner willingness to sell, public opposition, and adjacent land use
- Public services and facilities
- Property values and tax revenues
- Life, health, and safety
- Aesthetic values and noise levels

First Iteration – 2017 Draft Lower Pool 4 DMMP

The 2017 draft DMMP attempted to plan for a 40-year timeframe instead of the minimum 20-year timeframe required in Corps regulations. The longer planning horizon was intended to provide more certainty regarding the Corps' operations, knowing that additional development in the study area will affect the options available for dredged material management sites and complicate future planning efforts.

Discussion with state and federal natural resource agencies identified that in-river alternatives, including expanding the existing island transfer sites, were less desirable and had increased likelihood of adverse impacts to wetlands relative to upland alternatives. Mitigation for wetland impacts would likely have increased the cost of these options. The agencies preferred not to build islands or otherwise make beneficial use of the dredged material in Lower Pool 4 at that time.

The Corps began looking for sites to meet the variety of needs within Lower Pool 4. Sites were initially identified based on their operational feasibility, including access to the river and highway network, the acreage and site dimensions needed to support dredging operations, and the potential for public or specific beneficial use of the material. Sites were evaluated and compared using the general criteria in the St. Paul District CMMP plus additional factors including flood stage impacts, the potential to encounter hazardous, toxic, or radioactive wastes, and the potential to affect eligible or listed historic properties already known to exist.

The Corps looked for suitable sites for future large-scale hydraulic offloads from the island transfer sites. The large cost of setting up miles of hydraulic dredge pipeline is only cost-effective if the pipeline can be used to move very large volumes of material. For that reason, island offloads typically move at least 500,000 CY, which requires a placement site 20 acres or more near the river and the island sites and compatible with existing adjacent land use. The Corps-owned Wabasha Gravel Pit was nearing its capacity. Due to development in and near Wabasha on the Minnesota shoreline and the relative inaccessibility of upland sites on the Wisconsin shoreline, no new sites were found to be of adequate size and location.

In an effort to reduce the need for large-scale island offloads and reduce the cost of double handling the dredged material, the Corps developed a plan to switch from primarily hydraulic dredging methods to using mechanical methods. The plan identified several parcels of land needed to support onshore handling, transfer and upland placement of mechanically dredged material for a 40-year planning horizon.

The Corps also looked for suitable onshore locations to support mechanical and hydraulic dredging operations. Onshore transfer sites must be located relatively near the dredge cuts and support a variety of activities, depending on the type of dredging:

- Unloading barges
- Stockpiling dredged material
- Loading onto trucks
- Containing and dewatering hydraulically dredged material

Once the onshore transfer sites were located, the Corps looked for suitable upland placement sites. Sites smaller than 20 acres were not considered suitable unless a specific beneficial use was identified, such as mine reclamation or raising a site's elevation for development. In general, Corps Real Estate policy requires obtaining a fee simple interest in dredged material placement sites. That requirement contributed to the Corps' preference for sites with larger capacities to reduce the number of parcels needed. It also led to avoiding parcels within developed areas where the potential for private development is not compatible with federal ownership of the sites.

The Corps took the following steps to determine the least-costly environmentally acceptable sites:

- Estimate the cost to haul material to each site from the identified onshore transfer sites
- Estimate cost per cubic yard to use each site, including real estate, site development and hauling cost
- Rank the sites in order of cost from least to greatest
- Assess environmental acceptability of each site using criteria in the CWA, ESA, and other federal laws and regulations
- Eliminate sites that were not environmentally acceptable
- Identify the least-cost, environmentally acceptable sites necessary to provide the required capacity

The draft DMMP was released in May 2017 for public and agency review. Reviewers expressed concerns about taking farmland out of production and reducing the local tax base, social impacts of acquiring land from unwilling sellers and multi-generational farmers, noise and aesthetic impacts to residential properties, impacts to property values near DMMP sites, impacts to the viewshed from designated

scenic highways and neighboring residences, and impacts of hauling material through the developed areas of Wabasha, Nelson, and Alma, Minnesota.

Second Iteration – 2022 Draft Lower Pool 4 DMMP

The second planning effort was more sensitive to social impacts, a factor that was overshadowed by cost-effectiveness and environmental acceptability during the first iteration. As part of the reconsideration, the Corps screened out some sites previously proposed in the May 2017 draft report, while retaining others and identifying additional sites. The Corps worked directly with the City of Wabasha to develop a plan that reduced impacts to the community. The Corps issued public notices and sent letters to individuals to find landowners willing to consider selling their property in areas likely to be cost-effective for the Corps.

Upland placement sites that required hauling through the developed areas of Wabasha, Nelson and Alma were screened out, because other cost-effective sites had lower impacts to traffic and affected fewer people along the haul routes.

The second iteration of planning followed the same regulations as the first iteration. It considered an array of features, including potential sites, activities, and modes of transportation useful for managing dredged material in Lower Pool 4. It evaluated the potential costs, environmental impacts, and social impacts associated with each feature. It compared the qualities of the features with each other to determine the least costly alternatives consistent with sound engineering practices and meeting required environmental standards. The Tentatively Selected Plan (TSP) presented in the 2022 DMMP constitutes the "Base Plan" and the "Federal standard" for managing dredged material in Lower Pool 4 through the year 2042.

3.3 Description of Preferred Alternative

The Preferred Alternative includes dredging an access channel from the Mississippi River main channel, creating a barge docking facility and area for material off-loading, and hauling to use in construction-type activities or move to storage sites. Work elements associated with the Preferred Alternative include:

- Dredging an access channel from the main Mississippi River navigation channel to the proposed dock area. This will be performed by either hydraulic or mechanical dredging techniques and include deepening the side channel to enable barge traffic to access the proposed fleeting area for loading and unloading material.
- Dredging an area to accommodate barge maneuvering and docking. This will be performed by either hydraulic or mechanical dredging techniques and include widening the area immediately adjacent to the proposed fleeting area for improved barge maneuverability.
- The dredged material would be used as fill material on the barge terminal site to raise the site above the 100-year flood elevation. Initial dredge material offloaded at the site will be used, in

addition to re-grading the proposed area, to ensure the access road and temporary storage locations are removed from the 100-year floodplain.

- Construct the barge terminal pad and access road. This will include constructing a sheet pile dock face and upstream/downstream steel pipe pile clusters for barge mooring and maneuvering system. Additionally, the access road off of County Road ___ will be improved for truck and vehicle traffic hauling material to and from the proposed barge mooring site.
- Construct footings for conveyors and hoppers for material handling and loadout. These will be located immediately adjacent to the barge terminal pad to enable loading and unloading material from moored barges.
- Install electric, sewer and water utilities to the project site. Extend city utilities to the project site to ensure adequate operations for the proposed project.
- Install a loading scale and construct a scale house/field office building (proposed future action).

Final design and construction plans will be completed following environmental review and incorporation of any identified avoidance, minimization, or mitigation measures required.

EIS analyses herein are performed to assess the potential for the construction and operation of the Proposed Project ("Preferred Alternative") to result in significant adverse impacts.

As discussed in Section 2.1, "Project Description," dredging of the main navigation channel and all other activities performed by USACE under the Section 217(d) agreement related to the maintenance of the Mississippi River navigation channel are federal actions, considered separate from the proposed project, and are addressed in the 2023 Lower Pool 4 Dredged Material Management Plan (DMMP) and integrated EA.

SOCIAL, ECONOMIC, AND ENVIRONMENTAL IMPACTS

4.1 Permits and Approvals

All known permits at State, Federal, and local levels necessitated by the project are listed in Table 1, "Required Permits & Approvals," below. Public financial assistance is anticipated from the State of Minnesota through its PDAP and potentially from the federal Department of Transportation Maritime Administration (MARAD) PIDP grant.

Government Agency	Type of Application/Permit	Status*		
	Federal Agencies			
	Clean Water Act (CWA) Notification	To be updated		
U.S. Army Corps of Engineers (USACE)	No Rise Certification	To be completed		
	Section 10 Rivers & Harbors Appropriation Act	To be updated		
State Agencies				
	Permit to Take	To be applied for, if necessary		
Minnesota Department of Natural Resources (MNDNR)	Public Waters Work Permit	To be updated		
	Water Appropriations Permit	To be applied for, if necessary		
Minnesota Board of Water and Soil Resources (BWSR)	Minnesota Wetland Conservation Act (WCA) Notification	To be updated		
Minnesota Pollution Control Agency (MPCA)	National Pollutant Discharge Elimination System (NPDES) Construction General Storm Water Permit	To be updated		
МРСА	Industrial Stormwater Permit	To be updated		
Local Agencies				
City of Wabasha	Conditional Use Permit	To be updated		
City of Wabasha	Floodplain Permit / No Rise Certification	To be updated		

Table 1: Required Permits & Approvals

* All permit requirements will be applied for prior to project or specific phase commencing.

4.2 Cover Types

4.2.1 Cover Types

Cover Type	Before (acres)	After (acres)
Wetlands	0.4	0.0
Deep Water/Streams	0.0	0.0
Wooded/Forest	2.7	0.0
Brush/Grassland	0.4	0.0
Cropland	0.0	0.0
Lawn/Landscaping	0.0	0.0
Impervious Surface	4.7	8.0
Stormwater Pond/Ditch	0.0	0.1
Other (Barge Docking Area)	0.0	0.1
TOTAL	8.2	8.2

Table 2: Cover Types – Proposed Barge Facility Site

* Existing and proposed cover type acreage estimates for the 8.2-acre Proposed Barge Facility site are based on the National Land Cover Database (NLCD), aerial photo interpretation, wetland delineations, and the conceptual site layout. Changes to land cover will only occur within the 8.2-acre Proposed Barge Facility site, and the remaining portions of tax parcels R27.00004.00 and R27.00005.03 would maintain their existing condition. Acreages are estimates and subject to change based on further site planning and project development.

** The existing gravel driveway, which is classified as "Developed" in the NLCD, was considered an impervious surface. The proposed condition assumed the aggregate surfaces associated shown on the proposed site plan along with the remaining portions of the existing gravel driveway are considered impervious for the "After" condition.

4.2.2 Green Infrastructure and Trees

4.2.2.1 Existing Conditions

The existing 8.2-acre Proposed Barge Facility site includes approximately 2.7 acres of tree cover, 0.4 acres of wetlands, 0.4 acres of pervious brush/grassland areas, and 4.7 acres of impervious surfaces within the proposed project area.

4.2.2.2 Environmental Consequences: No-Build Alternative

The No-Build Alternative would maintain the Proposed Barge Facility site land cover as indicated in Table 2, "Cover Types – Proposed Barge Facility Site."

4.2.2.3 Environmental Consequences: Preferred Alternative

The City intends to purchase only the 8.2-acre portion of the Study Area that is necessary for the Proposed Barge Facility. The remaining areas would remain under private ownership. In order to construct the barge terminal, tree coverage within the proposed 8.2-acre barge facility site would be reduced from 2.7 acres to 0.0 acres. Additional brush/grassland areas would have vegetation removed and soils compacted. Dredge material removed from the access channel will be incorporated as fill material to raise the proposed access road above the 100-year floodplain. Impervious surfaces would increase to accommodate the proposed access road and other hard-structure surfaces to facilitate barge loading and off-loading operations, including truck traffic in and out of the Proposed Barge Facility site. 0.4 acres of wetlands would be impacted. A detailed discussion of wetland impacts and associated mitigation measures is included in Section 4.13.2, "Wetlands."

4.2.2.4 Mitigation Measures

The City of Wabasha will meet all required permits and approvals and ensure timing of tree removal does not interfere with bat roosting season. Stormwater runoff will be directed to an infiltration area on site to reduce impacts from additional impervious surface area. No additional mitigation measures are included in project plans at this time.

4.3 Economic Environment

4.3.1 Existing Conditions

Historic aerial imagery indicates that gravel mining occurred on the Study Area, beginning in earnest in 1949 and continuing into the early 1970s. By 2010, gravel mining had ended, and trees have primarily reclaimed the filled gravel pits. The Study Area is currently comprised of vacant woodland, appears to have been used for the dumping or storage of scrap metal, construction material, and various vehicle parts, and does not contribute to the existing economic environment within the City of Wabasha.

4.3.2 Environmental Consequences: No-Build Alternative

The No-Build Alternative would maintain the status of the project location and the City of Wabasha with regard to economic environment. The project site would not be used for any city or other improvements or potential economic development opportunities.

4.3.3 Environmental Consequences: Preferred Alternative

The current Wabasha Comprehensive Plan (2016-2035),⁹ last amended July 6, 2021, lists the future land use of the project site as "Industrial." The Comprehensive Plan discusses Wabasha's unique location and opportunity for development of a commercial river port facility that would be used for commercial purposes including, but not limited to, the ongoing efforts by the Corps of Engineers in maintaining the

⁹ City of Wabasha. 2023. Wabasha Comprehensive Plan, 2016-2035. <u>https://www.wabasha.org/wp-content/uploads/Final-Plan-2016.pdf</u>, accessed July 2023.

Mississippi River 9-foot navigation channel. The implementation of the Proposed Project would support these goals outlined in the City of Wabasha's Comprehensive Plan and is anticipated to increase the community's economic vitality.

4.3.4 Mitigation Measures

The Proposed Project would not result in adverse impacts to the City of Wabasha's economic environment. Thus, no mitigation measures related to the economic environment are included in project plans at this time.

4.4 Environmental Justice

According to the EPA's Environmental Justice Screening and Mapping Tool (EJScreen), approximately 38 percent of the population located within a ¼-mile radius of the Proposed Project is considered low income, and approximately one percent of the population located within a ¼-mile radius of the proposed project is considered minority population/people of color. Additional demographic information is included in Appendix B. All identified adverse impacts that would result from the implementation of the Proposed Project are capable of being mitigated and are expected to be reduced significantly with appropriate measures. These measures are outlined in Section 5, "Mitigation Measures." No disproportionately high environmental justice impacts are anticipated to occur as a result of the Proposed Project.

4.5 Utilities

4.5.1 Existing Conditions

The Project Site is not currently served by the City of Wabasha's existing public utilities system.

According to the City of Wabasha's Comprehensive Plan (2016-2035), an existing 6-inch water main runs along 5th Grant Boulevard West, immediately south of the Project Area. Similarly, a mixed 6-inch and 10-inch sanitary sewer pipe also runs along 5th Grant Boulevard West, immediately south of the Project Area. Area.

There are currently no electrical utilities running to or within the Project Site.

4.5.2 Environmental Consequences: No-Build Alternative

In the No-Build Alternative, it is assumed that the physical condition of the Project Site generally would resemble existing conditions and remain vacant without utilities expanding inside the parcel boundaries.

4.5.3 Environmental Consequences: Preferred Alternative

The implementation of the Proposed Project would require the extension of the City of Wabasha's existing sewer, water, and electrical utilities to the Project Site. Sanitary sewer extension may include the installation of a lift station on a portion of the Project Site.

According to the City of Wabasha's Comprehensive Plan (2016-2035), the City's existing public utilities system (water, wastewater, and stormwater) is well-positioned and of adequate size to support the required expansion into the growth areas. The Comprehensive Plan anticipates extending the City's existing water and wastewater service area to include the Project Site. There are no expected impacts to the City's water or wastewater systems due to the slight usage increases as part of the proposed project.

Electric utilities would be required and coordinated through Northern States Power Company, who's parent company is Xcel Energy. In 2022, Xcel reported it used 53% non-carbon sources for its energy mix and has a goal of 100% net-zero emissions by 2050.

4.5.4 Mitigation Measures

The Proposed Project would not result in adverse impacts to the City of Wabasha's utilities system. No mitigation measures related to utilities are included in project plans at this time.

4.6 Land Use

4.6.1 Property and Right of Way Needs

4.6.1.1 Existing Conditions

The existing Project Site is currently privately owned. The current Wabasha Comprehensive Plan (2016-2035), identifies the Project Site as an opportunity for future industrial development and land use.

4.6.1.2 Environmental Consequences: No-Build Alternative

The No-Build Alternative would maintain the existing status of the project location with regard to property and right-of-way needs. The City of Wabasha would not purchase the Project Site, and the Project Site would maintain its existing vacant condition.

4.6.1.3 Environmental Consequences: Preferred Alternative

Under the Preferred Alternative, the City of Wabasha would own the Project Site and contract out the port operations and transportation of materials.

As part of the Proposed Project, a new entrance road would be constructed along 5th Grant Boulevard W to allow trucks to access the new site. Trucks accessing the site would follow a specific truck route to and from the site, which will take them from the project site on 5th Grant Boulevard W, to Trunk Highway 61 (TH 61), and then onto Shields Avenue.

Because the City of Wabasha would own the Project Site under the Preferred Alternative, no additional property and right-of-way needs are anticipated during the construction and/or operation of the Proposed Project.

4.6.1.4 Mitigation Measures

Prior to project construction, the City of Wabasha will work with the current landowner, who is identified as a willing seller, to determine fair market value for purchase of the Project Site. While this DEIS addresses the entirety of the two parcels, the City only intends to purchase the 8.2-acre portion that is necessary for the Proposed Barge Facility. The remaining areas would remain under private ownership.

4.6.2 Land Use, Plans, Zoning, and Special Districts/Overlays

4.6.2.1 Existing Conditions

The Project Site is located on tax parcels R27.00004.00 and R27.00005.03 within the City of Wabasha, Wabasha County, Minnesota (Section 30, Township 111N, Range 010W). These parcels are presently privately owned, and the City anticipates purchasing the requisite area to house the facility from a willing seller prior to construction activities.

The Project Site is bounded by the Mississippi River to the north and agricultural land to the east and west. 5th Grant Boulevard West (Wabasha County Road 59), which borders the Project Site to the south, provides connection to downtown Wabasha and U.S. Highway 61.

The Project Site is comprised of vacant woodland and appears to have been used for the dumping or storage of scrap metal, construction material, and various vehicle parts. According to historic aerial imagery—which is available for limited years from 1939 to the present—gravel mining occurred on the Project Site, beginning in earnest in 1949 and continuing into the early 1970s. By 2010, gravel mining had ended, and successional trees have reclaimed the filled gravel pits.

In July 2020, Bolton & Menk, Inc., conducted a wetland delineation that identified 16.1 acres of Type 1 Seasonally Flooded Wetlands located within the northernmost portions of the Project Site.

South of the Project Site, across 5th Grant Boulevard West, is predominantly agricultural land. Some of the agricultural lots adjacent to the Project Site contain houses, however the nearest lots that are primarily of residential use are located approximately ¼ mile southeast of the Study Area.

The two parcels that comprise the Project Site are both zoned R-1, "Low-Density Residential." R-1 zoning districts are intended to allow for the use and development of residential structures, yards, and directly related complimentary uses at a lower density than traditionally developed in the originally platted cities. The parcels bordering the project site to the east and west are also zoned R-1. The parcels located south of the project site, across 5th Grant Boulevard West, are zoned I, "Industrial."

The Project Site is also located in an S1 Shoreland Overlay Zone. Shoreland Overlay Zoning Ordinances typically contain a variety of provisions that guide land development and activity in shorelands with the goal of protecting surface water quality, near-shore habitat, and shoreland aesthetics. S1 Shoreland Overlay Zones are intended to provide standards for shoreland areas within the city that are primarily undeveloped.

The Project Site is located within the FEMA 100-Year floodplain. The Project Site is not located within a Drinking Water Management Supply Area (DWSMA)—however, the lots directly south of the project site, across 5th Grant Boulevard West, are located within a DWSMA.

4.6.2.2 Environmental Consequences: No-Build Alternative

The No-Build Alternative would maintain the existing status of the project location and surrounding areas with regard to land use, plans, zoning, and special districts/overlays.

4.6.2.3 Environmental Consequences: Preferred Alternative

The proposed development of the Project Site as a commercial port facility under the Preferred Alternative is consistent with the current Wabasha Comprehensive Plan (2016-2035), last amended July 6, 2021. The Comprehensive Plan lists the future land use of the project site as "Industrial" and discusses Wabasha's unique location and opportunity for development of a river port facility that would be used for commercial purposes.

Of the total Study Area, only approximately 8.2 acres would be used and developed for the Proposed Project, leaving the remaining area in its current undeveloped state.

One wetland (Wetland 1) would be permanently impacted by the Preferred Alternative. Proposed impacts to Wetland 1 are due to filling a portion of the wetland for grading and construction of the barge facility. Wetland 1 is adjacent to the proposed barge/dock and off-loading area, which contains the material hauler, hopper, scale, and conveyor system. A portion of that wetland will not be filled, however, as a conservative estimate the entire wetland is considered permanently impacted. Permanent proposed impacts to Wetland 1 are 0.40 acres. For more information, please refer to Section 4.13.2, "Wetlands."

The Preferred Alternative would also involve dredging a portion of the Mississippi River for barge traffic to access this barge facility. A portion of that material, once dewatered and available, would be used as fill to elevate the proposed project's access road and facilities out of the 100-year floodplain.

4.6.2.4 Mitigation Measures

Proposed fill – from side channel dredging and amended with other fill material as needed – would raise the project site to an elevation of approximately 678.6 feet to 680.5 feet, thereby removing the access road and other material transfer infrastructure from the 100-year floodplain, which is at an elevation of 678.6 feet. The dredged material will be tested prior to use as fill. Additionally, a "No-Rise" Certification is anticipated and will be submitted to FEMA with the project design to document no impact to flood elevations due to placement of fill within the Mississippi River floodplain (Appendix C). Wetland impacts will be mitigated and permitted through USACE and MNDNR application processes.

Upon completion and approval of the EIS, the City will initiate a zoning amendment to change the parcels from "R1" to "I" in accordance with the City's future land use plans. Construction standards and specifications will ensure compliance with the City of Wabasha's Shoreland Overlay Zone.

Mitigation efforts for impacts to wetlands will be completed in accordance with local, State, and Federal regulations. Mitigation requirements will be met prior to construction activities impacting wetlands or streams at the site. For more information, please refer to Section 4.13.2, "Wetlands."

All direct and indirect impacts to other areas mentioned above will be specifically addressed later in this document. The City of Wabasha will meet all required permitting standards, zoning regulations, and ordinances related to the development of a commercial port facility.

4.6.3 Community Facilities/Critical Facilities

4.6.3.1 Existing Conditions

The Riverview Cemetery is located approximately 250 feet west of the Study Area, beyond the agricultural land that is adjacent to the Project Site. An active freight railroad line operated by Canadian Pacific Railway runs from the northeast to the southwest, between 5th Grant Boulevard West and U.S. Highway 61. A small rail yard is located approximately 400 feet southeast of the Project Site. The Gunderson St. Elizabeth's Hospital is located approximately 0.40 miles southeast of the Project Site.

4.6.3.2 Environmental Consequences: No-Build Alternative

The No-Build Alternative would maintain the existing status of the Study Area and surrounding areas with regard to community facilities and critical facilities.

4.6.3.3 Environmental Consequences: Preferred Alternative

The Proposed Project would not directly impact any of the identified community or critical facilities. Indirect impacts may include increased truck traffic along 5th Grant Boulevard West, as well as minor, temporary noise effects during construction and loading/off-loading activities, although noise is anticipated to have minimal impact. For more information on traffic-related impacts, please refer to Section 4.20.1, "Traffic." For more information on noise-related impacts, please refer to Section 4.19, "Noise."

4.6.3.4 Mitigation Measures

The City of Wabasha will meet all required permitting standards, zoning regulations, and ordinances related to the development of a commercial port facility. Standard construction noise mitigation practices will be used to minimize any potential impacts to surrounding facilities.

4.6.4 Parks, Open Space, and Recreational Facilities

4.6.4.1 Existing Conditions

According to the City of Wabasha's Comprehensive Plan (2016-2035), several trails and recreational facilities are located near the Proposed Project:

• The Nelson-Trevino Bottoms Natural Area is located across the Mississippi River, approximately 0.25 miles northeast of the Study Area.

- The City of Wabasha's Beach Park is located approximately 0.60 miles southeast of the Study Area.
- The Mississippi River Trail, a bike and pedestrian trail, is located within 0.5 miles of the Study Area.
- A City of Wabasha five-mile bike and pedestrian trail is located just east of the Study Area and travels through the Gunderson St. Elizabeth's Hospital parcel.
- Upper Mississippi River National Wildlife and Fish Refuge begins just up-river of the Study Area and stretches 261 river miles from Wabasha, Minnesota to Rock Island, Illinois.
- The Mississippi River Water Trail is located adjacent to the Study Area on the Mississippi River. This trail serves as a navigational guide for recreational travel on the river via boat or other watercraft, and highlights amenities and key destinations.
- The Great River Road, a National Scenic Byway, travels along the Mississippi River through ten States, and follows Highway 61 through the City of Wabasha.
- The National Eagle Center, a heavily-trafficked outdoor recreational and educational facility, is located approximately 1.5 miles from the Study Area.

In general, this area of the Upper Mississippi River has a substantial amount of fishing and boating activities. Small boats frequently use this area to access the side channel to the west of Drury Island, and there are also primitive camping sites on the interior of the island complex.

Additionally, the Study Area is located adjacent to the Upper Mississippi River National Wildlife and Fish Refuge. The Upper Mississippi National Wildlife and Fish Refuge is the longest national wildlife refuge in the lower 48 states, extending 261 miles from the Chippewa River in Wisconsin almost to Rock Island, Illinois. The Refuge is an Audubon designated Important Bird Area (ABA) and Ramsar designated Globally Important Bird Area. Lower Pool 4 of the Mississippi River is part of the Upper Mississippi National Wildlife and Fish Refuge which is managed by the USFWS. The USFWS also owns and manages adjacent land northwest of the Study Area.

4.6.4.2 Environmental Consequences: No-Build Alternative

The No-Build Alternative would maintain the existing status of the Study Area and surrounding areas with regard to available parks, open space, and recreational facilities.

4.6.4.3 Environmental Consequences: Preferred Alternative

For discussion of impacts related to the Upper Mississippi River National Wildlife and Fish Refuge, Audubon-designated Important Bird Area, Lower Pool 4 of the Mississippi River, and other nearby natural and biologically-significant areas, please refer to Section 4.15.1, "Resources, Habitats, and Vegetation."

The Proposed Project would not directly impact any of the identified trails or other land-based recreational features. Indirect impacts may include increased truck traffic along 5th Grant Boulevard West, potentially decreasing the semi-rural ambiance of this roadway. During construction and loading/unloading activities, noise may be a factor for persons participating in non-motorized

recreational activities, immediately adjacent to the project location. For aquatic recreational users, an increase in barge traffic to and from the proposed project area will require increased vigilance to reduce impacts between barges and other boat – motorized or non-motorized – traffic.

4.6.4.4 Mitigation Measures

For discussion of mitigation measures related to the Upper Mississippi River National Wildlife and Fish Refuge, Audubon-designated Important Bird Area, Lower Pool 4 of the Mississippi River, and other nearby natural and biologically-significant areas, please refer to Section 4.15.1, "Resources, Habitats, and Vegetation."

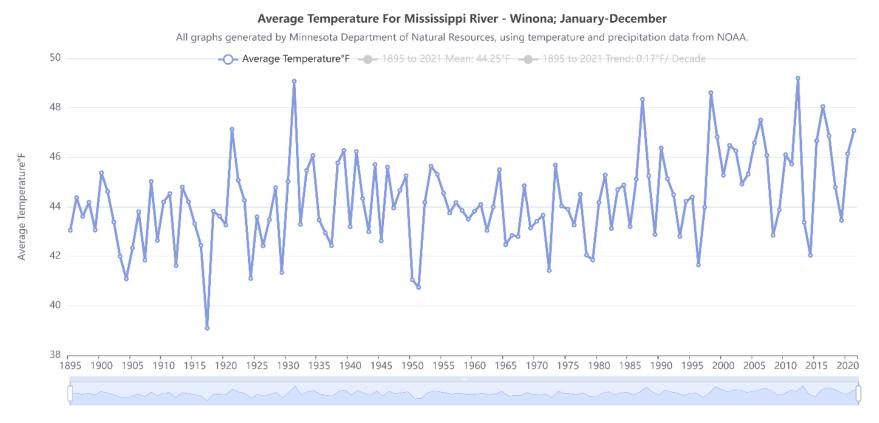
Appropriate road and waterway signage will identify this area as increased truck and barge traffic, respectively. Additionally, the contracted operator of the facility will be required to comply with City of Wabasha noise ordinances, and to confine operations to set days and times during the regular work week. This information will be clearly articulated to the contracted facility construction personnel and operators. During the lifespan of the Proposed Barge Facility, the City will routinely audit operations through an impact assessment to identify future additional mitigation requirements and recommendations.

4.7 Climate Trends and Impacts

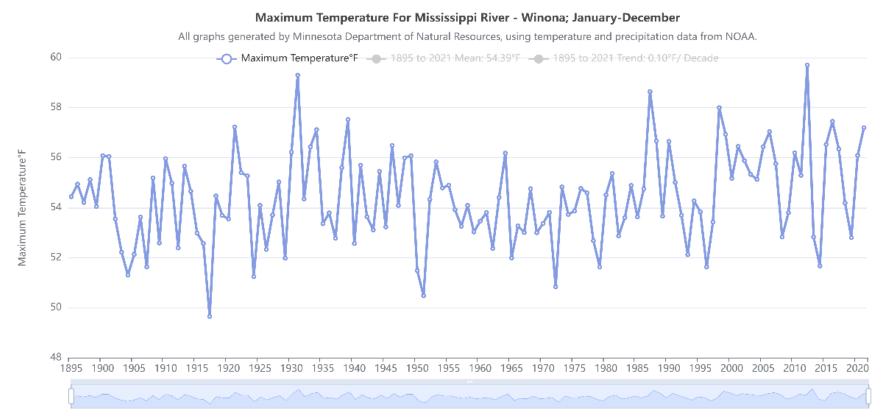
4.7.1 Existing Conditions

Minnesota's climate is trending generally towards warmer and wetter conditions with more frequent intense precipitation events.¹⁰ The location of the Proposed Project is within the Mississippi River – Winona Watershed. Data from the Minnesota Department of Natural Resources' Minnesota Climate Explorer¹¹ tool shows both historical and projected future climate trends for this watershed. Historical data from 1895 to 2021 shows variable average temperatures and precipitation totals from year to year, as shown in the graphs below, and gives an impression of the existing climate conditions within the region. The historic trends for temperature and precipitation are:

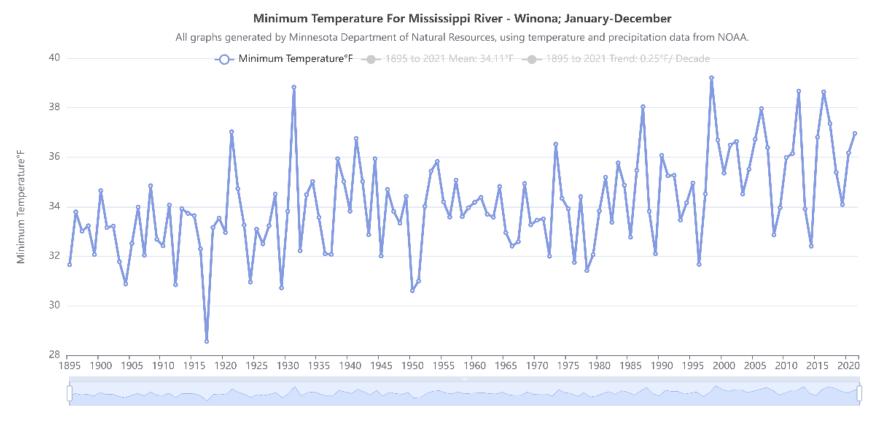
- Average daily mean temperature of 44.25 degrees Fahrenheit with an increase of 0.17 degrees F per decade.
- Average daily maximum temperature of 54.39 degrees Fahrenheit with an increase of 0.10 degrees F per decade.
- Average daily minimum temperature of 34.11 degrees Fahrenheit with an increase of 0.25 degrees F per decade.
- Average annual precipitation of 32.26 inches with an increase of 0.57 inch per decade.

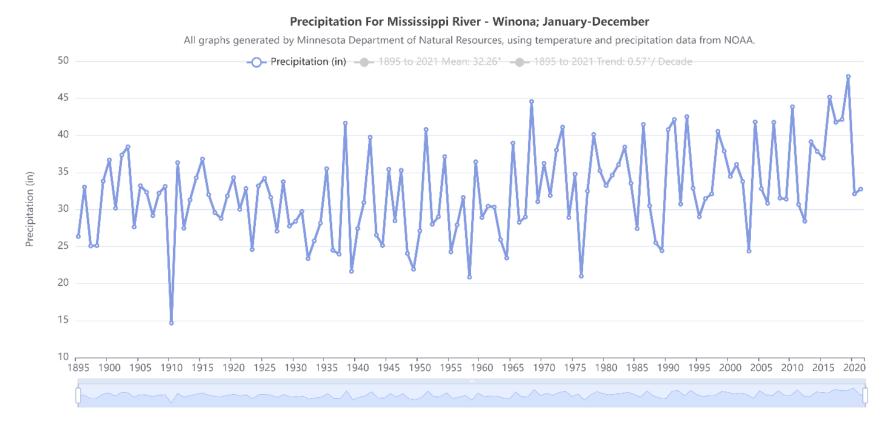

¹⁰ Minnesota Department of Natural Resources. 2023. Climate Trends. Electronic document, https://www.dnr.state.mn.us/climate/climate_change_info/climate-trends.html, accessed February 2023.

¹¹ Minnesota Climate Explorer. 2022. Minnesota Department of Natural Resources. Electronic resource, https://arcgis.dnr.state.mn.us/ewr/climateexplorer/main/historical, accessed October 2022.


Wabasha County is currently considered to have a moderate heat exposure score compared to other counties in Minnesota (Exhibit 5, "Heat Exposure in Minnesota - Counties").¹² Trends of warmer temperatures may increase the risk of heat waves and vulnerability.

¹² Minnesota Department of Health's Climate & Health Program and U-Spatial. 2019. Heat Vulnerability in Minnesota. Electronic document, https://maps.umn.edu/climatehealthtool/heat_app/, accessed March 2023.


Exhibit 1



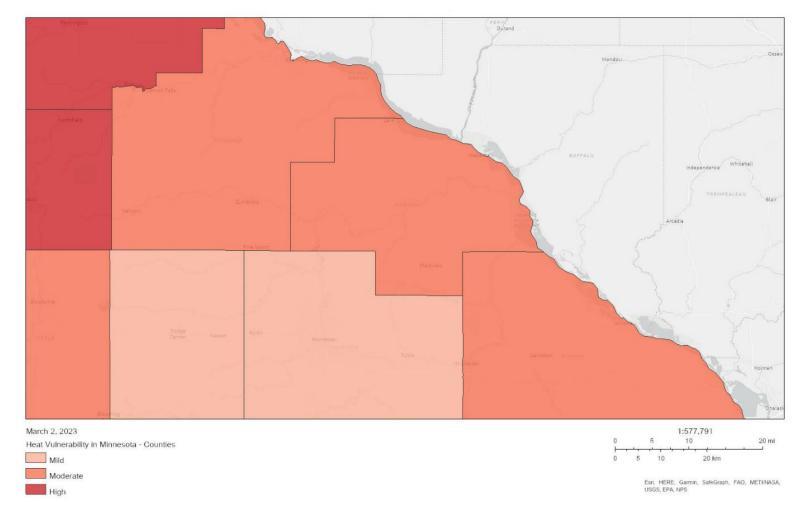


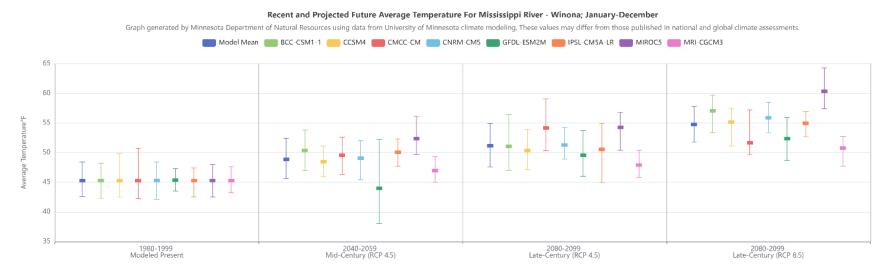
Exhibit 3

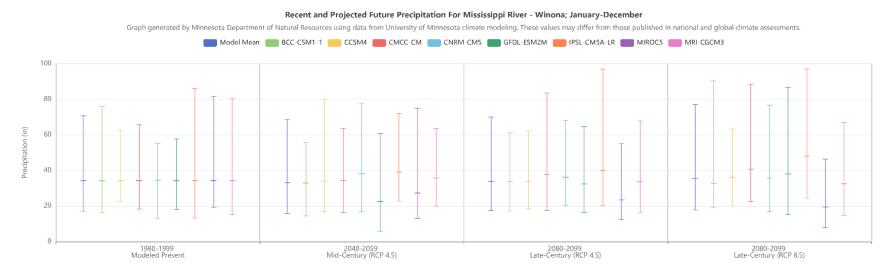
Exhibit 5: Heat Vulnerability in Minnesota – Counties

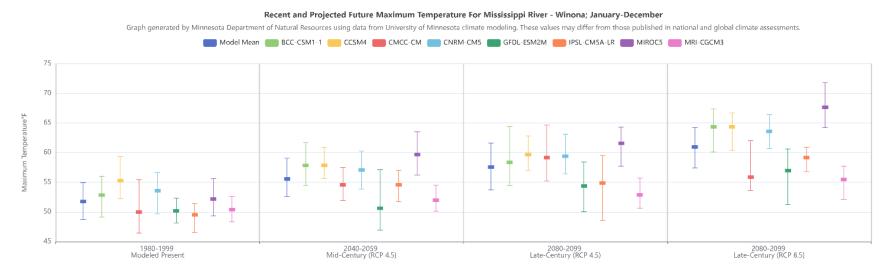
4.7.2 Environmental Consequences: No-Build Alternative

Projected future data for Mississippi River – Winona Watershed was also evaluated using the Minnesota Climate Explorer. The mid-century (2040-2059) projections fit with the life of the Proposed Project and are summarized below. The data makes projections using RCP 4.5 (representative concentration pathway), which is an intermediate stabilization scenario. The information shown is the model mean of eight general circulation global climate models. Assuming no impact from the Proposed Project, the climate in the region is anticipated to follow the trends below:

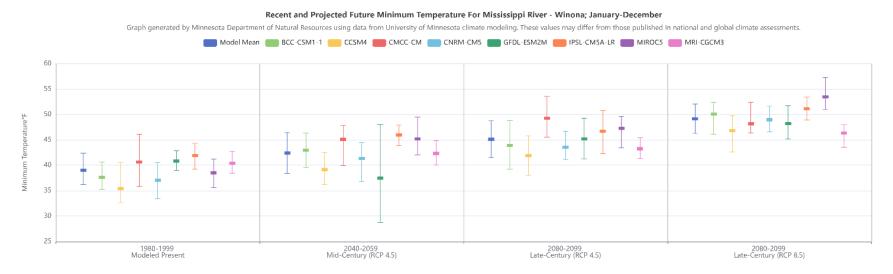
- Projected average daily mean temperature: 48.85 degrees Fahrenheit
- Projected daily maximum temperature: 55.52 degrees Fahrenheit
- Projected daily minimum temperature: 42.43 degrees Fahrenheit
- Projected average annual precipitation: 33.00 inches


Comparing the projected values with the historical values, the average daily mean, maximum, and minimum temperatures and the average annual precipitation are all expected to rise over the next few decades regardless of project impacts.


Increased annual average precipitation may also influence the risk of flooding as a result of climate changes. The project area is located within a 100-year floodplain, designated as Zone AE on the FEMA FIRM Map Set (Exhibit 10).¹³ According to the Risk Factor tool, the City of Wabasha has a moderate risk of flooding over the next 30 years.¹⁴ The chance of severe storm, or 100-year flood event are projected to increase from one percent in a given year to 26 percent over the next 30 years. This matches with projections for the State, in general, that indicate there will be a "continued loss of cold extremes and dramatic warming of coldest conditions," "continued increase in frequency and magnitude [of extreme rainfall]; unprecedented flash floods," and "more hot days with increases in severity, coverage, and duration of heat waves" by 2099.¹⁵


¹³ Federal Emergency Management Agency (FEMA). 2000. FEMA Flood Map Service Center. Electronic resource, https://msc.fema.gov/portal/search?AddressQuery=wabasha%2C%20mn#, accessed March 2023.

¹⁴ Risk Factor. 2023. "Flood Factor: Wabasha, Minnesota." Electronic resource, https://riskfactor.com/city/wabasha-mn/2767378_fsid/flood, accessed February 2023.


¹⁵ Metropolitan Council. 2023. "Climate Vulnerability Assessment: Regional Risks and Opportunities." Electronic document, https://metrocouncil.org/Communities/Planning/Local-Planning-Assistance/CVA.aspx, accessed January 2023.

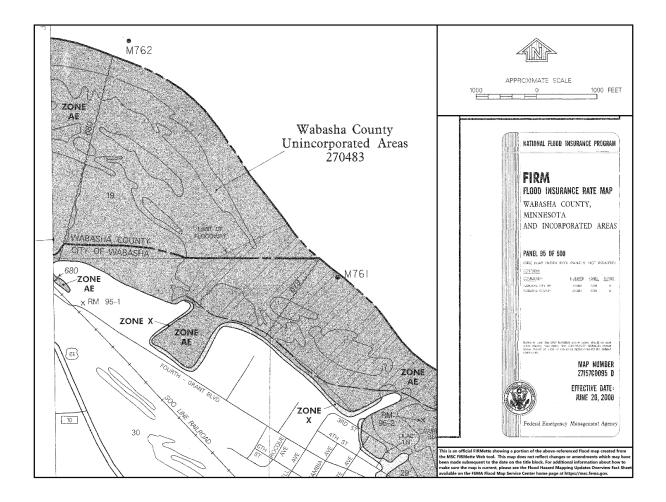


Exhibit 9

43

Exhibit 10: Section of FEMA FIRM Map Showing Project Area

4.7.3 Environmental Consequences: Preferred Alternative

Given the climate trends towards warmer and wetter conditions and increased potential for severe storm events, the following climate change risks have been identified in relation to the Proposed Project.

Table 3: Climate Trends and Impacts				

Climate Trend	Project Information	Adaptations / Resilience
Current and future flood potential and stormwater management during increased rain events.	Clearing of trees and wetland areas and the addition of impervious surfaces may affect drainage within the floodplain.	Design plans for the project include considerations for stormwater maintenance. The City of Wabasha will continue to meet current permitting guidelines and restrictions related. Wetland considerations are further addressed in Section 4.13.2. Further stormwater management information is discussed in in Section 4.13.2.
Increasingly warmer temperatures.	No part of project design is anticipated to have any effect on increasing temperature.	N/A

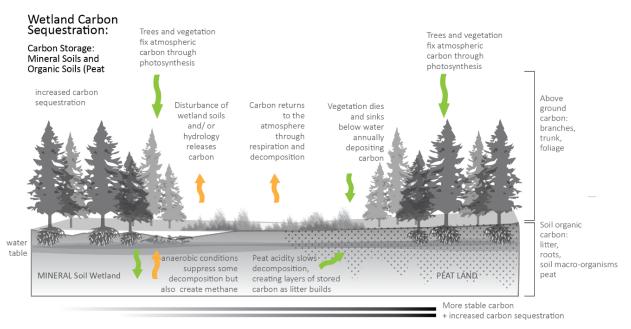
4.7.4 Mitigation Measures

The City of Wabasha will meet all required permitting standards. No additional mitigation measures directly related to climate change are included in project plans at this time, although sustainable site design and best management practices are incorporated to address extreme weather events and other potential climate change impacts. Site and project design will be reviewed to ensure the Proposed Project is resilient to these potential impacts.

4.8 Greenhouse Gas

4.8.1 Existing Conditions

The Study Area is currently comprised of 16.1 acres of freshwater wetlands and 9.0 acres of wooded area. Wetlands are a source of emissions from various biogeochemical processes: "Under aerobic soil conditions, which are common in most upland ecosystems, organic matter decomposition releases CO₂, and atmospheric CH₄ can be oxidized in the surface soil layer. In contrast, the anaerobic soils that characterize wetlands can produce CH₄ (depending on the water table position) in addition to emitting CO₂. Accordingly, wetlands are an inherent source of CH₄, with globally estimated emissions of 55 to 150


teragrams (Tg) of CH₄ per year."¹⁶ While data specific to the project location is unavailable, natural riparian wetlands in temperate America produce 0.758 MTCO₂e in CH₄ annually with more methane being generated by wetlands that are permanently wet or more frequently inundated.¹⁷ Conversely, wetlands remove CO₂ from the atmosphere and incorporate it into the vegetation and soil in a process known as carbon sequestration (Exhibit 11, "Carbon Sequestration Process"). One study of freshwater wetlands reported an average rate of carbon sequestration of 70.7 metric tons of CO₂ per acre.¹⁸ Similarly, forested land serves as a carbon sink, reducing net emissions. According to data provided by the EPA, one acre of U.S. forest sequesters 0.84 metric tons of CO₂ per year.¹⁹ Based on the acreage of wetlands and forest within the project area, this would result in an estimated -1,145.83 MTCO₂e annually.

¹⁶ Stephen M. Ogle, Patrick Hunt, and Carl Trettin. 2014. "Chapter 4: Quantifying Greenhouse Gas Sources and Sinks in Managed Wetland Systems." In *Quantifying Greenhouse Gas Fluxes in Agriculture and Forestry: Methods for Entity-Scale Inventory*. Technical Bulletin No. 1939. Office of the Chief Economist, U.S. Department of Agriculture, Washington, DC, p. 4-5.

¹⁷ IPCC. 2014. 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands. Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds). Published: IPCC, Switzerland, p. 5.25

¹⁸ Melanie Sturm. 2019. Stewardship of Wetlands and Soils Has Climate Benefits. Natural Resources Defense Council. Electronic document, https://www.nrdc.org/experts/melanie-sturm/stewardship-wetlands-and-soils-has-climate-benefits, accessed February 2023.

¹⁹ U.S. EPA. 2022. Greenhouse Gases Equivalencies Calculator - Calculations and References. Electronic document, https://www.epa.gov/energy/greenhouse-gases-equivalencies-calculator-calculations-and-references, accessed February 2023.

Exhibit 11: Carbon Sequestration Process²⁰

4.8.2 Environmental Consequences: No-Build Alternative

According to the USACE 2017 DMMP, the No-Build alternative would necessitate the transportation of dredged material entirely by trucks. This would require an estimated 459,000 annual haul miles. Assuming that these trucks are medium- to heavy-duty haul trucks that utilize diesel fuel, this would result in estimate annual emissions of 648.0 MTCO₂e.²¹

If these emissions are considered together with the carbon sequestration provided by the existing land use within the project area, this ultimately results in net annual emissions of -497.83 MTCO₂e (Table 4, "Emissions Related to No-Build Alternative").

Emissions Type	Emissions Source	Annual Emissions (MTCO ₂ e)
Existing Conditions	Land Cover	-1145.83
No-Build Scenario	Truck Hauling	648.0
		Total = -497.83

Table 4: Emissions Related to No-Build Alternative

²⁰ Image from Minnesota Board of Water and Soil Resources. 2023. Carbon Sequestration in Wetlands. Electronic document, https://bwsr.state.mn.us/carbon-sequestration-wetlands#:~:text=Wetlands%20are%20some%20of%20the,(N2O)%202., accessed February 2023.

²¹ Calculated utilizing the EPA Simplified GHG Emissions Calculator. 2022. Electronic document,

https://www.epa.gov/climateleadership/simplified-ghg-emissions-calculator, accessed February 2023.

4.8.3 Environmental Consequences: Preferred Alternative

Greenhouse gas emissions sources are anticipated to include,

- Equipment usage at the project site during construction,
- Equipment usage at the project site for ongoing operations,
- Barge and towboat traffic to and from the docking site,
- Truck and vehicle traffic to and from the project location.

These and other sources of greenhouse gases for the proposed alternative are identified in Table 5, "Emissions Related to the Proposed Project" and discussed below.

Emissions Type	Emissions Source	Annual Emissions (MTCO ₂ e	
Construction	Construction Equipment	9.09 (annualized)	
Construction	Land Conversion	-1115.28	
Operations	Transfer Equipment	23.5	
Operations	Truck Hauling	132.5	
Operations	Barge Hauling	13.2	
		Total = -936.99	

Table 5: Emissions Related to the Proposed Project

Construction

Construction of the Proposed Barge Facility is projected to require a single construction season in 2024. Construction activities will include the filling of 0.4 acres of wetlands, the reduction of 2.7 acres of forested land, the addition of 3.3 acres of impervious surface, and the dredging of approximately 37,000 CY of material to create the access channel to the Proposed Barge Facility.

Construction Equipment

Construction activities for this project are anticipated to include a wide variety of construction equipment of various equipment classes, sizes, and engine types. Typical construction equipment for the land conversion and facility construction activities includes, but is not limited to, excavators, material handlers, skid steers, cranes, bulldozers, pavers, compactors, jackhammers, and haul trucks. These types of vehicles primarily rely on diesel as a fuel source, which results in the emission of CO₂ and, to a lesser extent, CH₄ and N₂O. Dredging equipment may include hydraulic or mechanical types or equipment with different fuel requirements although both types typically utilize diesel fuel, as well.

Table 5 provides an estimate for the emissions generated by approximately 10 diesel-powered pieces of heavy equipment and 10 gasoline-powered passenger vehicles operating for the single construction

season anticipated to complete the proposed project (approx. 120 working days)²² as well as dredging equipment operating for an average of 411 total hours with an average fuel consumption of 16 gallons per hour.²³ The total emissions from these activities (272.6 MTCO₂e) are considered one-time emissions, however the industry standard for determining long-term impacts of construction-related GHG output is to annualize the total emissions over a project's lifetime, which is defined as a 30-year period.²⁴ Annualized, this would be 9.09 MTCO₂e.

Land Conversion

As discussed previously, wetlands and forests serve as carbon sinks and reduce net emissions. The reduction of land area for these two cover types will reduce the amount of carbon sequestration in the area from -1,145.83 to -1,115.28 MTCO₂e per year based upon the resulting acreage. Ultimately, since the land conversion that would occur within the Proposed Barge Facility site is anticipated at only 15% of the total Study Area, the remaining wetland and forested areas should still provide an overall net reduction in emissions compared with those generated by the project (Table 5).

Operations

The barge terminal is projected to facilitate the transfer of at least a portion of the 270,000 CY of sand that is annually dredged from the Mississippi River. This material would be moved via river barges to the terminal, transferred using construction equipment such as excavators and backhoes to haul trucks, and transported to off-site facilities for use as reclamation material. Emissions related to dredging are not considered in this analysis as the amount of material being dredged is not anticipated to change from the No-Build alternative. The remaining operational activities (barge transport, transfer from barge to trucks, and truck transport) are sources of emissions that are evaluated in this document.

Barge Transport

Barge transport produces emissions via the combustion of diesel fuels used to power tow vessels. However, these emissions are generally considered relatively minor compared with other methods of transportation. For instance, data from the USACE indicates that barges are able to transport one ton of cargo 616 miles per gallon of fuel compared to the 478-mile capability of railcars and the 150-mile

²² Calculated utilizing the EPA Simplified GHG Emissions Calculator. 2022. Electronic document, https://www.epa.gov/climateleadership/simplified-ghg-emissions-calculator, accessed February 2023.

²³ WillardSays.com. 2012. *Dredge Production Cost Analysis Spreadsheet*. Electronic document, https://www.willardsays.com/operationmanagement-safety/dredge-cost-analysis/, accessed March 2023.

²⁴ Meridian Consultants, LLC. 2016. *Environmental Impact Report (EIR 15-01): Lompoc Motorsports Project, City of Lompoc*. Prepared for the City of Lompoc. Section 4.6 Greenhouse Gas Emissions: 4.6-16.

capability of haul trucks.²⁵ Furthermore, a single barge has the capacity to haul 1,750 short tons, the equivalent of 16 railcars or 70 trucks.²⁶

Given the projected volume of dredged material to be handled by the Proposed Project, and the average fuel capacity of barge transport, it is anticipated that these activities would result in 2.8 MTCO₂e in emissions annually. However, it is anticipated that the Proposed Barge Facility will also facilitate non-USACE related cargo transport. The Proposed Barge Facility will be located midway between existing ports in Red Wing and Winona. In 2018, the Red Wing port received 680 barge loads across 3 docks and the Winona port received 1,512 barge loads across 8 docks. As a midway point between these ports, the proposed barge terminal is anticipated to receive some of this traffic. However, due to space constraints, it is assumed that the proposed terminal will receive no more than 300 barge loads of non-USACE cargo annually. Transport of this amount of cargo will generate approx. 10.4 MTCO₂e annually.²⁷ Combined with the emissions from the transport of dredged material, this makes a total of barge transport-generated emissions 13.2 MTCO₂e per year.

Material Transfer

In order to transfer dredged material from barges to the trucks that will haul the material off-site, construction equipment such as excavators and backhoes are typically utilized. These types of equipment primarily rely on diesel fuel. Given an estimated operating time of approximately 160 hours a year, based upon the USACE DMMP which outlined an operating period of one month, these types of equipment are anticipated to require approx. 2,240 gallons of fuel each year.²⁸ Combustion of this fuel results in annual emissions of 23.5 MTCO₂e.²⁹

Truck Transport

Once transferred into haul trucks, dredged material will be transported to the Wabasha Sand & Gravel Facility. The material may then be transferred to other secondary locations from this point for reclamation activities and other uses, but this is outside of the scope of this analysis. The distance between the Proposed Barge Facility and the Wabasha Sand & Gravel Facility is approximately 1.2 miles (2.4-mile round trip). Transport from the barge terminal to the Wabasha Sand & Gravel Facility will

²⁸ Central Power Systems & Services. 2021. Types of Gas for your Rental Construction Vehicle. Electronic document, https://cpower.com/2021/11/16/types-of-gas-for-your-rental-constructionvehicle/#:~:text=While%20each%20make%20and%20model,to%202.5%20gallons%20per%20hour, accessed February 2023.

²⁵ USACE. 2019. Fact Sheet 13: Comparing Navigation. Electronic document, https://www.mvp.usace.army.mil/Media/Fact-Sheets/Fact-Sheet-Article-View/Article/588155/fact-sheet-13-comparing-navigation/, accessed February 2023.

²⁶ USACE 2019.

²⁷ Calculated utilizing the EPA Simplified GHG Emissions Calculator. 2022. Electronic document, https://www.epa.gov/climateleadership/simplified-ghg-emissions-calculator, accessed February 2023.

²⁹ Calculated utilizing the EPA Simplified GHG Emissions Calculator. 2022. Electronic document, https://www.epa.gov/climateleadership/simplified-ghg-emissions-calculator, accessed February 2023.

require an estimated 93,896 trucking miles annually. The resultant emissions from medium- to heavyduty, diesel-powered trucks is 132.5 $MTCO_2e$.³⁰

4.8.4 Mitigation Measures

In order to minimize any unnecessary emissions, best management practices such as anti-idling restrictions for fossil-fuel powered vehicles will be employed. Future evaluation of alternative fuel vehicles and other emerging technologies will be evaluated as those become cost-effective for construction and other operations. No additional mitigation measures are included in the project plans at this time.

- 4.9 Geology, Soils, and Topography/Landforms
- 4.9.1 Geology

4.9.1.1 Existing Conditions

Bedrock Geology

According to the Geologic Atlas of Wabasha County, C-14, Plate 2, bedrock geology beneath the Study Area is predominantly the Eau Claire Formation which consists of sandstone, siltstone, and shale interbedded in thin to medium beds. The sandstone is very fine grained to fine grained. The sandstone and siltstone are light to yellowish gray, variably glauconitic, and commonly contain gray to black brachiopod shell fragments. The shale is greenish gray. Unit coarsens upward, with siltstone and shale replaced in abundance by sandstone. Uppermost 10–20 feet is mostly very fine grained sandstone and minor amounts of siltstone. The unit is 125–150 feet thick. A tongue in the uppermost part of the Eau Claire Formation crops out near Wabasha.³¹

Surficial Geology

The Geologic Atlas of Wabasha County, C-14, Plate 3, shows the surficial geology consists of floodplain alluvium, West Campus Formation, and Grey Cloud terrace. Floodplain alluvium is mainly fine sand and silt on floodplains; includes sand and gravel that infills modern river channels. Some depressions have been filled with thick silty to clayey sediment and includes minor lakeshore sediment along Lake Pepin. Contacts with other map units are commonly scarps. The West Campus formation is comprised of sand and gravelly sand; coarsens to cobbly gravel in places. The sediment is largely reworked from the Mississippi valley train; deposited during early, high stages of the Mississippi River and preserved in terraces above the modern floodplain. The West Campus formation is mapped at three major terrace levels in Wabasha County. The Grey Cloud terrace is 40–50 feet (12–15 m) above Lake Pepin and the

³⁰ Calculated utilizing the EPA Simplified GHG Emissions Calculator. 2022. Electronic document,

 $https://www.epa.gov/climateleadership/simplified-ghg-emissions-calculator, accessed \ February \ 2023.$

³¹ Mossler, John H. 2001. C-14 Geologic Atlas of Wabasha County, Minnesota. Plate 2-Bedrock Geology. Retrieved from

University of Minnesota Digital Conservancy. Available at: https://conservancy.umn.edu/handle/11299/58557.

present floodplain level. The terrace elevation is 700–710 feet (214–216 m) in Lake City and Wabasha. Most contacts with other map units are scarps.³²

The pollution sensitivity of near surface materials has a high rating across the majority of the Study Area. The sensitivity to pollution of near-surface materials is an estimate of the time it takes for water to infiltrate the land surface to a depth of 10 feet. Generally, areas of coarse-grained material have a higher sensitivity to pollution compared to areas of fine-grained material, except where special conditions (karst, bedrock at or near the surface, mining, and peatlands) occur. No special conditions are mapped or known within the project site.

While Wabasha County is located in a karst region, the Study Area consists of non-karst bedrock, with Cambrian sandstones and shales as the uppermost bedrock layers. Karst bedrock can be found in close proximity to the Study Area, both south and west (Figure 6, "Geologic Conditions/Groundwater").

4.9.1.2 Environmental Consequences: No-Build Alternative

There are no geologic impacts anticipated and existing site conditions will remain.

4.9.1.3 Environmental Consequences: Preferred Alternative

Any potential impacts to geology will occur solely during construction; therefore, no operating or longterm impacts are anticipated as a result of the Proposed Project. Construction impacts are anticipated to include grading of the Proposed Barge Facility site and raising the site to an elevation of approximately 678.6 feet to 680.5 feet, thereby removing the access road and other material transfer infrastructure from the 100-year floodplain, which is at an elevation of 678.6 feet.

No significant geologic features or hazards (karst formations) were identified in the immediate Study Area and therefore impacts are not anticipated.

4.9.1.4 Mitigation Measures

Project construction will limit excavation to ensure avoidance of any sensitive geologic features. Should any of these features be identified or discovered during construction, these activities will be halted until further consultation with state agency personnel is complete.

With karst features located approximately 3,000 feet from the Study Area, and the increased sensitivity of coarse-grained materials such as the sand and gravel aquifers, excavation will be limited to less than 10 feet and will only occur during project construction. Grading activities will include the use of fill material.

³² Hobbs, Howard C. 2001. C-14 Geologic Atlas of Wabasha County, Minnesota. Plate 3-Surficial Geology. Retrieved from University of Minnesota Digital Conservancy. https://conservancy.umn.edu/handle/11299/58557.

4.9.2 Soils and Topography

4.9.2.1 Existing Conditions

Soils

United States Department of Agriculture (USDA) Natural Resources Conservation Service (NRCS) Soil Maps were reviewed within and around the proposed project footprint. The predominant soil types and soil component names within the Study Area are listed in Table 6, "Soil Types Within the Study Area". Additional information regarding the soil hydrologic classification provides insights regarding potential runoff and erosion control measures that may be needed during construction.

Map Unit Symbol	Map Unit Key	Component Name	Soils Label	Hydric Rating	Estimated % of Study Area
N646A	1946882	Ceresco	N646A, Ceresco	No	18.8
N648A	1946885	Kalmarville	C648A, Kalmarville	Yes	13.9
MdA	2216395	Meridian	MdA, Meridian	No	2.4
DmA	2216322	Mt. Carroll	DmA, Mt. Carroll	No	3.8
ThA	2216437	Tell	ThA, Tell	No	1.9
Ts	2216441	Terrace escarpments, sandy	Terrace escarpments, sandy	No	3.9
GP	2216134	Udipsamments	GP, Upidsamments	No	49.7
W	2216215	Water	W, Water		5.6

Table 6: Soil Types within the Study Area³³

Soils in Wabasha County are generally characterized in the soil survey as silty loam developed on alluvium and sedimentary bedrock. The river terrace and floodplain alluvium is composed of sand and gravel and is about 180 feet thick. This body of sand and gravel is underlain by lower permeability sedimentary bedrock.³⁴

The Soil Survey Geographic Database (SSURGO) lists almost half of the Study Area soil as gravel pit and udipsamments. The udipsamments complex has a 0-25 percent slope, is excessively drained, and has sandy and gravelly outwash parent material. The next largest soil types within the Study Area are Ceresco and Kalmarville, respectively, which are *somewhat poorly drained* and *poorly drained*. The

³³ Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture.

³⁴ City of Wabasha. 2018. Hydrogeologic Assessment of the Drinking Water Source and Wells for the City of Wabasha, Part I.

majority of the Study Area has minimal slopes, except for the portion listed as Ts – terrace escarpments, sandy. This soil type is listed as having steep slopes, with a slope range of 15-60 percent.

The NRCS classifies soils into hydrologic soil groups, A – D:

- Group A Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands.
- Group B Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately course texture.
- Group C Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture.
- Group D Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays with high swelling potential, soils with a permanent high-water table, soils with a claypan or clay layer at or near the surface, and shallow soils over nearly impervious material.
- Group "/D" Soils with a high-water table, but if drained conform to the first letter listed before "/D" (for example, A/D, B/D).

See Section 4.13.3. for a discussion of erosion/sedimentation control measures related to stormwater runoff.

Project activities during the construction phase that will impact soils include the dredging of river bottom sediment to create a navigable passage and construction of access road, weighing station, small operations structure, and barge fleeting area. Additionally, dredged sediment will be brought to an upland area of the site.

Operational activities of the Proposed Project will not further impact the soils and topography of the site beyond the temporary placement of transported goods on the site prior to being hauled off-site.

Dredged Material – Sediment and Substrate³⁵

The Chippewa River is the major contributor of sand-sized sediment in Lower Pool 4. Sediment quality is generally good in Pool 4. Main channel sediments are primarily medium to coarse sands with only trace amounts (generally less than 3 percent by weight) of silts and clays. Sand, silt, and clay sediments are found within defined sloughs, while finer silt and clay materials are found in marshy backwater areas.

To broadly assess the concentrations and location of contaminants found in Lower Pool 4 sediments, USACE staff collected 28 sediment samples from Lower Pool 4 between 2013 and 2020 (see Figure 3 of the USACE Lower Pool 4 DMMP). To specifically assess the concentrations of contaminants within the

³⁵ USACE. 2023. Lower Pool 4 Dredged Material Management Plan.

https://www.mvp.usace.army.mil/Portals/57/docs/Navigation/DMMP/Lower%20Pool%204/Pool%204_Final%20D MMP.pdf?ver=a8kfBkiPjAIcRyF76dhzjg%3d%3d, accessed July 2023.

Read's Landing access area, two borehole sediment samples were collected in June 2021 (see Figure 3 of the USACE Lower Pool 4 DMMP). Each sample was analyzed for polychlorinated biphenyl (PCB), polycyclic aromatic hydrocarbon (PAH), pesticides and heavy metals and compared to Minnesota Pollution Control Agency's (MPCA) sediment reference values (SRVs) and the sediment quality triad (SQTs), which refer to extent of degradation within the sediment caused by contamination. Of those 31 samples, two were collected in boat harbor at Alma, Wisconsin, three in shoreline access area (Alma Marina and Read's Landing), and 26 in the main navigation channel. Collection data can be found in Appendix F of the USACE Lower Pool 4 DMMP.

In general, the MPCA SRVs limits are higher concentration thresholds than SQTs. Furthermore, level II SQTs are higher than level I SQTs. In terms of concentration levels from low to high, if a contaminant found in sediment is below the SQT level I threshold, it has very low levels of that contaminant and is likely safe for bottom-dwelling aquatic organisms. If the contaminant level is higher than the SQT level I threshold but below the level II threshold, it is likely moderately safe for bottom-dwelling aquatic organisms. If the contaminant level is higher than the SQT level I threshold but below the level II threshold, it is likely moderately safe for bottom-dwelling aquatic organisms. If the contaminant level is above the SQT level II threshold, that contaminant is likely at a level that is harmful to those organisms. An exceedance of the SQT level II threshold will often still be well below the SRV threshold, as the SRV thresholds are set at levels to protect human health based on contact with the material in two upland settings. Contaminant thresholds for SRVs in the recreational/residential setting are lower than the commercial/industrial settings because it is assumed that in the former settings there would likely be more contact with the sediment, including contact by children.

To summarize, in order from lowest to highest levels of contamination, are SQT level I, SQT level II, SRVs for residential/recreation, and then SRVs for commercial/industrial.

Results of the 2013-2020 Lower Pool 4 survey and the 2021 borehole samples showed that the sediments in Lower Pool 4 were uncontaminated. There were no SQT or SRV exceedances observed. Additionally, there are no restrictions for upland placement due to contaminant levels.

Topography/Land Forms

Elevations on the site range between 668 to 708 feet above mean sea level.³⁶ Two-foot contour mapping shows the lowest elevations along the Mississippi River, with a steep bluff along the edge of the floodplain. A USGS topographic map of the proposed site is included in Figure 2.

4.9.2.2 Environmental Consequences: No-Build Alternative

Future flood events are anticipated to increase due to climate change impacts, which may cause shoreline and overland soil erosion. These erosion events may cause increased sediment trapping in the backwater areas of the Mississippi River, reducing viable fishery and aquatic species' habitat. While extreme flood events may move some of this sediment downriver, silt deposition on the Study Area's

³⁶ Elevations taken from MnTOPO. http://arcgis.dnr.state.mn.us/maps/mntopo/.

floodplain area may lead to an increase of fine sediment on the landscape and potential deposition into wetland areas.

4.9.2.3 Environmental Consequences: Preferred Alternative

The Proposed Project will include dredging an access channel from the main Mississippi River navigation channel as well as areas immediately adjacent to the shoreline where the proposed barge dock will be constructed. The current estimate is 37,000 CY of bottom sediment removed to facilitate barge access to the Proposed Barge Facility site. This sediment will be used as fill – and augmented as needed – on the Proposed Barge Facility site to raise access road and facility locations elevations outside of the 100-year floodplain.

The majority of the Study Area served as a former sand and gravel quarry with areas of highly disturbed soils. Grading during project construction will primarily be completed using fill material from access channel dredging or brought in from offsite. Minimal excavation will occur during construction activities, except in the vicinity of stormwater infiltration areas. Maximum excavation is anticipated not to exceed 10 feet and will be sloped to facilitate stormwater infiltration versus surface runoff following rain events.

4.9.2.4 Mitigation Measures

All project-related construction activities will adhere to appropriate standards and applicable permitting requirements from MPCA and MNDNR for grading and erosion control. MNDNR and/or BWSR-approved seed mixes and wildlife friendly erosion control mesh will be used to ensure soil stabilization. Additionally, a "No-Rise" review and certificate will be requested from FEMA to identify and facilitate any additional floodplain mitigation requirements. The project proposer and contracted companies shall comply with all permits and approvals and include mitigation and monitoring requirements as needed.

4.10 Floodplains

4.10.1 Existing Conditions

The Study Area is subject to frequent inundation of the Mississippi River. The bank of the river is approximately 1500 feet from the Mississippi River centerline and Minnesota-Wisconsin state border within the 2-mile-wide FEMA Zone AE floodplain. This site is currently shown on FEMA FIRM 27157C0095D and can be seen in Figure 7, "Surface Water." Preliminary hydraulic modeling data for the Mississippi River is available from the MNDNR at the site showing a 100-year flood elevation of 678.6 ft, approximately 8 ft above the existing riverbank. The site is part of an old quarry that falls from approximately elevation 700-feet down to the riverbank, creating a minor backwater bay along the valley wall. The existing river channel is over 35 feet deep in the 100-year flood condition and the side channel at the Study Area is approximately 18 feet deep in the 100-year flood condition, but shallower at normal river flows. The site is affected by backwater due to Lock and Dam 4 (Pool 4) at Alma, WI. This causes sediment to build up within the channel at this location. Additionally, the Chippewa River

confluence is approximately two miles upstream of the project area, which carries a significant sediment load and creates a wide delta within the Nelson-Trevino Bottoms State Natural Area.

4.10.2 Environmental Consequences: No-Build Alternative

The no-build alternative would not change the flood flow regime within the Mississippi River. However, future flood events are anticipated to increase due to climate change impacts. Increased erosivity of future flood events may similarly result in increased sediment load and deposition within Lock and Dam Pool 4 and the project site's backwater areas, reducing viable fishery and aquatic species' habitat while depositing silt on the site's wetland areas. The backwater effects of the downstream dam at Alma would continue to slow down low flows and cause increasing sedimentation within the reservoir. Combined with high sediment loads from the Chippewa River, the channel would increasingly fill with sediment and potentially increase flood elevations and inundate wetland and floodplain forest communities.

4.10.3 Environmental Consequences: Preferred Alternative

The site will be regraded and fill will be added within the floodplain for the Preferred Alternative construction. Stockpiled dredge material will be placed on the terminal docking site above the 100-year flood elevation. Impacts to flood elevations are described in the attached report "Preliminary No Rise Certification: USACE Dredge Material Management Plan – Wabasha Barge Facility" (Appendix C). The report details no appreciable impact to flood elevations or velocity due to the proposed barge facility design, and a standard No Rise certification is included.

4.10.4 Mitigation Measures

Bank armoring along the barge dock area is proposed to reduce erosion potential during high flows. Permanent structural components are proposed along the river side of the barge facility to prevent bank erosion and sediment transport downstream. Dredging activities within the side channel to maintain the barge access lane are anticipated to decrease flood risk by increasing conveyance and flood volume storage within the floodplain.

4.11 Aquifers

4.11.1 Existing Conditions

Minnesota is divided into six groundwater provinces based on bedrock and glacial geology. The aquifers within these provinces occur in two general geologic settings: bedrock, and unconsolidated sediments deposited by glaciers, streams, and lakes. The project site is located in the East-Central Province and within the Quaternary water-table and buried unconfined aquifer. The East-Central Province has surficial and buried sand and gravel aquifers that are common. The East-Central Province's aquifers are

underlain by thick and extensive sandstone and carbonate (Paleozoic) and (Precambrian) sandstone aquifers.³⁷

Groundwater data for the Study Area was obtained from the MNDNR. No springs are currently identified onsite by the MNDNR Spring Inventory. Depth to groundwater within the site is generally 0-20 feet.³⁸ The project site is not within an existing Drinking Water Service Management Area (DWSMA) or a wellhead protection area (see Figure 6, "Geologic Conditions/Groundwater") but there are DWSMA and Wellhead protection areas within 300 feet. There is an existing unverified well onsite, Well ID: 536092.

4.11.2 Environmental Consequences: No-Build Alternative

There are no anticipated changes or impacts to the aquifer. The property owner may review options and opportunities to see the unverified well.

4.11.3 Environmental Consequences: Preferred Alternative

Although the Study Area is not located within the DWSMA, the sand and gravel nature of this region has the potential to transport potential contaminants to the aquifer. While not anticipated, new potential contaminants have the potential to infiltrate and reach the aquifer through the unverified well. Above-ground storage tanks, while not confirmed, may be incorporated as part of the Proposed Project.

4.11.4 Mitigation Measures

Following completion of project design plans, an Industrial Stormwater permit may be required through the MPCA (SIC Code 4491). The unverified well will be located and managed as needed, either by sealing or identifying its potential for future use. The project site will be in compliance with all MCPA permit requirements. Additionally, coordination with the Minnesota Department of Health (MDH) will help determine the feasibility of confirming and either using or sealing the unverified well currently listed on the site. Pending the incorporation of an above-ground storage tank and its proposed contents, additional requirements will be met through both the MPCA and the MDH, which may include a spill response plan and other requirements.

³⁷ Adams, Roberta. 2016. Pollution sensitivity of near-surface materials: St. Paul, Minnesota Department of Natural Resources, Minnesota Hydrogeology Atlas Series HG-02, report and plate. Available at:

https://www.dnr.state.mn.us/waters/programs/gw_section/mapping/platesum/mha_ps-ns.html.

³⁸ Peterson, Todd A. 2005. C-14 Geologic Atlas of Wabasha County, Minnesota. Part B, Plate 8 – Hydrogeology of the

Unconsolidated and Bedrock Aquifers. Retrieved from MNDNR.

https://www.dnr.state.mn.us/waters/programs/gw_section/mapping/platesum/wabacga.html.

4.12 Farmlands

4.12.1 Existing Conditions

Based on information assessed from the Natural Resources Conservation Service Web Soil Survey (WSS), less than 3% of the project area is considered Prime Farmland and this area is confined to the easternmost edge of the property and a small area right along the roadway (Exhibit 12).

Exhibit 12: Prime Farmland Areas³⁹

³⁹ Web Soil Survey, Natural Resources Conservation Service, U.S. Department of Agriculture. Data assessed January 17, 2023. https://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx.

Summary by	Map Unit — Wabasha County, Minnesota (MN157)			8
Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
1658A	Algansee-Kalmarville complex, river valleys, 0 to 3 percent slopes, frequently flooded	Not prime farmland	7.2	14.7%
FbB2	Festina silt loam, 1 to 6 percent slopes, moderately eroded	All areas are prime farmland	0.2	0.5%
GP	Pits, gravel-Udipsamments complex	Not prime farmland	26.3	53.7%
MdA	Meridian sandy loam, 0 to 2 percent slopes	All areas are prime farmland	0.6	1.2%
N646A	Ceresco-Spillville complex, 0 to 3 percent slopes, frequently flooded	Not prime farmland	11.3	23.0%
ThA	Tell silt loam, 0 to 2 percent slopes	All areas are prime farmland	0.9	1.8%
Ts	Plainfield sand, river valley, 15 to 60 percent slopes	Not prime farmland	2.4	4.9%
W	Water	Not prime farmland	0.0	0.1%
Totals for A	rea of Interest		48.9	100.0%

Summary by Map Unit — Wabasha County, Minnesota (MN157)

4.12.2 Environmental Consequences: No-Build Alternative

No changes are anticipated to the Study Area in the no-build condition. Therefore, farmland will be neither created nor developed. The areas identified are not currently under cultivation and not anticipated to be cultivated anytime in the near future.

4.12.3 Environmental Consequences: Preferred Alternative

Since there are no cultivated areas on the current Study Area, no impacts to farmland are anticipated. There may be minimal impacts to "Prime Farmland" soils in the southwest corner of the project area to facilitate construction of an access road to the barge facility.

4.12.4 Mitigation Measures

Since there are no identified farmland areas on the Study Area, no mitigation measures are required at this time. Best management practices will ensure soil transport is minimal during construction activities.

- 4.13 Water Resources
- 4.13.1 Surface Water

4.13.1.1 Existing Conditions

The project site is within the Buffalo-Whitewater watershed (HUC8: 07040003) and immediately adjacent to the Mississippi River. Impaired and public waters are described in Table 7, "Impaired and Public Waters Within One Mile of Wabasha Barge Facility." The Mississippi River is currently impaired for Mercury and PCBs in fish tissue.

AUID	Name	Impaired Use	Additional Impairments	Distance to Project Area
07-0400- 03-627	Mississippi River - U.S. Lock & Dam #4 Pool	Aquatic Life / Consumption	Mercury in fish tissue PCB in fish tissue	Within/adjacent
NA	Brewery Creek	NA	NA	~0.25 mile

Table 7: Impaired and Public Waters Within One Mile of Wabasha Barge Facility

Brewery Creek is a steep, small stream within a 3.95 square mile highly-forested watershed that discharges into the Mississippi River just north of the Study Area halfway between the north end of Wabasha and Read's Landing. The Study Area does not directly influence the quality of Brewery Creek.

The Mississippi River receives drainage directly from the Study Area and has a 56,940 sq mi watershed at the project location. The direct drainage area from the Study Area represents less than 0.0003% of the total contributing area to the Mississippi River at the site location. As noted, the Mississippi River is currently impaired for Mercury and PCBs in fish tissue. Just upstream of the site is Lake Pepin, a natural lake formed by the backup of water behind sedimentary deposit of the Chippewa River's delta and Lock and Dam 4 downstream at Alma, Wis. The lake is currently impaired for excess sediment and nutrients which has resulted in multiple Total Maximum Daily Load (TMDL) studies. Lake Pepin is considered part of Pool 4 and its impairments have potential to propagate to the lower pool at the project site if sediment and nutrient loading from the larger watershed are not addressed.

USACE manages estimated dredged material quantities of approximately 270,000 CY of material per year within Lower Pool 4. Stockpiled material is often temporarily placed on elevated sediment deposits on the Chippewa River delta.

4.13.1.2 Environmental Consequences: No-Build Alternative

The Study Area would remain in a mix of natural and historically disturbed vegetated condition in the no-build alternative. This would not change the impairment status of the Mississippi River or other surface waters. Sediment loads from the upstream Lake Pepin, Chippewa River and larger contributing watershed would continue to threaten fish and aquatic life and threaten to fill Pool 4 over time. Dredging activities currently enacted by the USACE would need to find an alternate offloading facility for removal of sediment from the surface waters and floodplain areas. By not constructing the preferred alternative, which expedites the movement of dredged material away from the river, sediment is placed in flood-prone areas for longer periods of time which increases the likelihood that large storm events can sweep dredged material back into the river channel.

4.13.1.3 Environmental Consequences: Preferred Alternative

The construction of the Preferred Alternative includes tree clearing and ground disturbance, leading to increased likelihood for sediment to be transported to downstream surface waters. With cumulative

watershed impacts, turbidity may be added to the list of items contributing to the Mississippi River impairment considerations. Furthermore, the site operator's equipment will require fuel (diesel and/or gasoline) and oils (lubricating and hydraulic). The use of these chemicals increases the likelihood of a spill on site that may flow to surface waters.

The in-stream impacts to the Mississippi River are anticipated from dredging for the side channel access that is anticipated along the path shown on Exhibit 1 of Appendix D. [Dredging within the main navigation channel is not the subject of this evaluation.] The dredging associated with the Wabasha Barge Facility includes creating a barge access channel for docking. Dredging associated with these activities will impact 10.2-acres of the Mississippi River, removing approximately 37,000 CY of material (Appendix D, Exhibit 2, "Proposed Wetland Impact Map").

4.13.1.4 Mitigation Measures

The impacts to the Mississippi River will include dredging approximately 37,000 CY of material to create the side access channel for barge traffic. There are no known or anticipated contaminants in the immediate vicinity of the Study Area. Dredging will require permitting through the Corps and MNDNR, and all necessary permit and approval requirements will be followed, in accordance with requisite standards.

The EPA-approved impairments for the Mississippi River are considered non-construction related and all project activities will comply with the NPDES construction stormwater permit. Bank armoring along the proposed transfer site is proposed to reduce erosion potential during high flows and reduce the likelihood of additional impairment to the Mississippi River and adjacent wetland areas. During construction, the contractor will follow stormwater and erosion control best management practices as dictated by the NPDES Permit to reduce or eliminate the potential for increased turbidity or other surface water impacts. Stormwater infiltration practices will filter runoff from the project site to offset sediment loading and treat runoff prior to discharging to surface waters. An Industrial Stormwater permit may be necessary and all site construction activities and operations will comply with these additional permit requirements.

4.13.2 Wetlands

4.13.2.1 Existing Conditions

On June 18, 2020, and June 25, 2020, a field investigation was performed to evaluate and verify the existence and boundary of any aquatic resources located within the study area. The boundaries of the wetlands study area, which do not include the edge of the Mississippi River, are shown on Exhibit 1 of Appendix D. The field investigation found a total of four Type 1 (Seasonally Flood Basin/Floodplain Forest) wetlands (Wetland 1 through Wetland 4). Wetland boundaries shown on Exhibit 1 of Appendix D were approved by the Minnesota Wetland Conservation Act (WCA) Notice of Decision dated September 4, 2020 (Appendix D).

The Study Area was historically used as a gravel pit, at least since the 1930s. Natural features, especially in upland areas of the site, have been degraded from a long history of site use. Site observations indicate that reclamation of the site never took place and it remains largely disturbed. Large stockpiles, abandoned equipment, and debris litter the upland portion of the site in its current state. Based on review of historical aerial photographs of the Project Site, Wetland 1, Wetland 4, and a small portion of Wetland 3 appear to be incidental in nature. The incidental wetlands were likely a result of depressions remaining from gravel mining operations. Invasive species were observed to dominate at least one strata of vegetation within Wetland 1, 2, and 4.

Section 404 of the Clean Water Act (CWA) regulates the discharge of dredged or fill material into waters of the United States, which includes on-site wetlands and the Mississippi River. Section 10 of the Rivers and Harbors Act regulates alteration of navigable waters of the United States. It is anticipated that an Individual Permit through the US Army Corps of Engineers (USACE) will be required to satisfy Clean Water Act Sections 404 and Section 10 of the Rivers and Harbors Act. Section 401 of the Clean Water Act requires a water quality certification for any activity that requires a federal permit for discharge into Waters of the United States. The Minnesota Pollution Control Agency (MPCA) certifies Section 401 water quality and has authority over Waters of the State, including incidental wetlands, isolated wetlands, streams, and other surface waters that are federally or WCA non-jurisdictional.

The CWA and WCA require that impacts to aquatic resources be avoided if practicable alternatives exist. An alternatives analysis to satisfy these regulations will be completed within the required State and Federal permitting documents.

The "No-Build Alternative" and a discussion of mitigation measures are described in the sections below.

4.13.2.2 Environmental Consequences: No-Build Alternative

Under the No-Build alternative, impacts to wetlands from the Wabasha Barge Terminal Project would be avoided. Under a No-Build Alternative, emergency actions such as placement of fill material within the main channel border of the Mississippi River could take place. Aquatic habitats and threatened and endangered species could be impacted by this action under emergency conditions. Project objectives would not be achieved by the No-Build Alternative.

4.13.2.3 Environmental Consequences: Preferred Alternative

The Preferred Alternative includes construction of the Proposed Barge Facility with wetland impacts that have been minimized to the greatest extent practicable while still achieving the project goals. The preferred alternative layout, approved wetlands, and aquatic resource impacts are shown on Appendix D, Exhibits 1 through 3.

The Proposed Project is within a site identified by the MBS as having Moderate Biodiversity Significance (Appendix D, Exhibit 3, "Minnesota Biological Survey Map". Wetland 3 contributes to this designation and is considered a high value wetland and therefore avoidance of impacts to Wetland 3 was considered a high priority. Wetland 3 is the most natural and undisturbed portion of the site and provides the most

potential habitat for protected species. Wetland 3 will not be directly impacted by the preferred alternative and the "Moderate Biodiversity" designation is anticipated to remain intact.

One wetland (Wetland 1) would be permanently impacted by the Preferred Alternative. Proposed impacts to Wetland 1 are due to filling a portion of the wetland for grading and construction of the barge facility. Wetland 1 is adjacent to the proposed barge/dock and off-loading area, which contains the material hauler, hopper, scale, and conveyor system. A portion of that wetland will not be filled, however, as a conservative estimate the entire wetland is considered permanently impacted. Permanent proposed impacts to Wetland 1 are 0.40 acres.

4.13.2.4 Mitigation Measures

Impacts to delineated wetlands and the Mississippi River are proposed as part of the Wabasha Barge Facility project. The proposed project will impact a total of up to 0.40 acres of wetland within Bank Service Area (BSA) 7 and the Mississippi River Watershed.

Mitigation efforts will be completed in accordance with local, State, and Federal regulations. Mitigation requirements will be met prior to construction activities impacting wetlands or streams at the site. The city will work closely with local (LGU), state (MNBWSR, MNDNR, and MPCA), and federal (USACE) agency staff to identify requirements and ensure all potential concerns are addressed. Permit applications and plan sets will be submitted to the appropriate agencies for review.

The preferred method of mitigation will be to purchase credits from a mitigation bank within the same BSA and major watershed as the site. It is anticipated that mitigation for the wetland impacts will occur at a minimum of a 2:1 ratio (i.e., 0.80 acres of wetland replacement for the 0.40 acres of impact) through a purchase of wetland credits within BSA 7.

4.13.3 Stormwater

4.13.3.1 Existing Conditions

The Wabasha Barge Terminal project area was historically used as a gravel pit. Natural features, especially in upland areas of the site, have been degraded from a long history of site use but remain heavily wooded with multiple wetlands on site at the toe of the bluff. Site observations indicate that reclamation of the site never took place and portions of the site remain disturbed. Existing conditions stormwater runoff flows through wooded and wetland areas down a steep bluff before joining the Mississippi River. Existing conditions hydrology is described in depth in the attached document "USACE Dredge Material Management Plan – Preliminary Drainage Memo" (Appendix E).

The Project Site and surrounding surface waters are not located within a defined watershed district or watershed management organization area and thus do not have specific and more stringent pollutant removal requirements for stormwater runoff.

4.13.3.2 Environmental Consequences: No-Build Alternative

The site would continue to experience natural filtering of stormwater through the forest regions, shallow wetlands, and shallow subsurface flow. There would be no anticipated change in flow rates, volumes, or timing of storm flows. Disturbed areas due to prior gravel pit operations would continue to transport more runoff, sediment, and nutrients to the Mississippi River than in naturally occurring conditions.

4.13.3.3 Environmental Consequences: Preferred Alternative

The preferred design adds 3.3 acres of impervious surface to the site by providing an access road and barge docking station with associated infrastructure, increasing discharge rates, runoff volumes, sediment loading and increasing the flashiness of flows within the grading footprint, which discharges directly to the Mississippi River. The preferred Site Plan minimizes the impervious footprint while providing adequate access and maneuverability for dredged material transport operations.

Tree clearing and ground disturbance will occur during construction, leading to increased likelihood for sediment to be transported to downstream surface waters.

4.13.3.4 Mitigation Measures

Ditches will be constructed around the perimeter of the active operations area to collect, store, and treat runoff prior to discharging to the Mississippi River. Areas not part of the facility operations will remain in natural or historically disturbed condition. An infiltration basin is proposed to mitigate impacts to stormwater runoff caused by the proposed alternative, catching stormwater from previously disturbed areas that are currently not receiving treatment.

The design of the infiltration basin is described in the document "USACE Dredge Material Management Plan – Preliminary Drainage Memo" (Appendix E). The water quality volume would infiltrate and receive treatment prior to entering the Mississippi River via shallow subsurface flow. Offsite discharge rates are not increased after mitigation and the majority of stormwater flow throughout the year is treated prior to discharge. Sediment is captured via infiltration pretreatment in the form of rock check dams, mitigating potential sediment load increases due to impervious surface construction.

During construction, the contractor will follow stormwater and erosion control best management practices as dictated by the MPCA NPDES Permit. The EPA-approved impairments for the Mississippi River are considered non-construction related and do not require any additional best management practices or plan review for compliance with the NPDES Construction Stormwater Permit.

4.13.4 Groundwater

4.13.4.1 Existing Conditions

The Project Site is located within the East-Central Minnesota Groundwater Province and within the Quaternary water-table and buried unconfined aquiver. No springs are identified onsite by the MNDNR

Spring Inventory. Depth to groundwater within the site is generally 0-20 feet.⁴⁰ The Project Site is not located within an existing DWSMA or a wellhead protection area (see Figure 6, "Geologic Conditions/Groundwater") but there are DWSMA and Wellhead protection areas located nearby. There is an existing unverified well onsite, Well ID: 536092 (Exhibit 13, "Minnesota Well Index").

⁴⁰ Peterson, Todd A. 2005. C-14 Geologic Atlas of Wabasha County, Minnesota. Part B, Plate 8 – Hydrogeology of the Unconsolidated and Bedrock Aquifers. Retrieved from MNDNR. https://www.dpr.state.mp.us/watass/grogsame/gw.soction/mapping/platesum/wabassa.html

 $https://www.dnr.state.mn.us/waters/programs/gw_section/mapping/platesum/wabacga.html.$

Exhibit 13: Minnesota Well Index

4.13.4.2 Environmental Consequences: No-Build Alternative

No impacts are anticipated to the groundwater aquifer in the No-Build alternative.

4.13.4.3 Environmental Consequences: Preferred Alternative

Although the Project Site is located outside of a DWSMA, the sand and gravel nature of this region has the potential to transport potential contaminants to the aquifer. While the region is within a potential karst area, there are no known karst features or springs that could directly link to groundwater resources.

The treatment of stormwater runoff via and infiltration swale and basin increase local flux of water to groundwater within the lower floodplain bench but is not anticipated to increase nutrient levels or affect groundwater reserves. The footprint of the basin is not expected to increase the water table, which will be most responsive to fluctuation in the Minnesota River levels. When the site gets connected to public utilities – water/wastewater – there are no anticipated impacts and the current system is sufficient to handle the increases.

4.13.4.4 Mitigation Measures

Follow all required guidelines and permit requirements, including best management practices. Should karst or other unique geologic conditions be identified during project construction, activities will halt and the contractor will immediately coordinate the MNDNR for next steps.

Coordination with MDH will help locate the unverified well and manage it appropriately by either sealing the well or otherwise evaluating for future use at the project site.

4.13.5 Wastewater

4.13.5.1 Existing Conditions

There are no wastewater utilities currently connected to the Study Area.

4.13.5.2 Environmental Consequences: No-Build Alternative

There are no anticipated wastewater connections with the No-Build alternative and existing site conditions will remain in place.

4.13.5.3 Environmental Consequences: Preferred Alternative

Wastewater connectivity may occur with future construction of a small operations facility. There are no anticipated impacts to the current wastewater system and it is of sufficient capacity to handle any identified additions.

4.13.5.4 Mitigation Measures

All required permits and regulatory requirements will be followed prior to connecting wastewater utility infrastructure.

4.13.6 Water Appropriation

4.13.6.1 Existing Conditions

There are no water utilities currently connected to the Study Area.

4.13.6.2 Environmental Consequences: No-Build Alternative

There are no anticipated water connections with the No-Build alternative and existing site conditions will remain in place.

4.13.6.3 Environmental Consequences: Preferred Alternative

Water connectivity may occur with future construction of a small operations facility, but no additional appropriations are anticipated as part of this utility connection. There are no anticipated mitigation requirements for when water utilities are expanded to the project site. The current system is of sufficient capacity to handle any anticipated additions.

4.13.6.4 Mitigation Measures

All required permits and regulatory requirements will be followed prior to connecting water utility infrastructure.

4.14 Contamination/Hazardous Materials/Wastes

4.14.1 Existing Conditions

Potentially Contaminated Sites

According to the MPCA's "What's in My Neighborhood" interactive mapping database, there are seven existing potential environmental hazards within ½-mile of the Study Area. Table 8, "MPCA "What's In My Neighborhood Sits within ½ Mile" and Figure 11, "Potentially Contaminated Sites" identifies those uses within a half-mile radius from the proposed site.

Site Number	Site Name	Distance of Proposed Site	Activity
No Number Available	KPR US Cardinal Health	0.35 miles	 Hazardous Waste – Minimal Quantity Generator (Active) (MNR000080846) Industrial Stormwater (Active) (MNRNE338S) Air Quality (Inactive) (15700031) Industrial Stormwater (Inactive) (A00016400)
No Number Available	Timm Lawn Care	0.45 miles	 Aboveground Tanks (Active) (TS0124982)
No Number Available	Gunderson St. Elizabeth Medical Center	0.35 miles	 Air Quality (Active) (15700032) Hazardous Waste – Very Small Quantity Generator (Active) (MND076513209)

Table 8: MPCA "What's In My Neighborhood" Sites within ½ Mile

Dredged Materials Testing

To broadly assess the concentrations and location of contaminants found in Lower Pool 4 sediments, USACE staff collected 28 sediment samples from Lower Pool 4 between 2013 and 2020 (see Figure 3 of the USACE Lower Pool 4 DMMP). To specifically assess the concentrations of contaminants within the Read's Landing access cut at the head of the pipeline, two borehole sediment samples were collected in June 2021 (see Figure 3 of the USACE Lower Pool 4 DMMP). Each sample was analyzed for polychlorinated biphenyl (PCB), polycyclic aromatic hydrocarbon (PAH), pesticides and heavy metals and compared to Minnesota Pollution Control Agency's (MPCA) sediment reference values (SRVs) and the sediment quality triad (SQTs), which refer to extent of degradation within the sediment caused by contamination. Of those 31 samples, two were collected in boat harbor at Alma, Wisconsin, three in shoreline access area (Alma Marina and Read's Landing), and 26 in the main navigation channel. Collection data can be found in Appendix F of the USACE Lower Pool 4 DMMP.⁴¹

In general, the MPCA SRVs limits are higher concentration thresholds than SQTs. Furthermore, level II SQTs are higher than level I SQTs. In terms of concentration levels from low to high, if a contaminant found in sediment is below the SQT level I threshold, it has very low levels of that contaminant and is likely safe for bottom-dwelling aquatic organisms. If the contaminant level is higher than the SQT level I threshold, it is likely moderately safe for those organisms. If the contaminant level is above the SQT level II threshold, that contaminant is likely at a level that is harmful to bottom-dwelling aquatic organisms. An exceedance of the SQT level II threshold will often still be well below the SRV threshold, as the SRV thresholds are set at levels to protect human health based on contact with the material in two upland settings. Contaminant thresholds for SRVs in the recreational/residential setting are lower than the commercial/industrial settings because it is assumed that in the former settings there would likely be more contact with the sediment, including contact by children.

To summarize, in order from lowest to highest levels of contamination, are SQT level I, SQT level II, SRVs for residential/recreation, and then SRVs for commercial/industrial.

Results of the 2013-2020 Lower Pool 4 survey and the 2021 borehole samples showed that the sediments in Lower Pool 4 were uncontaminated. There were no SQT or SRV exceedances observed. Additionally, there are no restrictions for upland placement due to contaminant levels.

4.14.2 Environmental Consequences: No-Build Alternative

The No-Build Alternative would maintain the current status of the project location with regard to potentially contaminated sites, hazardous materials, and wastes.

4.14.3 Environmental Consequences: Preferred Alternative

A Phase I Environmental Site Assessment was completed in January 2020 and determined that there is no potential risk for contamination due to recognized environmental conditions and previous land uses on the project site. The potential for impacts to the Study Area are considered as a low potential for encountering contaminated materials during project operations.

4.14.4 Mitigation Measures

Any potentially contaminated materials encountered during construction and operations will be handled and treated in accordance with applicable Federal, State, and local regulations. A Phase II Environmental Site Assessment was not recommended for the Project Site.

⁴¹ USACE. 2023. Lower Pool 4 Dredged Material Management Plan.

https://www.mvp.usace.army.mil/Portals/57/docs/Navigation/DMMP/Lower%20Pool%204/Pool%204_Final%20D MMP.pdf?ver=a8kfBkiPjAIcRyF76dhzjg%3d%3d, accessed July 2023.

All project-related construction activities will adhere to appropriate standards and applicable permitting requirements from the MPCA, MNDNR, and Wabasha County for grading and erosion control. DNR and/or BWSR-approved seed mixes and wildlife friendly erosion control mesh will be used to ensure soil stabilization.

4.15 Fish, Wildlife, Plant Communities, and Sensitive Ecological Resources

4.15.1 Resources, Habitats, and Vegetation

4.15.1.1 Existing Conditions

The Study Area is located at UMR Mile 760 within the Lower Pool 4 of the Upper Mississippi River. This section of the river is part of the "pooled portion" of the river, which exists upstream of St. Louis, controlled by a series of locks and dams. Construction of the dams in the 1930s significantly altered the ecology of the Upper Mississippi by creating a series of slackwater navigation pools. Pool 4, which is 44.2 miles long, extends from Lock and Dam 3 at Red Wing, Minnesota to Lock and Dam 4 at Alma, Wisconsin, and includes Lake Pepin. Lower Pool 4 provides a variety of aquatic habitats for fish and mussels within main channels, side channels, secondary channels, and backwater areas. Seasonally flooded backwaters also provide habitat for a variety of species including racoon, muskrat, beaver, mink, river otter, white-tailed deer, reptile species, amphibian species, and numerous waterfowl/migratory bird species.

The Upper Mississippi River National Wildlife and Fish Refuge was established in 1924 as a refuge for fish, wildlife and plants and a breeding place for migratory birds. The Upper Mississippi National Wildlife and Fish Refuge is the longest national wildlife refuge in the lower 48 states, extending 261 miles from the Chippewa River in Wisconsin almost to Rock Island, Illinois. The refuge is an important migration site for waterfowl (*e.g.*, ducks, swans, etc.) and the bald eagle, as well as an important nesting site for water birds (*e.g.*, herons, bitterns, etc.) and the bald eagle.⁴² Approximately 50 percent of canvasback ducks occurring in the continental US use the refuge during fall migration. It is an Audubon designed Important Bird Area (ABA) and Ramsar designated Globally Important Bird Area. Lower Pool 4 of the Mississippi River is part of the Upper Mississippi National Wildlife and Fish Refuge which is managed by the USFWS. The USFWS also owns and manages adjacent land northwest of the Wabasha Barge Facility project.

According to MNDNR's Ecological Classification System, the Project Site is within the Eastern Broadleaf Forest Province, Paleozoic Section, Blufflands Subsection. "The Bufflands provide a critical migratory corridor for forest songbirds, raptors, and waterfowl. It is the most important subsection for reptiles and

⁴² Audubon. 2023. Upper Mississippi River NWR IBA. Electronic document: <u>https://www.audubon.org/important-bird-areas/upper-mississippi-river-nwr-iba</u>, accessed on February 16, 2023.

one of the most important subsections for mollusks".⁴³ More USGS Species of Greatest Conservation Need (SGCN) are known or predicted to occur within the Blufflands Subsection than any other subsection in Minnesota. There are a total of 156 species on the SGCN list in the Blufflands subsection, 82 of those species are also listed as Federal or State endangered, threatened, or of special concern.

Steep bluffs and deep stream valleys up to 600 feet deep are characteristic of the Blufflands. Two key habitats for the Bufflands Subsection as identified in the Minnesota Comprehensive Wildlife Conservation Strategy³⁶ are present at the site: cliff/talus habitat and the Mississippi River.

The Minnesota Biological Survey (MBS) ranks survey sites at the conclusion of work in a region. The ranking is based on presence of rare species populations, size and condition of native plant communities, and the context of the site within the greater landscape. A Natural Heritage Review letter dated July 8, 2022 (Appendix G; MNDNR Correspondence # MCE 2022-00127) indicates the Proposed Project is within a site identified by the MBS as having Moderate Biodiversity Significance. "Sites ranked as moderate can contain occurrences of rare species, moderately disturbed native plant communities, and/or landscapes that have a strong potential for recovery." Three State-listed plant species of special concern have been documented at the MBS site, including: green dragon (Arisaema dracontium), Gray's sedge (Carex grayi), and cattail sedge (C. typhina) (MNDNR Correspondence # MCE 2022-00127).

Existing vegetation and conditions at the Project Site based on the wetland delineation completed in June 2020 are described below. Wetland 3, located on the northwest side of the site, is a seasonally flooded forested wetland dominated by silver maple (Acer saccharinum), green ash (Fraxinus pennsylvanica), and black willow (Salix nigra). Herbaceous vegetation observed in wetland 3 include jewelweed (Impatiens capensis), creeping jenny (Lysimachia nummularia), Canadian clearweed (Pilea pumila), and white vervain (Verbena urticifolia). Dominant species observed in Wetland 1 were American elm, boxelder, and European buckthorn. Wetlands 1 and 2 contained significant amounts of European buckthorn (*Rhamnus cathartica*), between 25 percent and 55 percent of total shrub cover. Wetlands 1 and 2 appear to have been incidentally created by historical gravel mining operations at the site rather than naturally occurring floodplain forests.

Species observed within upland areas or transition zones of the Project Site in June 2020 include: green ash, American elm, eastern cottonwood (Populus deltoides), and northern pin oak (Quercus ellipsoidalis) in the canopy layer; American elm, common pricklyash (Zanthoxylum Americanum), buckthorn, Bell's honeysuckle (Lonicera x bella), Siberian elm (Ulmus pumila), and green ash in the shrub/sapling layer; and Pennsylvania sedge (Carex pensylvanica), grass-leaved goldenrod (Euthamia graminifolia), creeping jenny, jewelweed, Canadian wood nettle (Laportea canadensis), white vervain, Black-fruited clearweed (Pilea fontana), switchgrass (Panicum virgatum), Virginia creeper (Parthenocissus quinquefolia), Kentucky blue grass (Poa pratensis), poison ivy (Toxicodentron radicans), common blue violet (Viola

⁴³ Minnesota Department of Natural Resources. 2006. Tomorrow's Habitat for the Wild and Rare: An Action Plan for Minnesota Wildlife, Comprehensive Wildlife Conservation Strategy. Electronic document,

https://files.dnr.state.mn.us/assistance/nrplanning/bigpicture/cwcs/profiles/blufflands.pdf, Accessed on February 20, 2023.

sororia), hop trefoil (*Trifolium campestre*), and American vetch (*Vicia americana*) in the herbaceous layer.

Much of the upland portion of the Project Site has been substantially disturbed by historic mining activities. Site observations indicate that reclamation of the site never took place and remains largely disturbed. To this day, large stockpiles, abandoned equipment, and debris litter the upland portion of the Project Site.

MNDNR has designated Pool 4 of the Mississippi River as a Lake of Outstanding Biological Significance. The criteria for biological significance are based on occurrence and analysis of communities of aquatic plants, fish, birds, and/or amphibians. A lake may meet criteria for only one of the four communities for it to be given a designation. The criteria for the designation of a Lake of Outstanding Biological Significance include:

- High aquatic plant richness, high floristic quality, and a population of an endangered or threatened plant species.
- Important wild rice lakes.
- Exceptional fishery for selected game fish or an outstanding nongame fish community.
- One or more of the following: endangered or threatened colonial waterbird nesting area, presence of several endangered, threatened, or special concern lake bird species, or six or more lake bird Species of Greatest Conservation Need.

4.15.1.2 Environmental Consequences: No-Build Alternative

No additional impacts would occur at the Project Site as a result of the no-build alternative. The project objectives would not be achieved.

4.15.1.3 Environmental Consequences: Preferred Alternative

The Proposed Project is expected to directly impact previously disturbed upland portions of the Project Site, Wetland 1, and the Mississippi River. Approximately 2.7 acres of trees will be cleared for site grading. Wetland 3 is the most natural and undisturbed portion of the Project Site. It is expected that rare and/or protected vegetation occurring at the site would likely occur within Wetland 3. Wetland 3 will not be directly impacted.

Direct impacts to the upland portion of the Project Site will have only a minor impact on habitat as the uplands are generally already impacted. Increased traffic from hauling trucks can pose a hazard to wildlife attempting to cross the Project Site. Increased noise at the Project Site may cause wildlife sensitive to noise to relocate or avoid the Site.

Wetland 1 would be directly impacted by adding fill associated with the barge facility. This would be a permanent impact of 0.40 acres of Type 1 - Seasonally Flooded Wetland. Impacts to Wetland 1 are unlikely to cause loss of rare or protected species as this wetland represents a smaller and lower quality wetland habitat than Wetlands 2 or 3. Wetland 1 is also likely to be incidental in nature, caused by

historic mining operations at the site. Animal species would no longer be able to use this wetland and would likely relocate to Wetland 2 or Wetland 3.

Transportation of construction equipment and materials associated with the project site carries the risk of spreading invasive plant species. Invasive species (primarily European buckthorn) have been observed on site within Wetland 1 and Wetland 2. Other invasive species observed at the site include hop trefoil (*Trifolium campestre*), Canada thistle (*Cirsium arvense*), and reed canary grass (*Phalaris arundinacea*).

Impacts to cliff/talus habitat at the site are expected to be minimal and indirect. The existing road and river access will be improved, therefore, no additional bluff areas along the river will need to be altered. Impacts would be related to sound disturbance and increased human activity which may affect animal behavior within the habitat.

Impacts to vegetation within the MBS site of Moderate Biodiversity Significance are expected to be minimal and limited to construction of the barge facility infrastructure in uplands and Wetland 1.

Pool 4 of the Mississippi River is designated as a Lake of Outstanding Biological Significance. This project will not significantly impact valuable or protected plant species, wild rice communities, the use of the lake as an exceptional fishery, or the bird community. Specific impacts to protected species are discussed in Section 4.15.2.

4.15.1.4 Mitigation Measures

Preventing the spread of invasive species during construction and operation of the barge terminal facility will occur as part of BMPs measures that will be put in place to control and appropriately manage vegetation and invasive species. Disturbed areas on the site will primarily be replaced with gravel surfaces (access road, loading and stockpile areas). Reseeding and landscaping materials will be native seed mixes which are free of invasive plants or plant parts.

Impacts to wetlands will be mitigated per Section 4.13.2.

Tree removals will be limited to winter timelines to reduce potential impact to bat and bird species.

Ecologically Significant Areas:

Based on direction from MNDNR (Correspondence # MCE 2022-00127) the following Best Management Practices (BMPs) will be implemented to minimize impacts to the MBS Site of Moderate Diversity, including the minimization of impacts to state-listed plant species of special concern. All equipment will be cleaned and inspected prior to bringing to the site to prevent the introduction and spread of invasive species.

BMPs to mitigate impacts to resources, habitats, and vegetation:

• Vehicular disturbance will be minimized at the site. Vehicles are only to be allowed on the proposed access road.

- Necessary equipment and supplies will be stored/stockpiled in designated areas.
- Dredge material will only be placed in designated upland areas.
- Construction will be conducted during the winter months when the ground is frozen.
- Equipment will be cleaned and inspected prior to bringing to the site to prevent the introduction and spread of invasive species.
- To the extent possible, operations will occur within already-disturbed areas.
- Disturbed areas will be revegetated with native species suitable to the local habitat as soon as possible post-construction.
- Weed-free seed mixes, topsoils, and mulches will be used for revegetation.
- To prevent the release of plastic fibers to the aquatic resources, the use of erosion control blankets will be limited to bio-netting or natural netting that do not contain plastic components. Hydro-mulch products will also be limited to plastic-free types.

4.15.2 Rare, Threatened, and Endangered Species and Ecosystems

4.15.2.1 Existing Conditions

State-Listed Species

Minnesota's Endangered Species Statute and the associated Rules (Minnesota Rules, Chapter 6134 and Parts 6212.1800 to 6212.2300) impose a variety of restrictions, a permit program, and several exemptions pertaining to species designated as endangered or threatened. A person may not take, import, transport, or sell any portion of an endangered or threatened species. Species of special concern are not protected by Minnesota's Endangered Species Statute or the associated Rules.

A query of the Natural Heritage Information System (NHIS) database was completed to assess the potential presence of state-listed threatened, endangered, and species of special concern within a one-mile radius of the project area. The review identified several occurrences of invertebrate animals, vascular plants, and vertebrate animals, including the following:

Invertebrates

- Black Sandshell Mussel (Ligumia recta) Special Concern
- Butterfly Mussel (Ellipsaria lineolate) Threatened
- Monkeyface Mussel (Theliderma metanevra) Threatened
- Mucket Mussel (Actinonaias ligamentina) Threatened
- Purple Wartyback Mussel (*Cyclonaias tuberculata*) Endangered
- Round Pigtoe Mussel (Pleurobema sintoxia) Special Concern
- Sheepnose Mussel (*Plethobasus cyphyus*) Endangered
- Spectaclecase Mussel (Cumberlandia mondonta) Endangered
- Spike Mussel (*Euryna dilatate*) Threatened

• Wartyback Mussel (Quadrula nodulata) – Threatened

<u>Plants</u>

- Cattail Sedge (*Carex typhina*) Special Concern
- Gray's Sedge (Carex grayi) Special Concern
- Green Dragon (Arisaema dracontium) Special Concern
- Muskingum Sedge (*Carex muskingumensis*) Special Concern

<u>Fish</u>

- American Eel (Anguilla rostrata) Special Concern
- Blue Sucker (Cycleptus elongatus) Special Concern
- Mississippi Silvery Minnow (Hybognathus nuchalis) Special Concern
- Paddlefish (Polyodon spathula) Threatened
- Pirate Perch (Aphredoderus sayanus) Special Concern

<u>Birds</u>

• Peregrine Falcon (Falco peregrinus) – Special Concern

<u>Snakes</u>

• Timber Rattlesnake (Crotalus horridus) – Threatened

Federally-Listed Species

Under the Endangered Species Act (ESA) (16 U.S.C. §§ 1531-1544), all federal agencies shall, in consultation with the Secretary of the Interior, use their authority to ensure that any action authorized, funded, or carried out by such agency is not likely to jeopardize the continued existence of any endangered or threatened species, or result in the destruction or adverse modification of habitat determined under the ESA to be critical. The ESA provides a program for conserving threatened and endangered plants and animals, and the habitats in which they are found. It is designed to protect critically imperiled species from extinction. The ESA is administered by the United States Fish and Wildlife Service (USFWS). An "endangered" species is a species in danger of extinction throughout all or a significant portion of its range. A "threatened" species is one that is likely to become "endangered" in the foreseeable future without further protection.

A regulatory review for federally-listed species surrounding the project area was conducted using the USFWS's Information for Planning and Consultation (IPaC) tool. The following species were identified during the review:

- Northern Long-eared Bat (*Myotis septentrionalis*) Endangered (effective 3/31/23)
- Higgins Eye Pearlymussel (Lampsilis higginsii) Endangered
- Spectaclecase Mussel (Cumberlandia monodonta) Endangered

Migratory Birds

The Migratory Bird Treaty Act (MBTA) of 1918 (16 U.S.C. 703-712) prohibits the take (including killing, capturing, selling, trading, and transport) of protected migratory bird species without prior authorization by the Department of Interior USFWS. The Bald and Golden Eagle Protection Act (16 U.S.C. 668-668d) of 1940, amended several times since, prohibits anyone, without a permit issued by the Secretary of the Interior, from "taking" bald or golden eagles, including their parts (including feathers), nests, or eggs.

- Bald Eagle (Haliaeetus leucocephalus) Protected
- Black-billed Cuckoo (Coccyzus erythropthalmus)
- Golden Eagle (Aqulla chrysaetos) Protected
- Lesser Yellowlegs (Tringa flaviper)
- Red-headed Woodpecker (Melanerpes erythrocephalus)
- Rusty Blackbird (Euphagus carolinus)
- Short-billed Dowitcher (Limnodromus griseus)

Species Descriptions and Discussions

<u>Mussels</u>

Lower Pool 4 of the Mississippi River hosts large assemblages of aquatic invertebrates and mussels. Invertebrate diversity can be attributed to the variety of habitats found in the area. Specialized invertebrates that rely on running water can be found in a range of water velocities near the project area. Several mussel surveys have been completed within Lower Pool 4, many of which were associated with channel maintenance and dredging activities. As many as 43 species of mussels have historically been observed in Pool 4.⁴⁴ In 2002, 2015, and 2021, the Corps of Engineers completed mussel skimmer dredge transects along the stretch of the river located immediately adjacent to the proposed Barge Terminal Facility. According to the Corps mussel survey data, only two live mussels of two common species (Threehorn Wartyback and Threeridge) were found in 2002. No live mussels were found in this stretch of the Mississippi River during the 2015 or 2021 surveys.

⁴⁴ Kelner. 2021. Upper Mississippi River mussel species list. US Army Corps of Engineers, St. Paul District.

The MNDNR and USFWS required a mussel survey for this project. Level II and Level III surveys were conducted June 6th through June 8th, 2023 under Minnesota DNR Special Permit No. 32812 and USFWS Recovery Permit ES59798B-2. No federally listed mussel species were detected during the surveys. One state-listed threatened species, the Mucket, was detected as a rare occurrence. Two species of special concern, the black sandshell and the round pigtoe, were detected live and considered relatively common through the study area. The Final Report – Mussel Survey of the Mississippi River for a Proposed Barge Terminal in Wabasha, MN is included as Appendix F.

The mucket, once a widely distributed species within the Mississippi and Hudson Bay drainages, is not common only in the St. Croix River and some of its tributaries and occurs at low densities in the Mississippi, Zumbro, and Otter Creek rivers according to the MNDNR Rare Species Guide. The mussel prefers medium to large rivers with coarse sand and gravel. Threats to this species includes dams, small population sizes, sedimentation, pollution, channelization, and non-native species, particularly invasive zebra mussels (*Dreissena polumorpha*).

Background review of federally listed mussel species:

The Wisconsin Department of Natural Resources (WIDNR) conducted a survey of unionid mussels throughout the Upper Mississippi River from 1977 through 1979. During that survey, 115 specimens were collected in the Lower Pool 4, of which 13 species were documented, the most abundant being Threeridge, Pigtoe, and Pimpleback.⁴⁵ No Higgins eye mussels were observed, Sheepnose and spectaclecase mussels were not listed, and one purple wartyback mussel was observed in Lower Pool 4.

Ten state-listed species of mussel have been observed within a mile of project area including the endangered purple wartyback, sheepnose, and spectaclecase mussels.⁴⁶ The spectaclecase mussel is also Federally-listed as endangered as well as the Higgins eye mussel.⁴⁷

Spectaclecase mussels are a large species of mussel, growing up to 9 inches in length. Spectaclecase mussels are found partially or fully buried in sediments of large rivers, preferably in firm mud and sheltered areas. They are known to be extant within 20 streams in 11 states, including the Mississippi River in Minnesota. Within Pool 4, at river mile 760 to 760.5, two individuals were documented in 2009.⁴⁸ Threats to this species includes dams, small population sizes, sedimentation, pollution, channelization, and non-native species, particularly invasive zebra mussels (*Dreissena polumorpha*).

⁴⁵ Wisconsin Department of Natural Resources. 1981. A Survey of Unionid Mussels in the Upper Mississippi River (Pools 3-11). Technical Bulletin No. 124. Madison, WI. Electronic document, <u>https://search.library.wisc.edu/digital/AFF3IUKQUQYSEJ8M</u>, accessed on February 20, 2023.

⁴⁶ Minnesota Department of Natural Resources. 2023. Natural Heritage Information System. Electronic Resource, <u>https://www.dnr.state.mn.us/nhnrp/nhis.html</u>, accessed on February 17, 2023.

⁴⁷ United States Fish and Wildlife Service. 2023. Information Planning and Consultation (IPaC). United States Fish & Wildlife Service. Electronic resource, <u>https://ipac.ecosphere.fws.gov</u>/, Accessed on February 16, 2023.

⁴⁸ ^united States Fish and Wildlife Service. 2019. Spectaclecase (Cumberlandia monodonta) 5-Year Review: Summary and Evaluation. August 12, 2019. Electronic document, <u>https://ecos.fws.gov/docs/five_year_review/doc6103.pdf</u>, accessed on February 22, 2023.

Higgins eye mussel is only found in the Upper Mississippi River, north of Lock and Dam 9 and three tributaries of the Mississippi. USFWS defined ten Essential Habitat Areas (EHAs) for this species as areas of utmost importance to the conservation of the species.⁴⁹ The list of EHAs does not include any areas within Pool 4. This species depends on deep, free flowing rivers and clean water. Causes of decline include introduction of invasive species, habitat loss, altered water flow patterns, and dredging and waterway traffic silting over mussel beds. Colonization of exotic and invasive zebra mussels are currently considered the largest threat to this species. Zebra mussels attach to shells of mussels preventing them from normal movement (traveling, burrowing, and closing an opening shells).⁸

In Minnesota, the purple wartyback mussel is currently only known to be extant within the Mississippi River. River and portions of the St. Croix River.⁵⁰ It is considered extremely rare within the Mississippi River. The preferred habitat for this species is gravel substrates in moderate currents of large rivers. Suitable host fish for the glochidia of purple wartyback mussels include: channel catfish, yellow bullhead, flathead catfish, and black bullhead. Threats to the purple wartyback and other protected mussel species are similar to the threats for spectaclecase and higgins eye mussels: dams, sedimentation, pollution, channelization, and non-native species (particularly zebra mussels).

<u>Plants</u>

Four state-listed plant species of special concern have been documented near the site, including: green dragon (*Arisaema dracontium*), Gray's sedge (*Carex grayi*), *Muskingum sedge* (*Carex muskingumensis*), and cattail sedge (*Carex typhina*) (MNDNR Correspondence # MCE 2022-00127).

Green dragon is a facultative-wet species found in active floodplain forests in the eastern United States. The following tree species are often observed occurring with this species: *Populus deltoides, Acer saccharinum, Fraxinus pennsylvanica, Ulmus americana, Ulmus rubra, Juglans nigra, and Tilia americana.* Ground vegetation occurring in the same habitat may include *Laportea canadensis and Arisaema triphyllum.*⁵¹

Each of the listed sedge species are perennial wetland species with a clump forming habit. Cattail and Muskingum sedges are wetland obligates. In Minnesota, the habitat for these sedges is restricted to mature floodplain forests along the Mississippi and Saint Croix Rivers. Cattail and Muskingum sedges

^{49 U}nited States Fish and Wildlife Service. 2004. Higgins Eye Pearlymussel (Lampsilis higginsii) Recovery Plan: First Revisions. May 2004. Electronic document, <u>https://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1031&context=endangeredspeciesbull</u>, accessed on February 22, 2023.

⁵⁰ Minnesota Department of Natural Resources. 2018a. Rare Species Guide: Cyclonaias tuberculata. Rev. by Bernard Sietman. Electronic document, https://www.dnr.state.mn.us/rsg/profile.html?action=elementDetail&selectedElement=IMBIV09010

Accessed on February 22, 2023.

⁵¹ Minnesota Department of Natural Resources. 2023. Rare Species Guide: Arisaema dracontium. Electronic resource, <u>https://www.dnr.state.mn.us/rsg/profile.html?action=elementDetail&selectedElement=PMARA04020</u>, accessed on February 17, 2023.

typically occur in forests dominated by *Populus deltoides* and *Acer saccharinum* with very few shrubs.⁵² Gray's sedge is a shade tolerant facultative-wet species. It is found in mature alluvial forests of the eastern United States, particularly along the Mississippi River.⁵³ Co-occurring canopy tree species for Gray's sedge include *Populus deltoides, Acer saccharinum, Salix nigra, Fraxinus pennsylvanica, Ulmus americanus, Betula nigra, Quercus bicolor,* and *Celtis occidentalus.*¹²

<u>Fish</u>

Pool 4 features a wide variety of aquatic habitats including fast flowing main channels, variable width and depth side channels, secondary channels, and backwater areas. Tailwater habitat is absent in this pool. The diversity of habitat types allows for a wide range of aquatic species. The Upper Mississippi River Restoration (UMRR) program has a Long Term Resource Monitoring (LTRM) station in Lake City that is operated by MNDNR. The Lake City field station performs LTRM of Pool 4 including monitoring water quality, vegetation, macroinvertebrates, and fish. For the period of record (1993 to present), 85 fish species are listed as having been observed in Pool 4.⁵⁴

In 2017, the United States Geological Survey (USGS) released the Species of Greatest Conservation Need national database. This list identifies the species which are most in need of conservation within a given state or territory. Sixteen species from the SGCN database for Minnesota are also recorded as observations in UMRR's LTRM data for Pool 4. Those species include:

•	Lake sturgeon	(Acipenser fulvescens)	•	American brook lamprey	(Lethenteron appendix)
•	Skipjack herring	(Alosa chrysochloris)	•	River redhorse	(Moxostoma carinatum)
•	Western sand darter	(Ammocrypta clara)	•	Black redhorse	(Moxostoma duquesnei)
•	American eel	(Anguilla rostrata)	•	Hornyhead chub	(Nocomis biguttatus)
•	Pirate perch	(Aphredoderus sayanus)	•	Weed shiner	(Notropis texanus)
•	Crystal darter	(Crystallaria asprella)	•	Pugnose minnow	(Opsopoeodus emiliae)
•	Blue sucker	(Cycleptus elongatus)	•	Paddlefish	(Polyodon spathula)
•	Black buffalo	(Ictiobus niger)	•	Shovelnose sturgeon	(Scaphirhynchus platorynchus)

⁵² Minnesota Department of Natural Resources. 2023. Rare Species Guide: Carex typhina. Electronic resource, <u>https://www.dnr.state.mn.us/rsg/profile.html?action=elementDetail&selectedElement=PMCYP03E40</u>, accessed on February 17, 2023.

⁵³ Minnesota Department of Natural Resources. 2023c. Rare Species Guide: Carex grayi. Electronic resource, <u>https://www.dnr.state.mn.us/rsg/profile.html?action=elementDetail&selectedElement=PMCYP035H0</u>, accessed on February 17, 2023.

⁵⁴ Upper Mississippi River Restoration program. 2015. Graphical Fisheries Database Browser – Stratified Random Sampling. United States Geological Survey, Upper Midwest Environmental Sciences Center. Electronic resource, https://www.umesc.usgs.gov/data_library/fisheries/graphical/fish_front.html, accessed on February 16, 2023.

Nine of those species have been observed in Lower Pool 4 within the last 10 years (UMRR 2015):

•	Western sand darter	(Ammocrypta clara)	•	River redhorse	(Moxostoma carinatum)
•	American eel	(<u>Anguilla rostrata</u>)	•	Black redhorse	(Moxostoma duquesnei)
•	Pirate perch	(Aphredoderus sayanus)	•	Weed shiner	(Notropis texanus)
•	Blue sucker	(Cycleptus elongatus)	•	Pugnose minnow	(Opsopoeodus emiliae)
•	American brook lamprey	(Lethenteron appendix)			

Paddlefish (*Polyodon spathula*), a state-listed threatened fish, as well as several other state-listed fish have been documented in Pool 4 of the Mississippi River. Paddlefish populations have decreased in recent decades and are now primarily found in the slower and deeper sections of the Mississippi and St. Croix Rivers.⁵⁵ Research completed by UMRCC list paddlefish as an occasional species (occasionally collected, not generally distributed, but local concentrations may occur) in Pool 4.⁵⁶ Paddlefish use a wide variety of habitat types within the UMR, including tailwaters (absent from Pool 4), backwaters, main channel borders, and main channels. They may also be found near structures where scour holes, eddies, or current breaks occur.⁵⁷ Paddlefish have not been observed in Lower Pool 4 within the last 10 years.⁵⁸

Other state-listed fish species including blue sucker (*Cycleptus elongatus*), Mississippi silvery minnow (*Hybognathus nuchalis*), and pirate perch (*Aphredoderus sayanus*) are listed as species of Special Concern. Research by Steuck et al in 2010 indicates that *blue sucker* is uncommon in Pool 4 and *Mississippi silvery minnow* has been historically documented in Pool 4.

<u>Birds</u>

The Upper Mississippi National Wildlife Refuge (UMNWR – shown in Figure 10, "Outdoor Recreation") is an Audubon Important Bird Area (IBA). Audubon estimates that approximately 40 percent of the

⁵⁵ Minnesota Department of Natural Resources. 2016. Minnesota Profile. Paddlefish (Polyodon spathula). Electronic resource,

https://www.dnr.state.mn.us/mcvmagazine/issues/2016/may-jun/minnesota-profile-paddlefish.html, accessed on February 16, 2023.

⁵⁶ Steuck, M.J., Yess, S., Vooren, A.V., Pitlo, J.M., & Rasmussen, J. 2010. Distribution and Relative Abundance of Upper Mississippi River Fishes. Electronic document, <u>https://docs.wixstatic.com/ugd/d70a05_eb4f98d13f514733b3a43ef8447390ca.pdf</u>, accessed on February 16, 2023.

⁵⁷ Upper Mississippi River Conservation Committee. 2020. UMRCC Fisheries Compendium 4th Edition. Electronic resource, <u>https://umrcc.org/wp-content/uploads/2022/04/Compendium-4th-Edition-Final-For-Printer-2-28-2020.pdf</u>, accessed on February 16, 2023.

⁵⁸ Upper Mississippi River Restoration program. 2015. Graphical Fisheries Database Browser – Stratified Random Sampling. United States Geological Survey, Upper Midwest Environmental Sciences Center. Electronic resource, <u>https://www.umesc.usgs.gov/data_library/fisheries/graphical/fish_front.html</u>, accessed on February 16, 2023.

nation's waterfowl and shorebirds use the river valley during spring and fall migrations. Three-hundred and five species of birds have been observed in the Upper Mississippi NWR.⁵⁹

In a letter dated July 20, 2022 (Appendix J), the USFWS indicated that there are approximately 60 bald eagle nests in Lower Pool 4 and a nesting colony of great blue herons near the proposed project site. Three of the bald eagle nests are described as being in the vicinity of the project area in the letter.

Bald and golden eagles are currently protected by the Bald and Golden Eagle Protection Act which was enacted in 1940. Bald eagles are also known to occur at the open water at the confluence of the Chippewa River with the Mississippi River during the winter. The nesting season for the bald eagle in the northern United States is from December to September.⁶⁰ Bald eagles typically prefer nesting in mature or old-growth forests. A study of 53 active bald eagle nests in the USFWS Winona District of the UMR in 2009 indicated that 93 percent of nesting sites had a supercanopy of eastern cottonwood and silver maple.⁶¹ Nest trees were observed to be the tallest trees in the immediate area at 67 percent of nest sites, however, the nests were on average situated just below the level of the surrounding tree canopy.²⁰ The majority of nests observed in the Winona District (79%) were on islands or island complexes within the Mississippi corridor.²⁰

The peregrine falcon is a state-listed species of special concern and is on the USGS list of SGCN. Peregrine falcons often nest on building and bridges in urban environments. The species is also known to inhabit the cliff/talus system along the Mississippi River within the Blufflands subsection.⁶²

Other Wildlife

Northern Long-eared Bat (Myotis septentrionalis)

The federal listing of the northern long-eared bat (NLEB) was recently changed from threatened to endangered. Potential threats to the NLEB include white-nose syndrome (WNS), human disturbance in caves, wind turbine-caused mortalities, and habitat loss and degradation. An estimated population decline of 97 to 100-percent over 79 percent of the species range has been caused by WNS.⁶³

⁵⁹ Audubon. 2023. Upper Mississippi River NWR IBA. Electronic resource, <u>https://www.audubon.org/important-bird-areas/upper-mississippi-river-nwr-iba</u>, accessed on February 16, 2023.

⁶⁰ United States Fish and Wildlife Service. 2007. National Bald Eagle Management Guidelines. Electronic document, https://www.fws.gov/sites/default/files/documents/national-bald-eagle-management-guidelines 0.pdf, accessed on March 2, 2023.

⁶¹ Mundahl, Neal & Bilyeu, Anthony & Maas, Lisa. 2013. Bald Eagle Nesting Habitats in the Upper Mississippi River National Wildlife and Fish Refuge. Journal of Fish and Wildlife Management. 4. 131120115259003. 10.3996/012012-JFWM-009. Electronic document, <u>https://www.researchgate.net/publication/274427630 Bald Eagle Nesting Habitats in the Upper Mississippi River National Wildlife and Fish Refuge</u>, accessed on February 27, 2023.

⁶² Minnesota Department of Natural Resources. 2018b. Rare Species Guide: Falco peregrinus. Electronic resource,

https://www.dnr.state.mn.us/rsg/profile.html?action=elementDetail&selectedElement=ABNKD06070#:~:text=The%20Peregrine%20Falcon%20 is%20best,are%20brown%20or%20blue%2Dbrown, accessed on February 22, 2023.

⁶³ United States Fish & Wildlife Service. 2022. Species Status Assessment Report for the Northern long-eared bat (*Myotis septentrionalis*) version 1.2., Electronic document,

https://www.fws.gov/sites/default/files/documents/Species%20Status%20Assessment%20Report%20for%20the%20Northern%20longeared%20bat-%20Version%201.2.pdf, accessed on February 27, 2023.

The NLEB can be found in Minnesota in both the summer and winter. Winter hibernacula including caves, mines, and tunnels, are not present at the Wabasha Barge Terminal site. Summer roosting sites include floodplain forests. NLEB prefer intact mature forest for foraging but are also known to use fragmented and immature forests. Roosting trees have loose bark, broken limbs, cavities, or cracks. Wabasha County is not on the list of known maternity roost trees and/or hibernacula entrances for Minnesota.⁶⁴

Timber Rattlesnake

The timber rattlesnake is a state-listed threatened species. According to the MNDNR, the timber rattlesnake has been observed near the project site. The ideal habitats for the timber rattlesnake in Minnesota are within the Blufflands Subsection of the Mississippi River valley in forested bluffs, southfacing rock outcrops, and bluff prairies.⁶⁵ They may be active outside of their dens from April to October. They are most active during the day in spring and fall and at night in summer.

4.15.2.2 Environmental Consequences: No-Build Alternative

No additional impacts would occur at the site as a result of the no-build alternative. The project objectives would not be achieved.

4.15.2.3 Environmental Consequences: Preferred Alternative

Aquatic Organisms

Dredging has the potential to directly affect fish and benthic invertebrates by capturing and removing organisms via the dredge head or push boat propeller, causing harm or fatalities. Direct impacts could also include mortality due to the burial of sessile or less mobile organisms with sediment and degradation of water quality. Dredging operations cause the re-suspension of sediments into the water column, reducing transparency and lowering the amount of available oxygen.

Available dissolved oxygen (DO) in the water column may be reduced due to dredging as a result of the suspension of anaerobic sediments and resulting chemical and biological oxygen demands. Dissolved oxygen may decrease almost 100% in near-bottom waters around a bucket dredge in operation (USACE 2015). The observed decreases in DO are likely to be greatest near the bottom at the dredging location, however, low to moderate DO decreases in the upper water column and general area are also likely.

Impacts to aquatic organisms from dredging are largely correlated with the organism's motility (USACE 2015). Mobile organisms are less affected by dredging activities because they are able to move away from disturbed areas.

⁶⁴ Minnesota Department of Natural Resources and United States Fish and Wildlife Service. 2021. Townships Containing Documented Northern Long-Eared Bat (NLEB) Maternity Roost Trees and/or Hibernacula Entrances in Minnesota. Electronic document, http://files.dnr.state.mn.us/eco/ereview/minnesota_nleb_township_list_and_map.pdf, accessed on March 2, 2023.

⁶⁵ Minnesota Department of Natural Resources. 2023d. Rare Species Guide: Crotalus horridus. Electronic resource, <u>https://www.dnr.state.mn.us/rsg/profile.html?action=elementDetail&selectedElement=ARADE02040</u>, accessed on March 2, 2023.

Indirect impacts to fish and benthic invertebrates may also be caused by dredging. Indirect impacts could include degradation of water quality, noise disturbance, and physical habitat disturbance including spawning habitat. Indirect impacts may cause behavioral changes in aquatic organisms. Direct and indirect dredging-related impacts would be localized and temporary.

Below is a discussion of the environmental consequences to rare, threatened, and endangered aquatic organisms.

<u>Mussels</u>

Existing mussel species may experience direct mortality and short-term impacts because of the proposed project (dredging activities). Based on the recent mussel survey conducted within the project area June 6th through June 8th, 2023, one state-listed threatened species, the mucket, may be present within the dredging area. Based on historical data and the results of the recent survey, the project would have no impacts on federally listed species.

<u>Fish</u>

Studies have shown that fish move away from actively disturbed areas during dredging and return after completion (USACE 2015). Use of the habitat by fish after dredging depends on the resulting water quality in those locations. Dredged habitats may attract fish due to warmer water during winter months and suspended food.

Fish may be affected by the removal and burial of sessile or less mobile organisms on which the fish feed. The extent of this effect on fish would be determined by the extent and presence of the existing benthic communities in the area and fish that prey on them.

Habitat loss and alteration have been linked to the decline in population of numerous fish species within the Mississippi River, including the paddlefish. Human alteration of rivers has also been cited as one of the contributors to the decline of paddlefish populations in the Upper Mississippi River. Turbulence from barges have also been known to cause mortality of yolk-sac paddlefish larvae (UMRCC 2020). Based on the items listed above, the proposed dredging and barge operations could have an effect on the listed fish species, including paddlefish if present.

Terrestrial Organisms

Vegetation

Potential habitat for cattail sedge, Muskingum sedge, and gray's sedge exist on-site within Wetland 3. Construction at the site will not impact Wetland 3 and therefore no direct impacts are anticipated for these protected species.

Transportation of construction equipment and materials associated with the project site carries the risk of spreading invasive plant species. Ground disturbance from construction activities also presents a chance for aggressive and opportunistic invasive species to spread. The spread of invasive species can have a detrimental effect on native plant communities and wildlife that use those communities. Impacts

associated with the spread of invasive species will be mitigated through the use of BMPs as described in Section 4.15.2.4.

<u>Birds</u>

The project is likely to have some temporary and long-term effects on the bird community due to construction activities (including tree cutting), increased traffic (road and near shore), and anthropogenic noise.

Tree cutting has the potential to reduce the available habitat and nesting sites for bird species. Forested areas along the river at the site, including Wetlands 2 and 3 with eastern cottonwood and silver maple documented as dominant vegetation, have the potential for suitable nesting sites for the bald eagle. A survey of active bald eagle nests should be performed within the vicinity of the site prior to site disturbance which would take place in the nesting season. Buffer guidelines are given in Section 4.15.2.4.

Anthropogenic noise caused by road noise has been linked with the avoidance of those areas by birds, including migratory birds (McClure et al. 2013). Impacts due to noise are limited as individuals are able to avoid noise at the site.

With the very large amount of habitat available in the general project area for the full variety of bird behaviors, impacts to the wading bird community are expected to be temporary and minimal.

Cliff/talus habitat near the site could provide suitable habitat for the peregrine falcon. Cliff/talus habitat will not be directly impacted since the existing road and boat ramp locations will be used and improved. Impacts to potential peregrine falcons using the cliff/talus habitat at the site would be limited to potential behavioral changes due to an increase in anthropogenic noise.

Timber Rattlesnake

Forested bluffs along the Minnesota River at the project site could provide habitat for this species. Existing forested bluffs along the river will not be directly impacted by site construction. Infrastructure at the docking area near the river will be constructed in a previously disturbed area where an existing road/path is located. Therefore, habitat for the timber rattlesnake will not be directly impacted.

The three highest causes of mortality in Minnesota's timber rattlesnake populations are poaching, vehicle collisions, and habitat destruction (MNDNR Correspondence # MCE 2022-00127). Snakes, including the timber rattlesnake, are known to use roads for thermoregulation. The chance for vehicle collisions could increase with the construction of this project.

Northern Long-Eared Bat

Potential summer foraging and roosting habitat for the NELB is present at the site. Wetlands 2 and 3, as well as forested uplands could provide habitat for the NELB. Construction at the site will not impact Wetlands 2 or 3. Tree clearing will be limited to 2.7 acres.

4.15.2.4 Mitigation Measures

Minnesota's Endangered Species Statute (Minnesota Statutes, Section 84.0895) and associated Rules (Minnesota Rules, part 6212.1800 to 6212.2300 and 134) prohibit the take of threatened or endangered species without a permit. Prior to the take of a protected species, a USFWS permit to take will be approved. There are no critical habitats listed at the project site for the endangered species (USFWS 2023). The USFWS and MNDNR will be notified in the event of sighting or contact with protected species.

Mitigation measures for aquatic species:

Additional coordination with MNDNR will occur in order to determine the potential for impacts and/or takings of state-protected mussel species in the Mississippi River dredge areas. MNDNR is expected to provide guidance on potential mitigation measures associated with species that may be impacted by site activities.

To prevent harm to spawning populations of paddlefish and other listed fish species, work within the water will be avoided from April to mid-June or further consultation and/or permitting with MN DNR will be required (MNDNR Correspondence # MCE 2022-00127).

To mitigate impacts from dredging operations, standard Best Management Practices (BMPs) will be implemented for dredging activities which includes:

- Dredging locations will be restricted to authorized locations
- Dredging will be restricted to daytime operations during summer months
- Dredging will abide by all applicable federal and/or state regulations which are designed to be protective of aquatic organisms

Mitigation measures for terrestrial species:

Erosion control BMPs will be used on newly exposed soils. These may include the use of wildlife friendly natural fiber, erosion control blankets, silt fencing, synthetic fiber-free hydro-mulch, and rock checks; specifications for BMPs and allowed materials would be included in construction contracts and specifications. Exposed areas of sediment would be stabilized as soon as possible and seeded with an approved BWSR seed mix to establish vegetative cover. Invasive plant species would be monitored and managed to ensure success of native species establishment.

Surveys of nesting bald eagles will be performed prior to on-land construction activities at the site. If active nests are found, no construction activities will be completed within a buffer of 660-feet from the nest (USFWS 2007).

Tree cutting will be minimized at the site to preserve habitat. Minimizing areas of disturbance, including natural vegetation and tree removals, will be limited to the extent possible. Approximately 2.7 acres of trees will be cut. Tree removal will be limited to the winter months, between November 1 and March 31.

Potential habitat for the timber rattlesnake may occur on site, however, direct impacts are not expected. Because this is a ground dwelling motile species, the potential does exist for vehicular impacts. To mitigate potential impacts to this species:

- Erosion control blankets will be limited to "bio-netting" or other natural netting types
- Working crews will be made aware of the potential to encounter the timber rattlesnake and instructed to not disturb
- DNR will be contacted if rattlesnakes are encountered at the site

4.16 Historic Resources

4.16.1 Existing Conditions

A Phase IA archaeological literature review was prepared by Secretary of the Interior (SOI) standards qualified archaeologists at Bolton & Menk, Inc. (BMI) for the proposed project in August 2021.⁶⁶ This report reviewed prior land uses and disturbance within the proposed project area, documented previously recorded cultural resources pertinent to the project area, and made recommendations of proposed appropriate archaeological investigation fieldwork methodology. In a letter dated September 15, 2021, the State Historic Preservation Office (SHPO) concurred with the recommendations pertaining to proposed archaeological field methodology pursuant to its review of the proposed project under applicable State statues (MS 138.665-666 and 138.40).⁶⁷ The letter clarified that review pursuant to Section 106, if applicable, would need to be initiated by the lead federal agency, which was anticipated to be the US Army Corps of Engineers (Corps). Since the time of the Phase IA and SHPO review, the proposed ground disturbance limits associated with the project were further defined, limiting the recommended archaeological reconnaissance survey area.

On September 13, 2022, BMI SOI qualified archaeologists conducted a Phase I archaeological reconnaissance survey on the Wabasha Port Authority on privately owned land.⁶⁸ No new archaeological sites were identified in the course of the survey and additional testing within a previously recorded archaeological site boundary (21WB0076) outside of the ground disturbance limits failed to yield

⁶⁶ August 2021. *Phase IA Archaeological Literature Review for the Wabasha Barge Facility Project, City of Wabasha, Wabasha County, Minnesota*. Prepared for the City of Wabasha. Bolton & Menk, Inc.

⁶⁷ September 15, 2021. Wabasha Barge Terminal, T111N, R10W, S30 NE, Wabasha, Wabasha County, SHPO Number 2021-2509. Letter from SHPO to Bolton & Menk, Inc.

⁶⁸ September 20, 2022. Phase I Archaeological Survey Letter Report for the Wabasha Barge Facility Project, SHPO No. 2021-2509. Letter report from Bolton & Menk, Inc. to Wabasha Port Authority.

additional cultural materials. BMI recommended no further archaeological investigations for the project as proposed at the time of survey, and recommended a finding of no adverse effect to historic properties. At the time of the archaeological survey, land included in the project area was in private ownership; as such State statutes pertinent to cultural resources did not apply at the time of survey. If the property becomes non-federal, public lands, then MS 138.665-666 and 138.40 will apply.

As part of Corps permitting anticipated to be required for the project, it is anticipated that the Corps will consult with necessary cultural resource parties pursuant to Section 106 of the National Historic Preservation Act (NHPA). If the project receives federal funding through the Maritime Administration (MIRAD), however, the lead federal agency may be the US Department of Transportation (DOT). As the project moves toward the permitting stage it is anticipated these agencies will determine whom will lead the Section 106 process.

4.16.2 Environmental Consequences: No-Build Alternative

There are no identified consequences to historic properties under the No-Build Alternative.

4.16.3 Environmental Consequences: Preferred Alternative

There are no identified consequences to historic properties under the Preferred Alternative as long as the proposed ground disturbance limits are not expanded and/or there are no other significant project modifications relative to that proposed at the time of the Phase I archaeological reconnaissance survey.

4.16.4 Mitigation Measures

There are no identified mitigation measures concerning historic properties.

4.17 Visual Resources

4.17.1 Existing Conditions

The existing visual aesthetic of the project site is primarily woodlands with an assortment of left behind construction equipment and materials (scrap metal and various vehicle parts) that were abandoned following the mining operation that previously occupied this site.

The northern and northwestern portions of the project site contain wetlands and provide views of the Mississippi River. The eastern, western, and southern borders of the project site provide views of the surrounding agricultural land and the forested hillside located west of US Highway 61.

4.17.2 Environmental Consequences: No-Build Alternative

The No-Build Alternative would maintain the current status of the project location with regard to scenic views, vistas, and visual effects.

4.17.3 Environmental Consequences: Preferred Alternative

The proposed project would alter the existing visual aesthetic of the project site with the introduction of trucks, barges, other industrial equipment, storage facilities, and the temporary introduction of

construction vehicles and equipment. This altered visual aesthetic would be visible from neighboring parcels, roadways, the Mississippi River, and from the surrounding hillside.

4.17.4 Mitigation Measures

Barge facility operations will occur primarily during day-time working hours. Exterior lights, if installed at the facility, will be down-casting and set on timers to reduce wildlife and aesthetic impacts during non-operating hours.

4.18 Dust and Odors

4.18.1 Existing Conditions

The existing project site is of vacant land use and there are no activities currently occurring on the project site that contribute existing dust- or odor-related effects.

4.18.2 Environmental Consequences: No-Build Alternative

The No-Build Alternative would maintain the current status of the project location with regard to dust and odors.

4.18.3 Environmental Consequences: Preferred Alternative

The proposed project may generate minor dust-related impacts during construction and operation because of vehicles operating within the site along internal roads. Dust may also be generated from the offloading of materials, transportation, and loading operations. All dust-related impacts are anticipated to be minor and typical of an industrial facility located in a rural setting.

The Proposed Project is not anticipated to generate any nauseous odors during construction or operations.

4.18.4 Mitigation Measures

The operation of the proposed project is not anticipated to generate any adverse impacts or effects related to dust and odors. Any unanticipated dust- or odor-related effects resulting from the construction or operation of the proposed project will be fully mitigated through standard Best Management Practices.

4.19 Noise

4.19.1 Existing Conditions

Existing sources of noise in the vicinity of the proposed project include vehicle traffic on 5th Grant Boulevard West (County Road 59), noise from farming located on parcels adjacent to the project site, and an active freight railroad line located approximately 300 feet south of the project site.

The project site is bounded by the Mississippi River to the north and active agricultural land to the south, east, and west. Some of the agricultural lots adjacent to the project site contain houses, however

the nearest lots to the project site that are primarily of residential use are located approximately 0.25 miles southeast of the project site. Additional noise receptors in the vicinity of the proposed project include: the Riverview Cemetery, approximately 250 feet west of the project site; the Gunderson St. Elizabeth Hospital, approximately 2,000 feet east of the project site; and a couple rural residents south of 5th Grant Blvd (County Road 59), approximately 1,600 and 1,750 feet south.

4.19.2 Environmental Consequences: No-Build Alternative

The No-Build Alternative would maintain the current status of the project location with regard to noise.

4.19.3 Environmental Consequences: Preferred Alternative

Operational Noise

The proposed project would follow the noise regulations outlined in the project operator agreement, which limit construction and operational activities to 7:00am - 6:00pm, Monday through Friday. Construction-related noise effects from the proposed project would be minor and temporary in nature, generated by the use of construction vehicles and equipment, as well as barges, during the construction of the barge terminal pad, access road, dock/mooring piles, barge staging winch system, loading truck scale, and scale house/field office building. See Table 9, "Typical Construction Equipment Noise Levels at 50 Feet," for typical noise levels of construction equipment measured at 50 feet.

			Peak Noise Level (dBA*)	
Equipment	Manufacturers Sampled	Total Number of Models in Sample	Range	Average
Backhoes	5	6	74-92	83
Front Loaders	5	30	75-96	85
Dozers	8	41	65-95	85
Graders	3	15	72-92	84
Scrapers	2	27	76-98	87
Pile Drivers	N/A	N/A	95-105	101

* Units of "A-weighted decibels"

Source: United States Environmental Protection Agency and Federal Highway Administration

Noise resulting from the proposed project's operational activities—occurring between 7:00am and 6:00pm, Monday through Friday—would be generated by the loading and unloading of barges and trucks, from trucks and barges used to transport commercial and/or dredged materials to and from the

project site, as well as from the personal vehicles of employees traveling to and from the project site, and internal site operations equipment (e.g., material haulers: hoppers, conveyors, etc.).

Traffic Noise

The proposed project would generate traffic-related noise from trucks hauling construction materials during the construction of the proposed project, trucks hauling dredged materials during the operation of the proposed project, and from employees using personal vehicles to travel to and from the project site. However, because the proposed project would include no more than ten parking spaces for employee and operator parking and would generate less than 250 vehicle trips during peak hour operations and less than 2,500 daily trips, traffic congestion and traffic-related noise are not anticipated to adversely affect surrounding areas or sensitive receptors. The proposed project would follow the noise regulations outlined in the project operator agreement, which limit construction and operational activities to 7:00am - 6:00pm, Monday through Friday.

4.19.4 Mitigation Measures

The proposed project would follow the noise regulations outlined in the project operator agreement, which limit construction and operational activities to 7:00am - 6:00pm, Monday through Friday.

The project operator agreement is consistent with the State of Minnesota rules (MN Statute 7030.0020), which define daytime hours as 7am to 10pm, and nighttime hours as 10pm to 7am. All construction and operational activities associated with the proposed project would conform with the project operator agreement as well as the State of Minnesota noise standards listed in Table 10, "Noise Standards (MN Statute 7030.0040)."

Noise Area Classification	Daytime		Nighttime	
Classification	L50	L ₁₀	Lso	L ₁₀
1 (Residential)	60	65	50	55
2 (Commercial)	65	70	65	70
3 (Industrial)	75	80	75	80

 $*L_{10}$ is the sound level, expressed in dBA, which is exceeded 10% of the time for one hour

 $*L_{50}$ is the sound level, expressed in dBA, which is exceeded 50% of the time for one hour

4.20 Transportation

4.20.1 Traffic

4.20.1.1 Existing Conditions

The barge terminal site is located along 5th Grant Boulevard W (also known as Wabasha County Road 10), a collector roadway with low traffic volumes. Access to the site is approximately a half mile south of the 5th Grant Boulevard intersection with Minnesota Trunk Highway (TH) 61, a principal arterial that provides regional mobility for passenger vehicle and freight trips along this segment of the Mississippi River. Operations to the barge terminal site would see trucks traveling to/from the site using 5th Grant Boulevard W to the north and accessing TH 61 at the 5th Grant Boulevard/County Road 10 intersection. There are two existing intersections that are along the truck route between the barge site and one of the proposed onshore transfer sites: TH 61 and 5th Grant Boulevard W, and TH 61 and Shields Avenue. This onshore transfer site is being used in the EIS analysis as a reference to calculate distance and potential impacts in transportation routes and greenhouse gas emissions (see Section 4.8).

Existing (2022) average daily traffic volume (ADT) along 5th Grant Boulevard is approximately 525 vehicles, Highway 61 is 5,700 vehicles, and Shields Avenue has an ADT of 1,700 vehicles. Based on current levels of traffic, there is minimal approach delays for all roads within the study area. The intersections of TH 61 at 5th Grant Boulevard W/County Road 10 and TH 61 at Shields Avenue operate at level of service (LOS) A during both the AM peak hour and the PM peak hour. A LOS of A indicates free-flow conditions with minimal travel delays. Therefore, there are no mobility concerns at these intersections.

A 3-year (2019-2021) crash analysis was completed for the three intersections being investigated in the study area. Crash data was reviewed from the Minnesota Crash Mapping Analysis Tool. Intersection crash rates and critical rates were calculated, and all three intersections are operating within the normal range for similar intersections. Therefore, there are no safety concerns at these intersections.

4.20.1.2 Environmental Consequences: No-Build Alternative

In a no-build scenario, traffic operations will remain the same, and all study area intersections will operate with acceptable LOS, and traffic volumes will remain unchanged. The 5th Grant Boulevard roadway will not see an increase in traffic nor will construction of the Barge Terminal Site Driveway occur under the No-Build Alternative.

4.20.1.3 Environmental Consequences: Preferred Alternative

With construction of the preferred alternative, the Barge Terminal Site will be constructed along 5th Grant Avenue and a new driveway entrance to the site will be built. Dredged material would be offloaded from barges at the site. Material will then be loaded into trucks and taken offsite, including the site located along Shields Avenue. Traffic entering and exiting the barge terminal site will be minor, with an average of ten trucks in and ten trucks out per hour, between 8:00 AM and 4:00 PM Monday through Friday. There will be a minimal number of additional vehicles accessing the site, including

employees and equipment service/delivery vehicles that will periodically visit the site. Due to the low volume of traffic that will be accessing the site, a left turn lane to access the site is not warranted and is not proposed to be constructed.

At each of the study area intersections, traffic operations are not expected to be adversely impacted by the preferred alternative. The low volume of vehicles being added per hour, with approximately 20 movements per intersection, will not result in measurable impacts to the current operations or safety conditions.

4.20.1.4 Mitigation Measures

Based upon the analysis completed and documented in the Traffic Impacts Memorandum, included in Appendix H, no transportation mitigation measures are recommended with the construction of the preferred alternative. The analysis of traffic safety and operations suggests that the intersections affected by the operations associated with the new barge terminal facility will continue to safely operate with minimal delay and an acceptable LOS through at least 2042. It is recommended that the traffic volumes and operational LOS continue to be monitored into the future to ensure safety issues do not arise and traffic operations remain high.

4.20.2 Water-Based Transportation

4.20.2.1 Existing Conditions

Lower Pool 4 is a portion of the Upper Mississippi River and describes the region of the river between Lock and Dam 3, located near Hager City, Wisconsin and Lock and Dam 4, located near Alma, Wisconsin. It is an important part of the US Inland Navigation System. The river is an active commercial corridor, with major types of cargo on the river including grain, fertilizer, coal, and petroleum. Maintaining navigability through this reach of the Mississippi River is necessary to connect barge traffic moving between ports upstream as far as Minneapolis-Saint Paul, Minnesota, downstream as far as New Orleans, Louisiana, and to points east and west on the Illinois, Ohio and Missouri Rivers. USACE maintains the navigable river channel at dimensions suitable for commercial vessels drafting 9 feet. The depth of the channel is typically at least 12 feet with a minimum width of 300 feet.

If dredging activities were not to occur, the shipping channel would become unnavigable during periods of low water levels. This would have a large economic impact, as all river shipping would have to be shut down until the river is either high enough for boats to navigate or the river is dredged to allow boats to pass. It is the goal of the USACE to prevent these conditions from occurring.

The river is also heavily used for recreation purposes, with popular water activities including fishing, recreational boating, canoeing, and island beach use. Recreational use activities mostly occur on the river and within Refuge lands. The entire area of the river is very popular and receives high levels of recreational use. This section of the river is part of the Upper Mississippi River National Wildlife and Fish Refuge, which provides high quality fish and wildlife habitat, which are further described in Sections 4.6.4 and 4.15.1.

4.20.2.2 Environmental Consequences: No-Build Alternative

Sediment deposits, which are primarily deposited from the Chippewa River, gradually shrink the depth of the navigable channel. The USACE dredges and removes the sediment deposits from the river. In the no-build alternative, dredging activity will continue, but costs of this process will continue to increase. In recent years, costs have increased dramatically due to the increased distance the dredged material needs to be shipped along the river for long-term placement sites and the related transportation and logistics costs. The current system is not cost-effective and could lead to less dredging activity taking place and the potential for restricted water transportation during low water level events.

4.20.2.3 Environmental Consequences: Preferred Alternative

With the preferred alternative, the proposed Barge Terminal Facility would be chosen by USACE as the onshore transfer site, as it is the best feasible location (per the DMMP) to offload barges on the Minnesota shore of Pool 4 of the Mississippi River. This would change the current process for removing sediment from trucking deposits from current sites adjacent to the river. As it provides a more convenient system for removing sediment for the USACE, this alternative would provide a minor beneficial effect to commercial navigation through its use in maintaining the navigation channel.

4.20.2.4 Mitigation Measures

As dredging activity is already being undertaken, there is very little that will change with water transportation and the dredging process beyond the change in the location of the onshore transfer site. As a result, no mitigation measures are proposed, other than potential signage to inform recreational watercraft of potential barge traffic in the vicinity of the project area. However, future operations should be monitored to ensure challenges do not arise.

4.21 Cumulative Potential Effects

4.21.1 Geographic Scales and Timeframes

It is currently estimated that the port facility will operate for at least 20 years and continue to facilitate the transfer of materials, including but not limited to dredge material and other commodities, from river barges to trucks for transport to off-site facilities. The City of Wabasha would own the project site and contract out the port operations and transportation of materials.

4.21.2 Future Projects

Future projects may include private land use developments in portions of the city planned for future development and redevelopment.

The current Wabasha Comprehensive Plan (2016-2035), last amended July 6, 2021, lists the future land use of the project site as "Industrial." The Comprehensive Plan discusses Wabasha's unique location and opportunity for development of a commercial river port facility that would be used for commercial purposes.

Transportation projects are likely to be planned and programmed for construction may involve safety, capacity, pavement preservation, and active transportation modes (ped/bike). These projects will be carried out by MnDOT, Wabasha County, or the city.

4.21.3 Cumulative Effects

Impacts include changes in land cover type (e.g., increased impervious and vegetation/habitat loss), impacts to wetlands, disruption of aquatic and terrestrial species habitat, slight increases in traffic volumes, and adding side channel barge access to the project site. While not anticipated to involve significant social, economic, or environmental effects, all future projects would be subject to applicable local, state, and federal environmental reviews and permitting.

The construction and operation of the Wabasha Barge Facility, as outlined in this DEIS, have the potential to contribute to cumulative effects in the project area. While this DEIS primarily assesses the direct impacts of the proposed project, it is essential to consider its interactions with other past, present, and reasonably foreseeable actions in the region.

Cumulative effects may result from the combined impacts of the proposed project with other local developments, such as transportation infrastructure improvements, nearby land use changes, or other industrial activities. These effects could manifest in various ways, including alterations to traffic patterns, potential changes in air and water quality, habitat fragmentation, and socio-economic dynamics within the community.

While there are no known projects immediately adjacent to the proposed project, ongoing monitoring, consultation with stakeholders, and adaptive management strategies will be incorporated to comprehensively assess and address these cumulative impacts over time.

4.22 Other Potential Environmental Effects

No other potential environmental effects were identified in the development of this DEIS document.

MITIGATION MEASURES

Table 11: Mitigation Measures

SEE Factor	Anticipated Impact	Proposed Mitigation Measures
Property and Right of Way Needs	Purchase of 8.2-acre Proposed Barge Facility site.	Prior to project construction, the City of Wabasha will work with the current landowner, who is identified as a willing seller, to determine fair market value for purchase of the project site. While this DEIS addresses the entirety of the two parcels, the City only intends to purchase the 8.2-acre portion that is necessary for the Proposed Barge Facility. The remaining areas would remain under private ownership.
Land Use, Plans, Zoning, and Special Districts/Overlays	Impact to existing zoning.	Upon completion and approval of the EIS, the city will initiate a zoning amendment to change the parcels from "R1" to "I" in accordance with the city's future land use plans. Construction standards and specifications will ensure compliance with the City of Wabasha's Shoreland Overlay Zone.
Parks, Open Space, and Recreational Facilities	Impact to aquatic recreational users from an increase in barge traffic to and from the proposed project site.	Appropriate road and waterway signage will identify this area as increased truck and barge traffic, respectively. Additionally, the contracted operator of the facility will be required to comply with City of Wabasha noise ordinances, and to confine operations to set days and times during the regular work week. This information will be clearly articulated to the contracted facility construction personnel and operators. During the lifespan of the barge facility, the city will routinely audit operations through an impact assessment to identify future additional mitigation requirements and recommendations.
Soils and Topography	The proposed project will include dredging an access channel from the main Mississippi River navigation channel as well as areas immediately	All project-related construction activities will adhere to appropriate standards and applicable permitting requirements from MPCA and MNDNR for grading and erosion control. MNDNR and/or BWSR-approved seed mixes and wildlife friendly erosion control mesh will be used to ensure soil

	adjacent to the shoreline where the proposed barge dock will be constructed. The current estimate is 37,000 CY of bottom sediment removed to facilitate barge access to the project site. This sediment will be used as fill – and augmented as needed – on the project site to raise access road and facility locations elevations outside of the 100-year floodplain.	stabilization. Additionally, a "No-Rise" review and certificate will be requested from FEMA to identify and facilitate any additional floodplain mitigation requirements. The project proposer and contracted companies shall comply with all permits and approvals and include mitigation and monitoring requirements as needed.
Floodplains	The site will be regraded and fill will be added within the floodplain for the preferred alternative construction. Stockpiled dredge material will be placed on the terminal docking site above the 100- year flood elevation. Impacts to flood elevations are described in the attached report "Preliminary No Rise Certification: USACE Dredge Material Management Plan – Wabasha Barge Facility" (Appendix C). The report details no appreciable impact to flood elevations or velocity due to the proposed barge facility design, and a standard No Rise certification is included.	Bank armoring along the barge dock area is proposed to reduce erosion potential during high flows. Permanent structural components are proposed along the river side of the barge facility to prevent bank erosion and sediment transport downstream. Dredging activities within the side channel to maintain the barge access lane are anticipated to decrease flood risk by increasing conveyance and flood volume storage within the floodplain.
Surface Water	The construction of the preferred alternative includes tree clearing and	The EPA-approved impairments for the Mississippi River are considered non-construction related and all project activities will comply with the

	ground disturbance, leading to increased likelihood for sediment to be transported to downstream surface waters. With cumulative watershed impacts, turbidity may be added to the list of items contributing to the Mississippi River impairment considerations. Furthermore, the site operator's equipment will require fuel (diesel and/or gasoline) and oils (lubricating and hydraulic). The use of these chemicals increases the likelihood of a spill on site that may flow to surface waters.	NPDES construction stormwater permit. Bank armoring along the proposed transfer site is proposed to reduce erosion potential during high flows and reduce the likelihood of additional impairment to the Mississippi River and adjacent wetland areas. During construction, the contractor will follow stormwater and erosion control best management practices as dictated by the NPDES Permit to reduce or eliminate the potential for increased turbidity or other surface water impacts. Stormwater infiltration practices will filter runoff from the project site to offset sediment loading and treat runoff prior to discharging to surface waters. An Industrial Stormwater permit may be necessary and all site construction activities and operations will comply with these additional permit requirements.
Wetlands	One wetland (Wetland 1) would be permanently impacted by the preferred alternative. Proposed impacts to Wetland 1 are due to filling a portion of the wetland for grading and construction of the barge facility. Wetland 1 is adjacent to the proposed barge/dock and off-loading area, which contains the material hauler, hopper, scale, and conveyor system. A portion of that wetland will not be filled, however, as a conservative estimate the entire wetland is considered permanently	Mitigation efforts will be completed in accordance with local, state and federal regulations. Mitigation requirements will be met prior to construction activities impacting wetlands or streams at the site. The city will work closely with local (LGU), state (MNBWSR, MNDNR, and MPCA), and federal (USACE) agency staff to identify requirements and ensure all potential concerns are addressed. Permit applications and plan sets will be submitted to the appropriate agencies for review. The preferred method of mitigation will be to purchase credits from a mitigation bank within the same BSA and major watershed as the site. It is anticipated that mitigation for the wetland impacts will occur at a minimum of a 2:1 ratio (i.e., 0.80 acres of wetland replacement for the 0.40 acres of impact) through a purchase of wetland credits within BSA 7.

	impacted. Permanent proposed	
Stormwater	The preferred design adds 3.3 acres of impervious surface to the site by providing an access road and barge docking station with associated infrastructure, increasing discharge rates, runoff volumes, sediment loading and increasing the flashiness of flows within the grading footprint, which discharges directly to the Mississippi River.	Ditches will be constructed around the perimeter of the active operations area to collect, store, and treat runoff prior to discharging to the Mississippi River. Areas not part of the facility operations will remain in natural or historically disturbed condition. An infiltration basin is proposed to mitigate impacts to stormwater runoff caused by the proposed alternative, catching stormwater from previously disturbed areas that are currently not receiving treatment. The design of the infiltration basin is described in the document "USACE Dredge Material Management Plan – Preliminary Drainage Memo" (Appendix E). The water quality volume would infiltrate and receive treatment prior to entering the Mississippi River via shallow subsurface flow. Offsite discharge rates are not increased after mitigation and the majority of stormwater flow throughout the year is treated prior to discharge. Sediment is captured via infiltration pretreatment in the form of rock check dams, mitigating potential sediment load increases due to impervious surface construction.
		During construction, the contractor will follow stormwater and erosion control best management practices as dictated by the MPCA NPDES Permit. The EPA-approved impairments for the Mississippi River are considered non-construction related and do not require any additional best management practices or plan review for compliance with the NPDES Construction Stormwater Permit.
Resources, Habitats, and Vegetation	The Wabasha Barge Facility project is expected to directly impact previously disturbed upland portions of the site, Wetland 1, and the Mississippi River. Approximately 2.7	Preventing the spread of invasive species during construction and operation of the barge terminal facility will occur as part of BMPs measures that will be put in place to control and appropriately manage vegetation and invasive species. Disturbed areas on the site will primarily be replaced with gravel surfaces (access road, loading and stockpile areas). Reseeding and

acres of trees will be cleared for site grading.	landscaping materials will be native seed mixes which are free of invasive plants or plant parts.
Impacts to vegetation within the MBS site of Moderate Biodiversity Significance are expected to be minimal and limited to construction of the barge facility infrastructure in uplands and Wetland 1.	 Construction will be conducted during the winter months when the ground is frozen. Equipment will be cleaned and inspected prior to bringing to the site to prevent the introduction and spread of invasive species. To the extent possible, operations will occur within already-disturbed areas.
	 Disturbed areas will be revegetated with native species suitable to the local habitat as soon as possible post-construction.

		 Weed-free seed mixes, topsoils, and mulches will be used for revegetation. To prevent the release of plastic fibers to the aquatic resources, the use of erosion control blankets will be limited to bio-netting or natural netting that do not contain plastic components. Hydromulch products will also be limited to plastic-free types.
Rare, Threatened, and Endangered Species and Ecosystems	Aquatic Organisms: Existing mussel species may experience direct mortality and short-term impacts because of the proposed project (dredging activities). Based on the recent mussel survey conducted within the project area June 6 th through June 8 th , 2023, one state-listed threatened species, the mucket, may be present within the dredging area. Based on historical data and the results of the recent survey, the project would have no impacts on federally listed species. Fish may be affected by the removal and burial of sessile or less mobile organisms on which the fish feed. The extent of this effect on fish would be determined by the extent and presence of the existing benthic communities in the area and fish that prey on them.	 Minnesota's Endangered Species Statute (Minnesota Statutes, Section 84.0895) and associated Rules (Minnesota Rules, part 6212.1800 to 6212.2300 and 134) prohibit the take of threatened or endangered species without a permit. Prior to the take of a protected species, a USFWS permit to take will be approved. There are no critical habitats listed at the project site for the endangered species (USFWS 2023). The USFWS and MNDNR will be notified in the event of sighting or contact with protected species. Aquatic Organisms: Additional coordination with MNDNR will occur in order to determine the potential for impacts and/or takings of state-protected mussel species in the Mississippi River dredge areas. MNDNR is expected to provide guidance on potential mitigation measures associated with species that may be impacted by site activities. To prevent harm to spawning populations of paddlefish and other listed fish species, work within the water will be avoided from April to mid-June or further consultation and/or permitting with MN DNR will be required (MNDNR Correspondence # MCE 2022-00127). To mitigate impacts from dredging operations, standard Best Management Practices (BMPs) will be implemented for dredging activities which includes: Dredging locations will be restricted to authorized locations

linked to the dec numerous fish sp Mississippi River, paddlefish. Huma rivers has also be the contributors paddlefish popul Mississippi River. barges have also cause mortality of larvae (UMRCC 2 items listed abow dredging and bar have an effect or species, including present. Terrestrial Organ Transportation o equipment and n with the project so of spreading inva Ground disturbar construction acti chance for aggre	including the an alteration of een cited as one of to the decline of ations in the Upper Turbulence from been known to of yolk-sac paddlefish 020). Based on the re, the proposed ge operations could the listed fish g paddlefish if f construction naterials associated site carries the risk asive plant species. nce from vities also presents a assive and	and March 31.
of spreading invasive plant species. Ground disturbance from construction activities also presents a	nce from T	limited to the extent possible. Approximately 2.7 acres of trees will be cut. Tree removal will be limited to the winter months, between November 1 and March 31.
opportunistic inv spread. The sprea species can have on native plant c	asive species to ad of invasive a detrimental effect	Potential habitat for the timber rattlesnake may occur on site, however, direct impacts are not expected. Because this is a ground dwelling motile species, the potential does exist for vehicular impacts. To mitigate potential mpacts to this species:

inva thro in Se Tree redu nest Fore site, east docu have nest surv shou vicin distu in th guid 4.15 With habi proju beha com tem	acts associated with the spread of sive species will be mitigated ugh the use of BMPs as described action 4.15.2.4. e cutting has the potential to uce the available habitat and ing sites for bird species. Asted areas along the river at the including Wetlands 2 and 3 with ern cottonwood and silver maple umented as dominant vegetation, the potential for suitable ing sites for the bald eagle. A ey of active bald eagle nests ald be performed within the nity of the site prior to site arbance which would take place the nesting season. Buffer elines are given in Section 1.2.4. In the very large amount of tat available in the general ect area for the full variety of bird aviors, impacts to the wading bird munity are expected to be porary and minimal.	 Erosion control blankets will be limited to "bio-netting" or other natural netting types Working crews will be made aware of the potential to encounter the timber rattlesnake and instructed to not disturb DNR will be contacted if rattlesnakes are encountered at the site
roos	ting habitat for the NELB is	

	present at the site. Wetlands 2 and 3, as well as forested uplands could provide habitat for the NELB. Construction at the site will not impact Wetlands 2 or 3. Tree clearing will be limited to 2.7 acres.	
Visual Resources	The proposed project would alter the existing visual aesthetic of the project site with the introduction of trucks, barges, other industrial equipment, storage facilities, and the temporary introduction of construction vehicles and equipment. This altered visual aesthetic would be visible from neighboring parcels, roadways, the Mississippi River, and from the surrounding hillside.	Barge facility operations will occur primarily during day-time working hours. Exterior lights, if installed at the facility, will be down-casting and set on timers to reduce wildlife and aesthetic impacts during non-operating hours.
Noise	Construction-related noise effects from the proposed project would be minor and temporary in nature, generated by the use of construction vehicles and equipment, as well as barges, during the construction of the barge terminal pad, access road, dock/mooring piles, barge staging winch system, loading truck scale, and scale house/field office building. Noise resulting from the proposed project's operational activities—	The proposed project would follow the noise regulations outlined in the project operator agreement, which limit construction and operational activities to 7:00am - 6:00pm, Monday through Friday. The project operator agreement is consistent with the State of Minnesota rules (MN Statute 7030.0020), which define daytime hours as 7am to 10pm, and nighttime hours as 10pm to 7am. All construction and operational activities associated with the proposed project would conform with the project operator agreement as well as the State of Minnesota noise standards.

occurring between 7:00am and	
6:00pm, Monday through Friday—	
would be generated by the loading	
and unloading of barges and trucks,	
from trucks and barges used to	
transport commercial and/or	
dredged materials to and from the	
project site, as well as from the	
personal vehicles of employees	
traveling to and from the project site,	
and internal site operations	
equipment (e.g., material haulers:	
hoppers, conveyors, etc.).	
The proposed project would generate	
traffic-related noise from trucks	
hauling construction materials during	
the construction of the proposed	
project, trucks hauling dredged	
materials during the operation of the	
proposed project, and from	
employees using personal vehicles to	
travel to and from the project site.	
However, because the proposed	
project would include no more than	
ten parking spaces for employee and	
operator parking and would generate	
less than 250 vehicle trips during	
peak hour operations and less than	
2,500 daily trips, traffic congestion	
and traffic-related noise are not	

	anticipated to adversely affect surrounding areas or sensitive receptors.	
All Other Factors	Minimal impact	Follow local, state, and federal permit and approval requirements.

PROJECT COORDINATION

6.1 Federal Agencies

Coordination with Federal Agencies includes the following:

- USACE: No-rise certification; river and wetland impacts; 217(d) Agreement (relative but beyond the scope of this review)
- USFWS: Threatened and endangered species and critical habitat areas; Wildlife Refuge areas.

All permits and approvals will be secured prior to construction activities.

Should future federal funding be applied to the project, additional environmental review documentation will meet any additional federal requirements.

6.2 State Agencies and Organizations

Coordination with State Agencies and Organizations includes the following:

- MDH: Unknown well sealing or repair
- MNDNR: Rare, threatened and endangered species and critical habitats; Floodplain and water resources
- MNDOT: Funding; Transportation
- MPCA: Industrial Stormwater permitting
- SHPO: Review of historic resources

All permits and approvals will be secured prior to construction activities.

6.3 Local Agencies and Organizations

Coordination with Local Agencies and Organizations includes the following:

- Wabasha County: Transportation; Water resources
- Izaak Walton League: Environmental concerns

All permits and approvals and continued coordination efforts will occur prior to construction activities.

6.4 Other Project Coordination

Other project coordination includes the following:

• Tribal Organizations

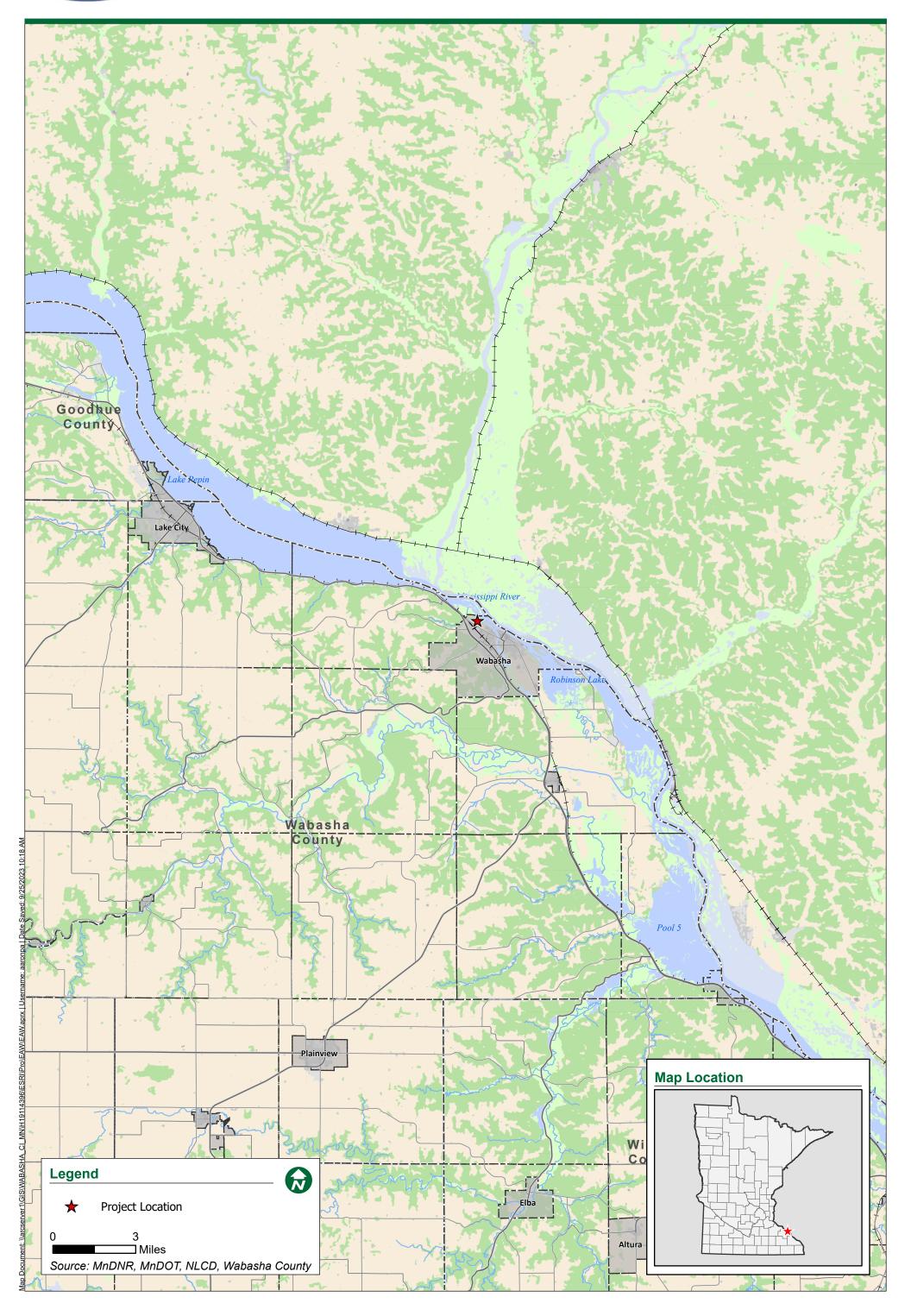
Continued coordination efforts will occur prior to construction activities.

UNRESOLVED OR CONTROVERSIAL ISSUES

7.1 Unresolved or Controversial Issues

There are no known unresolved or controversial issues that are not addressed in the previous sections.

APPENDIX A


Figures

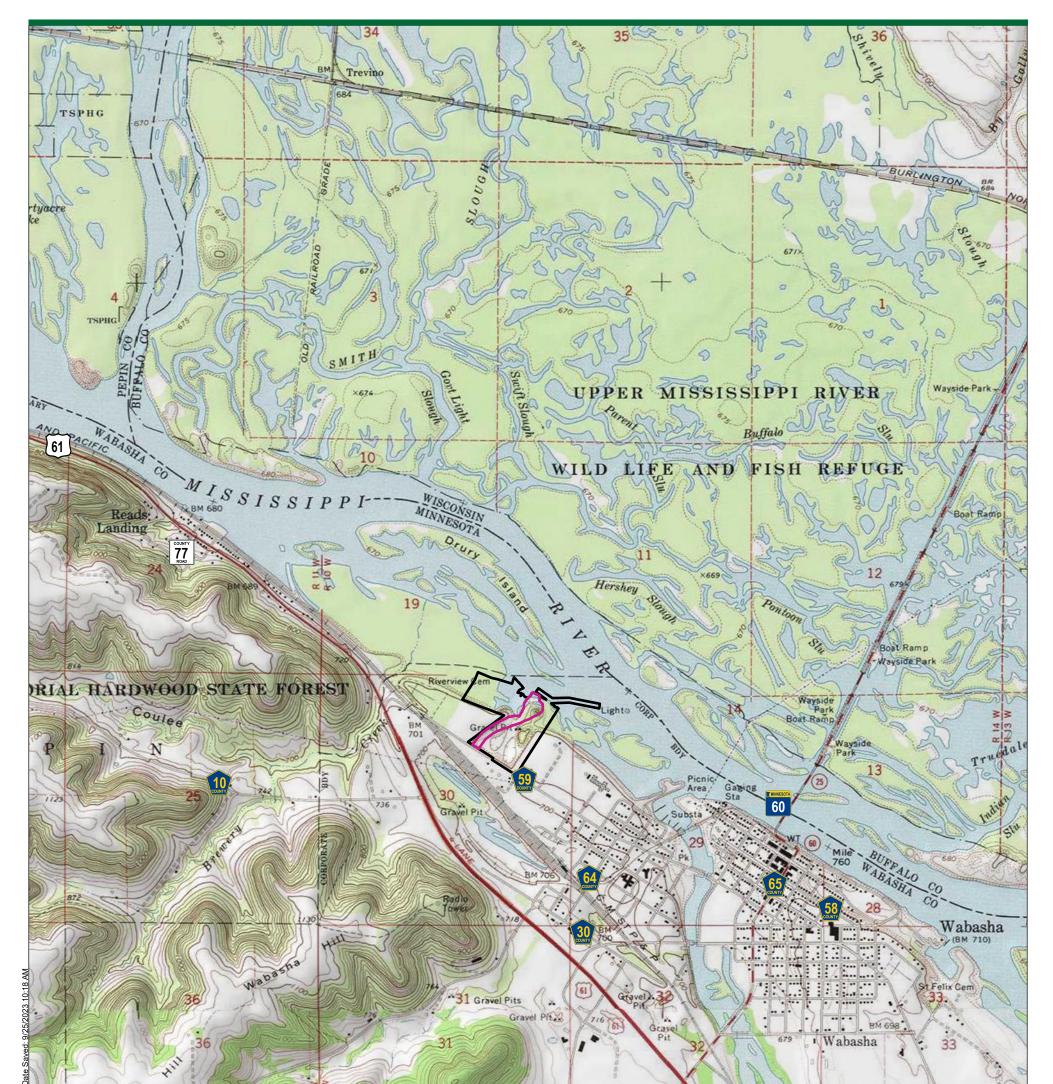
WABASHA

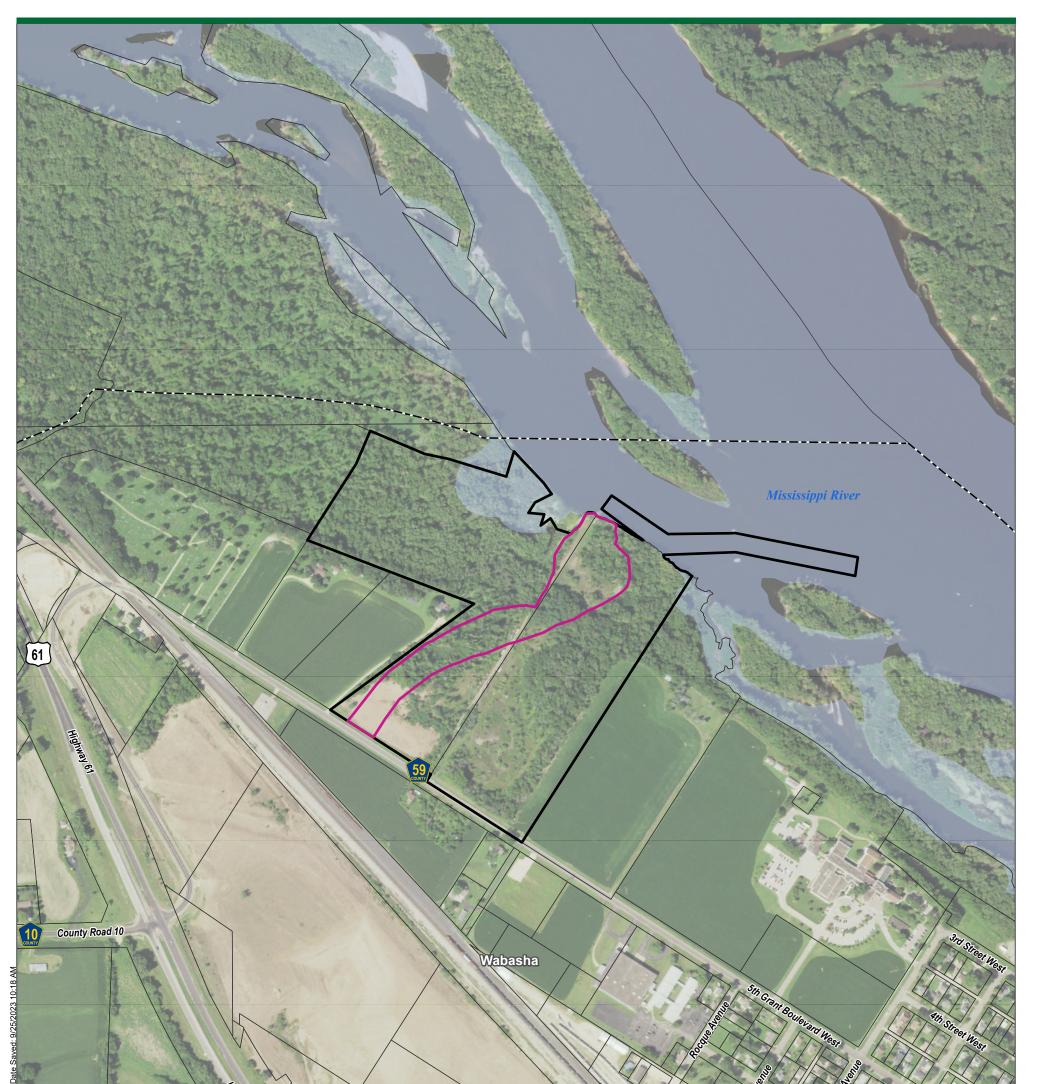
Figure 1: Regional Location September 2023

Environmental Impact Statement

Environmental Impact Statement

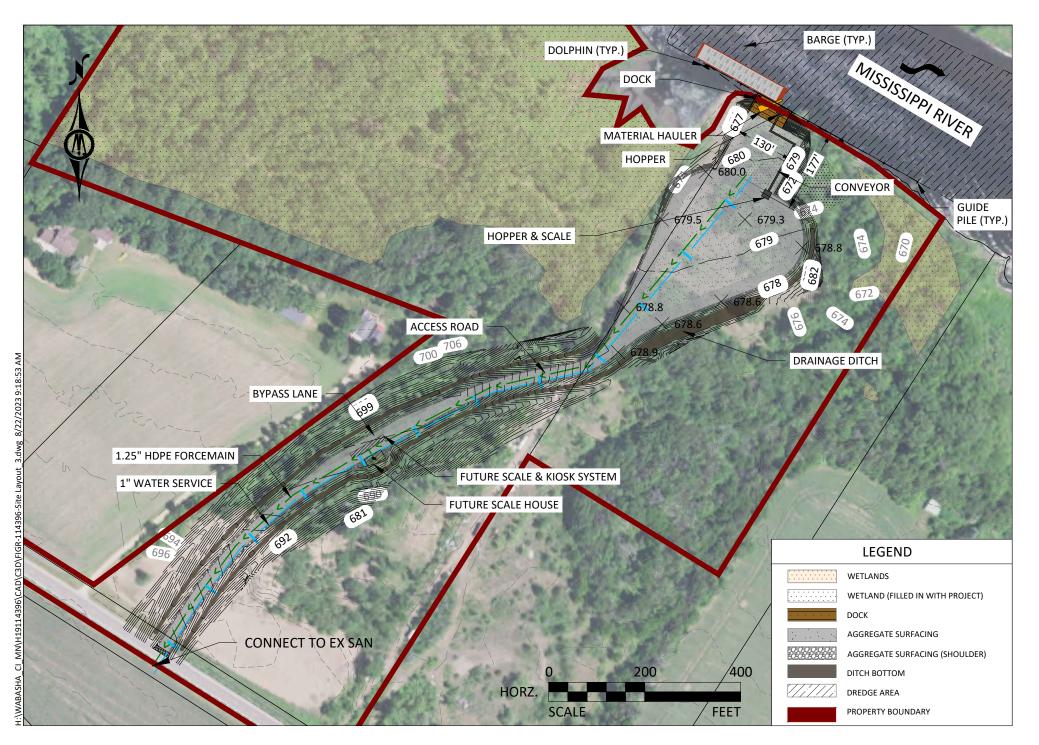
September 2023




Figure 3: Existing Conditions

Environmental Impact Statement

September 2023

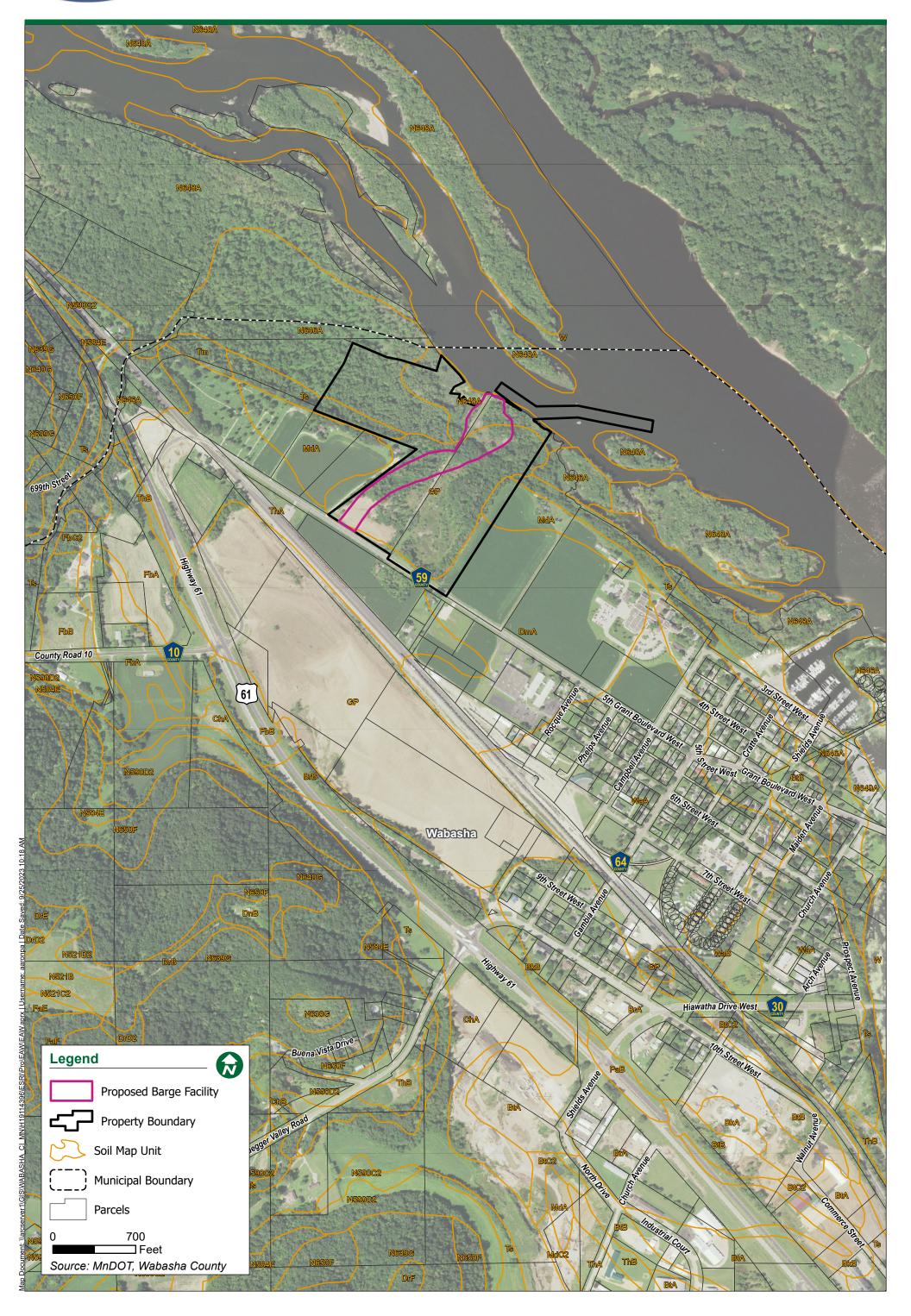


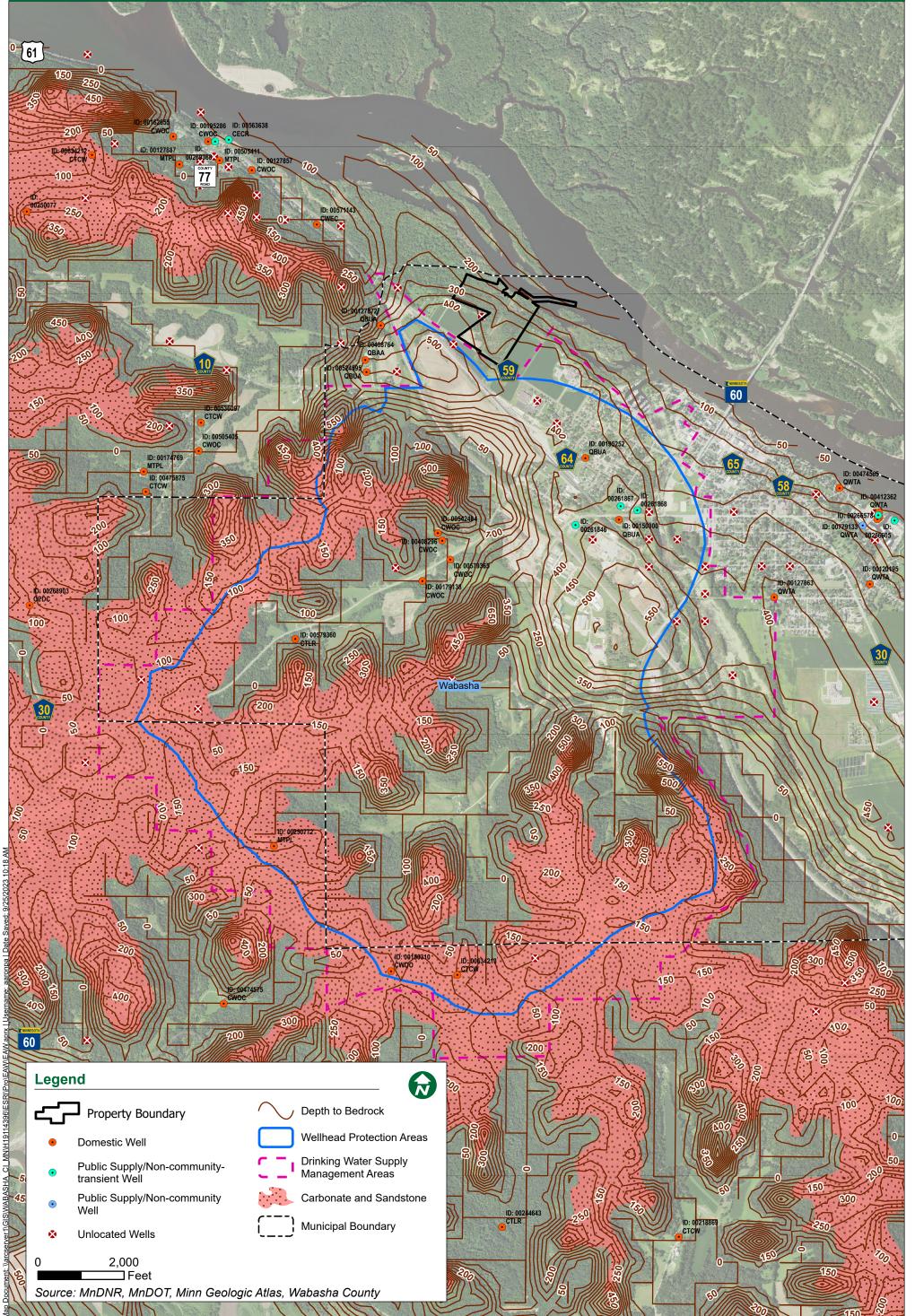
USACE Dredge Material Management Plan

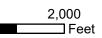
City of Wabasha, MN

Figure 4: Site Layout August 2023

Environmental Impact Statement




Figure 6: Geologic Conditions/Groundwater



WABASHA

Environmental Impact Statement

September 2023

Environmental Impact Stateme

Environmental Impact Statement

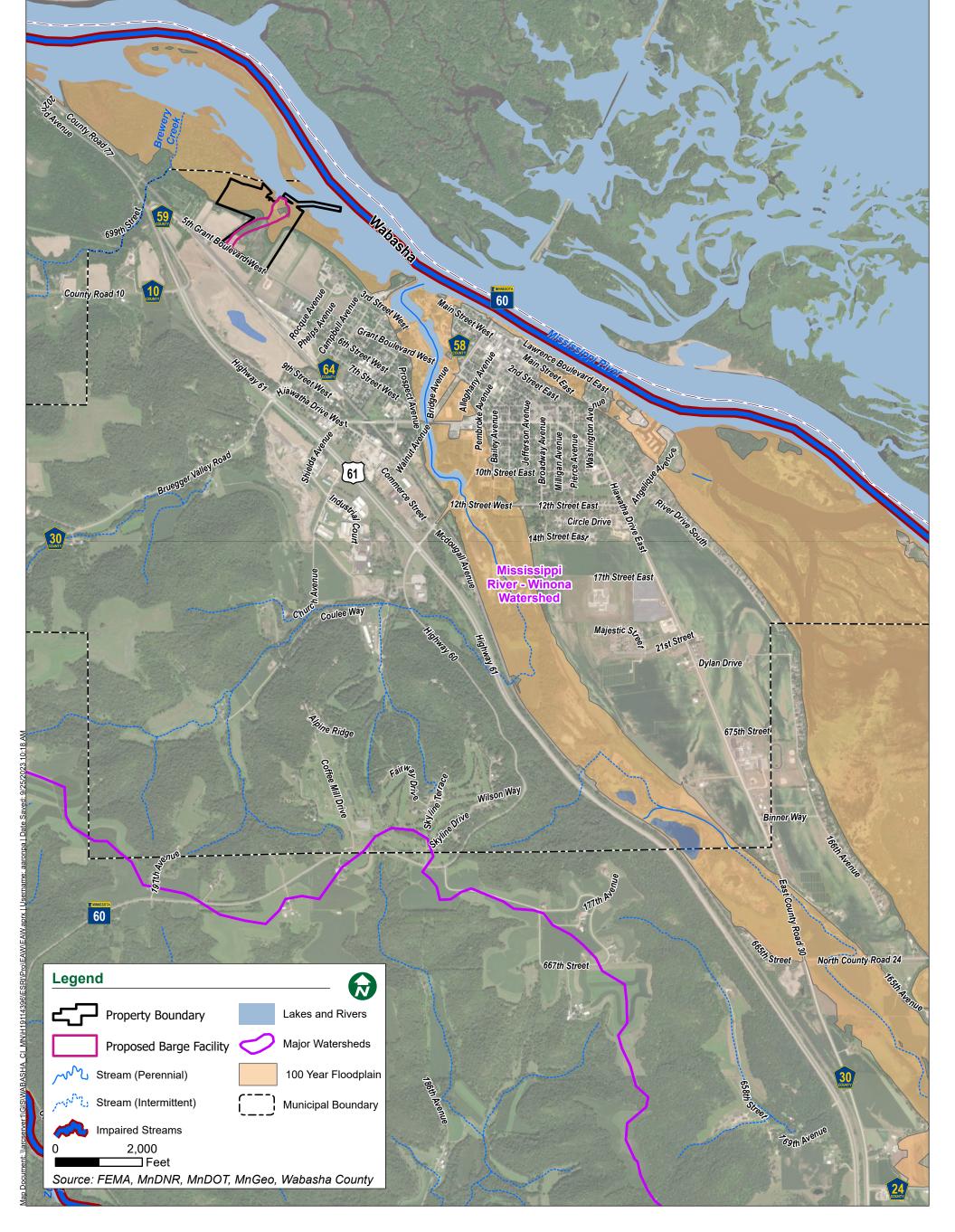
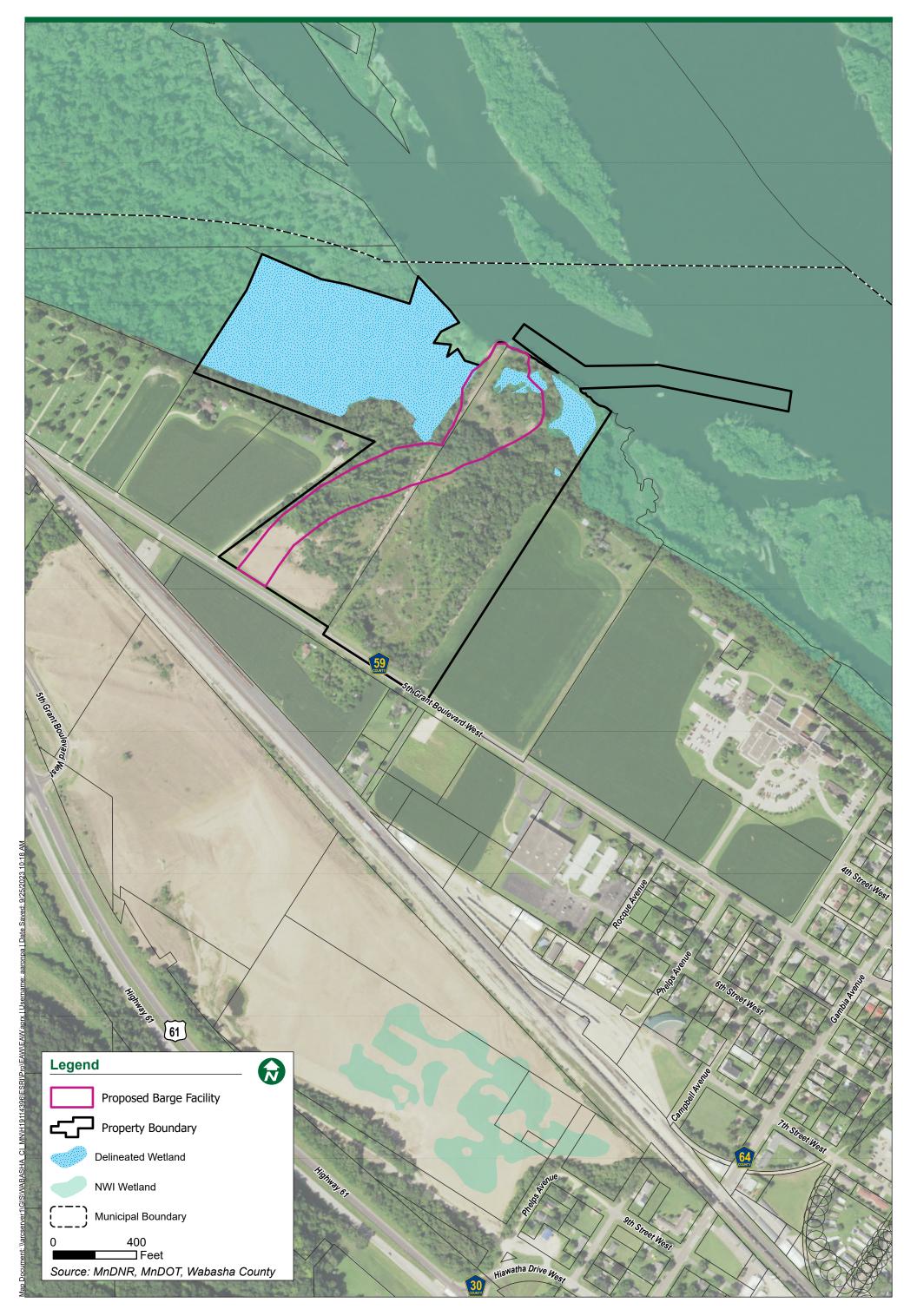
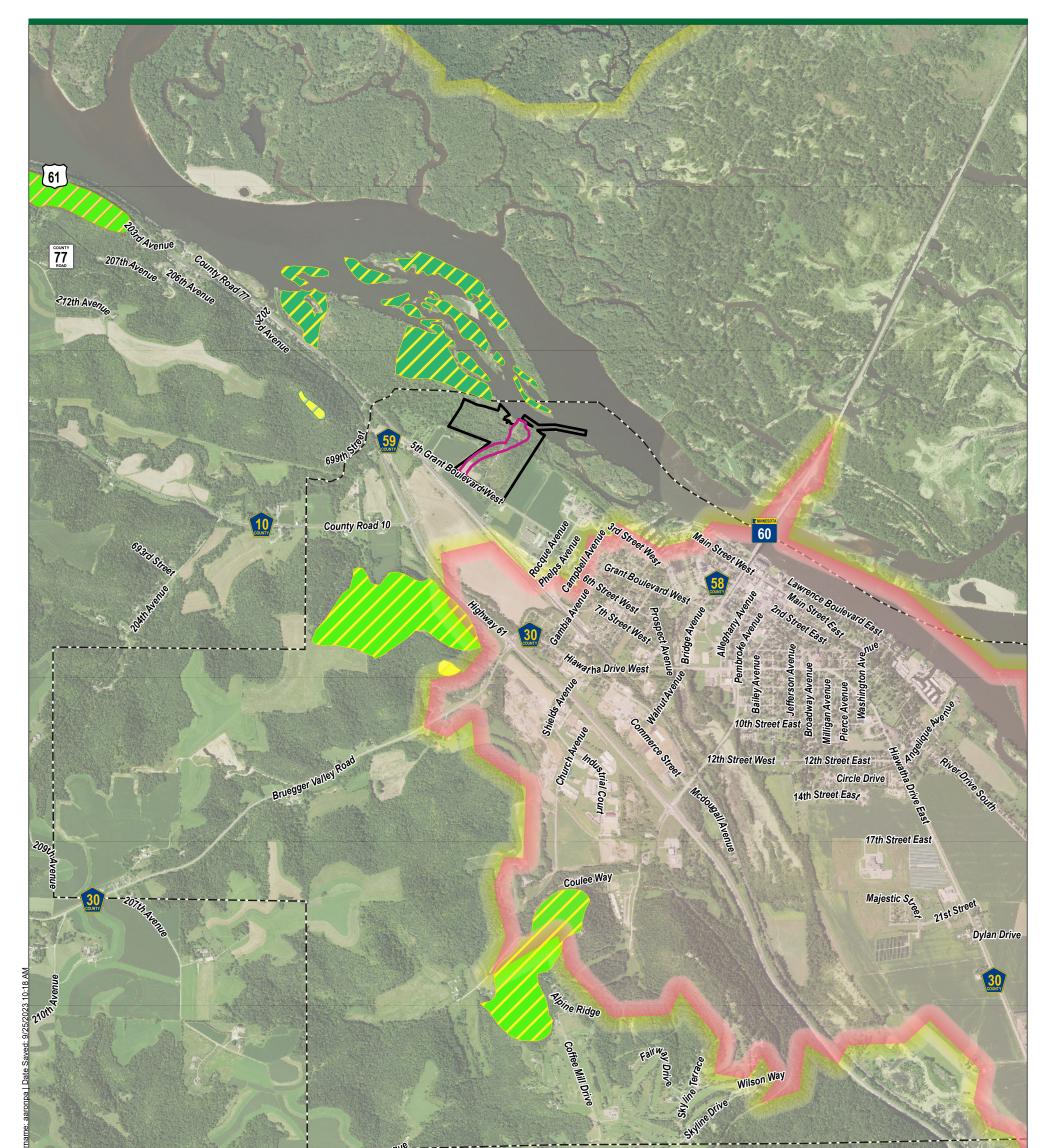



Figure 8: Wetlands

September 2023


WABASHA

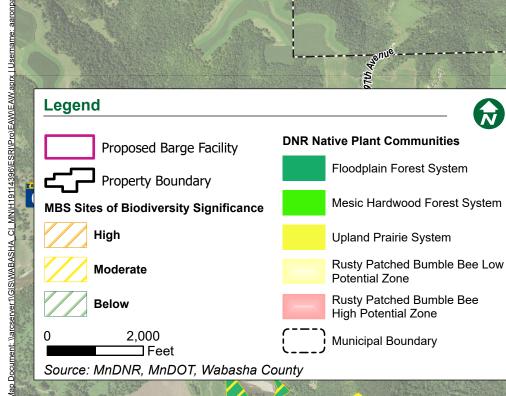

Wabasha Barge Facility

Figure 9: Biotic Resources

Environmental Impact Statement

ent de la compañía de

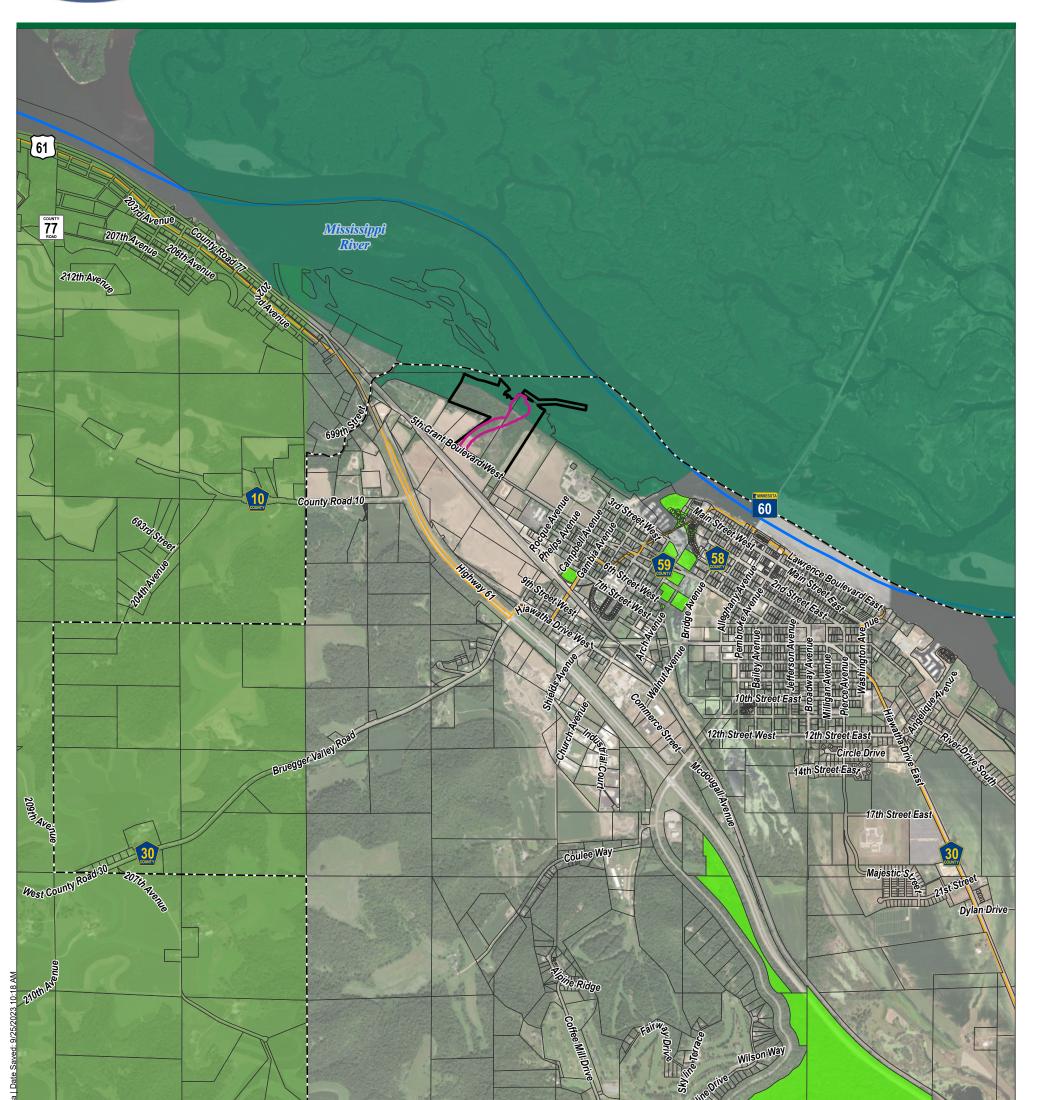

WABASHA

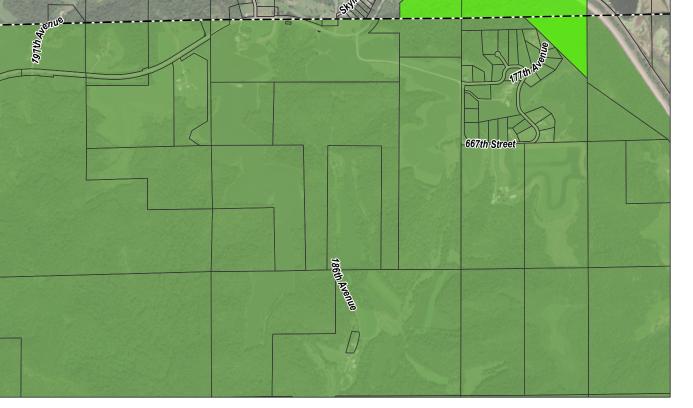
Figure 10: Outdoor Recreation

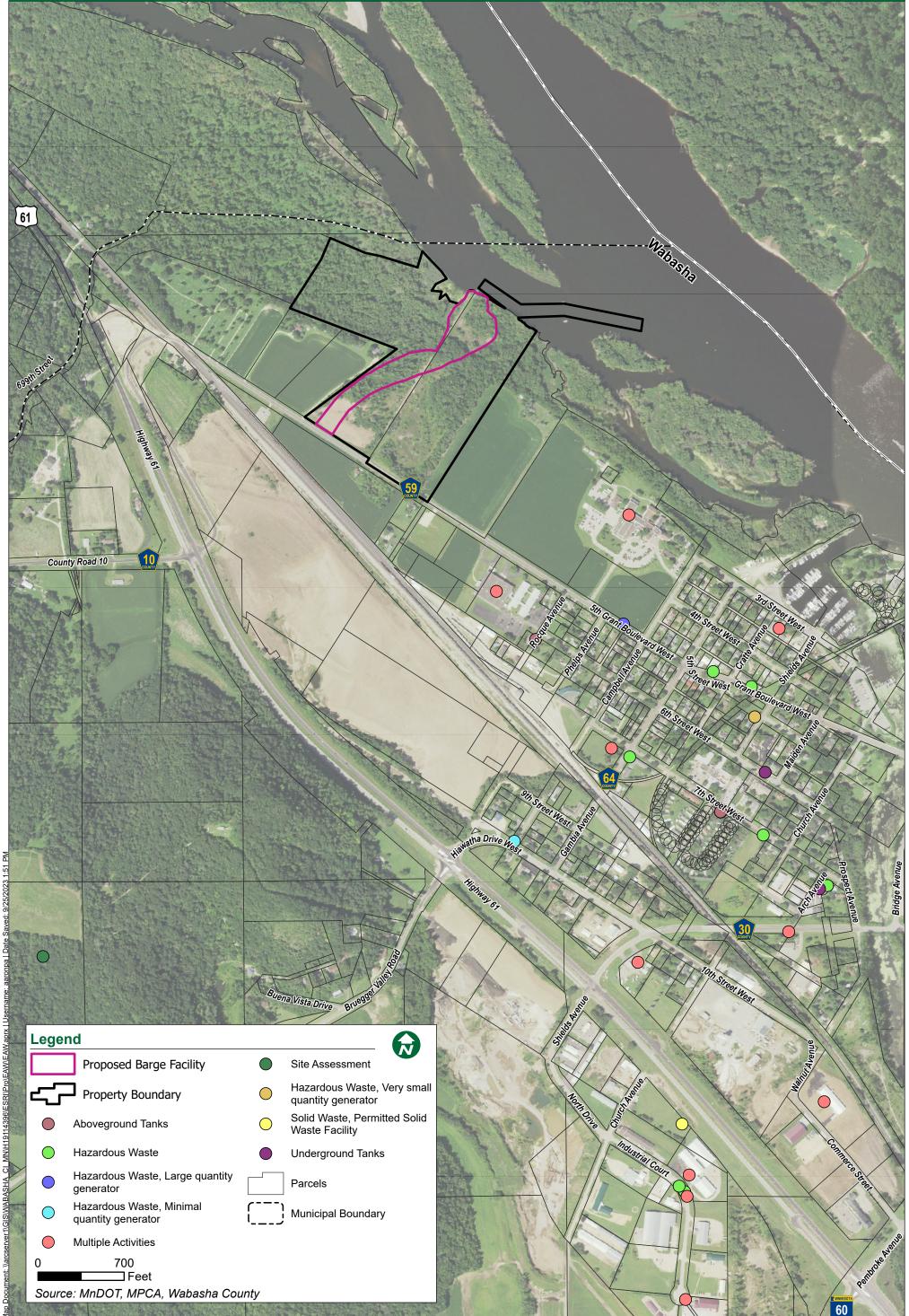
Environmental Impact Statement

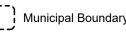
September 2023

Legend

we




Figure 11: Potentially Contaminated Sites



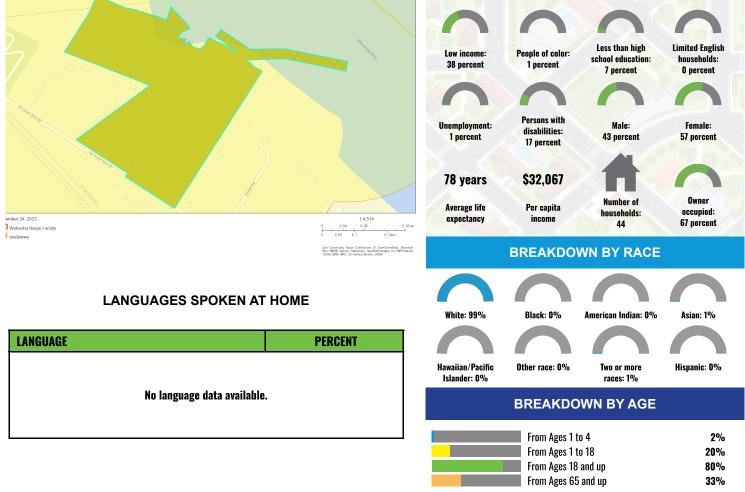
WABASHA

Environmental Impact Statement

September 2023

APPENDIX B

EPA EJScreen Community Report


Sepa EJScreen Community Report

This report provides environmental and socioeconomic information for user-defined areas, and combines that data into environmental justice and supplemental indexes.

Wabasha, MN

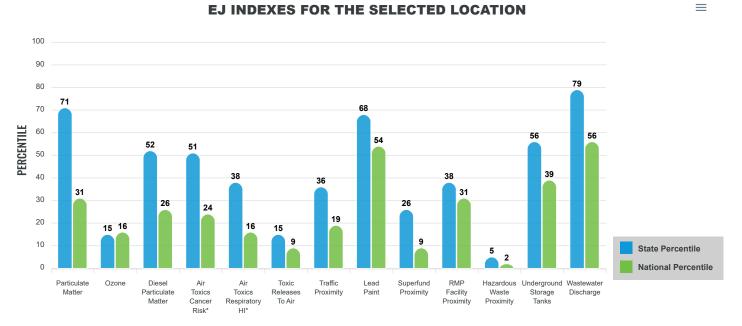
0.25 miles Ring around the Area Population: 158 Area in square miles: 0.68

COMMUNITY INFORMATION

LIMITED ENGLISH SPEAKING BREAKDOWN

Speak Spanish	0%
Speak Other Indo-European Languages	0%
Speak Asian-Pacific Island Languages	0%
Speak Other Languages	0%

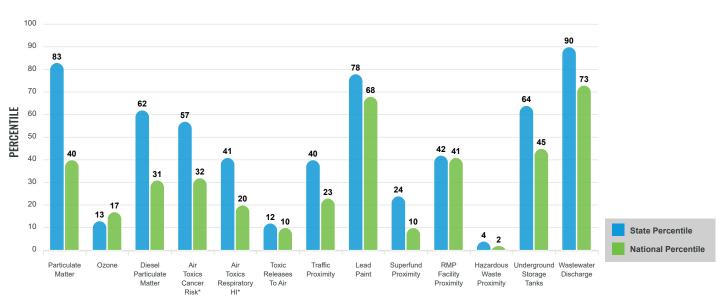
Notes: Numbers may not sum to totals due to rounding. Hispanic population can be of any race. Source: U.S. Census Bureau, American Community Survey (ACS) 2017 -2021. Life expectancy data comes from the Centers for Disease Control.


www.epa.gov/ejscreen

Environmental Justice & Supplemental Indexes

The environmental justice and supplemental indexes are a combination of environmental and socioeconomic information. There are thirteen EJ indexes and supplemental indexes in EJScreen reflecting the 13 environmental indicators. The indexes for a selected area are compared to those for all other locations in the state or nation. For more information and calculation details on the EJ and supplemental indexes, please visit the <u>EJScreen website</u>.

EJ INDEXES


The EJ indexes help users screen for potential EJ concerns. To do this, the EJ index combines data on low income and people of color populations with a single environmental indicator.

populatione with a cingle on monimental indicator.

SUPPLEMENTAL INDEXES

The supplemental indexes offer a different perspective on community-level vulnerability. They combine data on percent low-income, percent linguistically isolated, percent less than high school education, percent unemployed, and low life expectancy with a single environmental indicator.

SUPPLEMENTAL INDEXES FOR THE SELECTED LOCATION

These percentiles provide perspective on how the selected block group or buffer area compares to the entire state or nation.

Report for 0.25 miles Ring around the Area

www.epa.gov/ejscreen

 \equiv

EJScreen Environmental and Socioeconomic Indicators Data

SELECTED VARIABLES	VALUE	STATE AVERAGE	PERCENTILE IN STATE	USA AVERAGE	PERCENTILE IN USA
POLLUTION AND SOURCES					
Particulate Matter (µg/m ³)	7.52	6.78	68	8.08	32
Ozone (ppb)	56.3	58.2	8	61.6	14
Diesel Particulate Matter (µg/m ³)	0.124	0.21	36	0.261	23
Air Toxics Cancer Risk* (lifetime risk per million)	20	22	12	25	5
Air Toxics Respiratory HI*	0.2	0.26	7	0.31	4
Toxic Releases to Air	9.4	1,500	8	4,600	8
Traffic Proximity (daily traffic count/distance to road)	9.6	140	22	210	16
Lead Paint (% Pre-1960 Housing)	0.43	0.33	66	0.3	68
Superfund Proximity (site count/km distance)	0.014	0.19	15	0.13	9
RMP Facility Proximity (facility count/km distance)	0.1	0.48	23	0.43	31
Hazardous Waste Proximity (facility count/km distance)	0.021	1.3	3	1.9	2
Underground Storage Tanks (count/km ²)	0.31	1.8	44	3.9	35
Wastewater Discharge (toxicity-weighted concentration/m distance)		0.19	92	22	74
SOCIDECONOMIC INDICATORS					
Demographic Index	20%	22%	58	35%	31
Supplemental Demographic Index	13%	11%	76	14%	53
People of Color	1%	20%	7	39%	5
Low Income	38%	23%	82	31%	67
Unemployment Rate	1%	4%	25	6%	24
Limited English Speaking Households		2%	0	5%	0
Less Than High School Education		7%	67	12%	46
Under Age 5		6%	17	6%	25
Over Age 64		17%	94	17%	92
Low Life Expectancy	20%	17%	84	20%	60

*Diesel particulate matter, air toxics cancer risk, and air toxics respiratory hazard index are from the EPA's Air Toxics Data Update, which is the Agency's ongoing, comprehensive evaluation of air toxics in the United States. This effort aims to prioritize air toxics, emission sources, and locations of interest for further study. It is important to remember that the air toxics data presented here provide broad estimates of health risks over geographic areas of the country, not definitive risks to specific individuals or locations. Cancer risks and hazard indices from the Air Toxics Data Update are reported to one significant figure and any additional significant figures here are due to rounding. More information on the Air Toxics Data Update can be found at: https://www.epa.gov/haps/air-toxics-data-update.

Sites reporting to EPA within defined area:

Superfund 0	J
Hazardous Waste, Treatment, Storage, and Disposal Facilities	ļ
Water Dischargers	J
Air Pollution	J
Brownfields 0	J
Toxic Release Inventory 0	I

Other community features within defined area:

Schools
Hospitals 0
Places of Worship 0

Other environmental data:

Air Non-attainment	No
Impaired Waters	Yes

Selected location contains American Indian Reservation Lands*	No
Selected location contains a "Justice40 (CEJST)" disadvantaged community	No
Selected location contains an EPA IRA disadvantaged community	Yes

Report for 0.25 miles Ring around the Area

www.epa.gov/ejscreen

EJScreen Environmental and Socioeconomic Indicators Data

HEALTH INDICATORS						
INDICATOR HEALTH VALUE STATE AVERAGE STATE PERCENTILE US AVERAGE US PERCENTILE						
Low Life Expectancy	20%	17%	84	20%	60	
Heart Disease	8.1	5.6	91	6.1	85	
Asthma	8.9	9	47	10	22	
Cancer	9.2	6.4	97	6.1	96	
Persons with Disabilities	18.1%	11.4%	91	13.4%	79	

CLIMATE INDICATORS					
INDICATOR	HEALTH VALUE	STATE AVERAGE	STATE PERCENTILE	US AVERAGE	US PERCENTILE
Flood Risk	12%	8%	80	12%	73
Wildfire Risk	0%	4%	0	14%	0

CRITICAL SERVICE GAPS						
INDICATOR HEALTH VALUE STATE AVERAGE STATE PERCENTILE US AVERAGE US PERCENTILE						
Broadband Internet	25%	11%	92	14%	83	
Lack of Health Insurance	4%	5%	48	9%	27	
Housing Burden	No	N/A	N/A	N/A	N/A	
Transportation Access	Yes	N/A	N/A	N/A	N/A	
Food Desert	No	N/A	N/A	N/A	N/A	

Footnotes

Report for 0.25 miles Ring around the Area

www.epa.gov/ejscreen

APPENDIX C

Preliminary No-Rise Certification

Real People. Real Solutions.

DRAFT

Preliminary No Rise Certification USACE Dredge Material Management Plan Wabasha Barge Facility City of Wabasha, Wabasha County, Minnesota

August 2023

Submitted by:

Bolton & Menk, Inc. 2900 43rd Street NW Rochester, MN 55901 Phone: (507) 208-4332 Certification

Preliminary

No Rise Certification

For

USACE Dredge Material Management Plan – Wabasha Barge Facility

Mississippi River, MN

H19.114396

August 2023

I hereby certify that this report was prepared by me or under my direct supervision, and that I am a duly Licensed Professional Engineer under the laws of the State of Minnesota.

By: DRAFT

Roberta R. Cronquist, P.E. License No. 52570

Date: DRAFT

Table of Contents

MIN	NESC	TA NO RISE CERTIFICATION	. i
I.	INTF	RODUCTION	1
II.	EFFE	CTIVE FLOOD INSURANCE STUDY DATA	2
III.	HYD	ROLOGY	2
	Α.	Effective Discharges	2
IV.	тор	OGRAPHIC DATA	3
	Α.	LiDAR Data	3
V.	HYD	RAULIC MODELING	3
	Α.	Duplicate Effective HEC-RAS Model	3
	В.	Corrected Effective HEC-RAS Model	4
	C.	Existing Condition HEC-RAS Model	4
	D.	Proposed Condition HEC-RAS Model	4
VI.	CON	IPARISON OF 100-YEAR RESULTS	5

Tables

Table 1: Effective FIRM Panels	. 2
Table 2: Effective FEMA Discharges	3
Table 3: Topography Data Sources	. 3
Table 4: Duplicate Effective Digital Files	. 4
Table 5: Existing Condition HEC-RAS Digital Files	.4
Table 6: Proposed Condition HEC-RAS Digital Files	. 5
Table 7: Comparison of 100-year WSELs*	. 6

Appendices

- Appendix A: HEC-RAS Workmaps
- Appendix B: Effective Flood Insurance Study and Flood Insurance Rate Maps
- Appendix C: Duplicate Effective Condition HEC-RAS
- Appendix D: Existing Condition HEC-RAS
- Appendix E: Proposed Condition HEC-RAS
- Appendix F: Preliminary Site Layout
- Appendix G: DVD of Digital Files

MINNESOTA NO RISE CERTIFICATION

This is to certify that I am a duly qualified professional engineer licensed to practice in the State of Minnesota.

It is further to certify that the attached technical data supports the fact that the proposal to perform the following construction activities associated with the USACE Dredge Material Management Plan Project within the floodplain for the Mississippi River between the Chippewa River and Alma Marina (WI) will not impact the 100-year flood elevation.

This includes the following construction activities:

- 1. Construction of infrastructure including a site access road, weighing station and small operations facility
- 2. Construction of a sheet pile dock wall, mooring and maneuvering facilities, and conveyers and hoppers for material processing
- 3. Temporary storage of dredged material on site
- 4. Channel dredging for barge access to the proposed docking and off-loading facilities
- 5. Use of dredged material as fill on the terminal site to raise the dredge material storage area above the 100-year flood elevation

These construction activities will not impact the floodway width or increase the 100-year flood elevation (will not raise by more than 0.00 feet) on the Mississippi River at any published cross sections in the Flood Insurance Study for Wabasha County Minnesota, dated June 20, 2000 or Buffalo County Wisconsin, dated May 3, 2010 and will not increase the 100-year flood elevation (will not raise by more than 0.00 feet) at unpublished cross-sections in the vicinity of the proposed project.

HEC-RAS hydraulic analyses have been prepared for the Mississippi River from the Prescott, WI to La Crosse, WI and are included to support my findings.

Date: 08/31/2023

Signature:DRAFTName:Roberta CronquistTitle:Project EngineerLicense Number: #52570, exp. 6/30/2024

MN DNR Waters - 4/2/2004 revision

I. INTRODUCTION

The City of Wabasha in conjunction with the Wabasha Port Authority is working on a dredge material management plan for the Mississippi River that includes constructing a barge facility on the north end of the City of Wabasha, MN (River Mile 760). Approximately 270,000 CY of sand will be dredged annually to maintain a 9-ft navigable channel. This barge facility is intended to facilitate dredged material storage and transportation of agricultural products and shipping containers on the Mississippi River. The primary purpose is to transport sand from the navigation channel dredging operations to offsite locations for beneficial re-use.

Specifically, the following activities may affect the Mississippi River floodplain hydraulics:

- 1. Construction of infrastructure including a site access road, weighing station and small operations facility
- 2. Construction of a sheet pile dock wall, mooring and maneuvering facilities, and conveyers and hoppers for material processing
- 3. Temporary storage of dredged material on site
- 4. Channel dredging for barge access to the proposed docking and off-loading facilities
- 5. Use of dredged material as fill on the terminal site to raise the dredge material storage area above the 100-year flood elevation

The project impacts the floodplain limits for the Mississippi River within the City of Wabasha, Wabasha County (WBCO), Minnesota. This portion of the Minnesota River floodplain is also within Buffalo County (BUCO), WI. Because portions of the project propose construction activities within a FEMA designated floodplain, this report documents the no rise condition of the proposed site development.

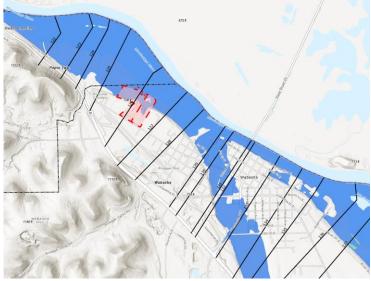


Figure 1: Vicinity Map (not to scale)

II. EFFECTIVE FLOOD INSURANCE STUDY DATA

The Mississippi River is currently mapped by FEMA as a Zone AE floodplain with a floodway, and is shown on the FEMA FIRM Panels listed in Table 1. Preliminary FIRM panels and a Flood Insurance Study for Wabasha County are expected in December of 2022.

County	Map No.	Panel No.	Effective Date				
Minnesota							
Wabasha	27157C	0090D	June 20, 2000				
Wabasha	27157C	0095D	June 20, 2000				
Wabasha	27157C	0210D	June 20, 2000				
Wabasha	27157C	0230D	June 20, 2000				
Wabasha	27157C	0235D	June 20, 2000				
	Wisc	consin					
Buffalo	55011C	0140D	May 3, 2010				
Buffalo	55011C	0145D	May 3, 2010				
Buffalo	55011C	0165D	May 3, 2010				
Buffalo	55011C	0285D	May 3, 2010				

Table 1: Effective FIRM Panels

Excerpts from the effective Wabasha County FIS, Buffalo County FIS, and a copy of the listed effective FIRMs are included in Appendix B of this report. Buffalo County FIRMs and FIS excerpts are included for reference and that data is reported in the NAVD 88 datum.

III. HYDROLOGY

A. Effective Discharges

Information about effective FEMA discharges for the Mississippi River are included in the Effective FIS for Wabasha County and Buffalo County. FIS flow values matched those in the effective HEC-RAS model received from the MnDNR.

	Drainage	Peak [Discharges (cu	ubic feet per s	second)
Flooding Source and Location	Area (sq- miles)	10% Annual- Chance	2% Annual- Chance	1% Annual- Chance	0.2% Annual- Chance
Mississippi River (WBCO FIS) At Wabasha	56,610	145,000	210,000	240,000	320,000
Mississippi River (BUCO FIS) Just Downstream of Chippewa River	-	-	-	229,611	-
Mississippi River (Effective Model) XS 761.327 XS 760.994	-	-	-	229,611 229,611	-

Table 2: Effective FEMA Discharges

IV. TOPOGRAPHIC DATA

The following topographic data was utilized to develop the hydraulic models for this study.

A. LiDAR Data

Table 3: Topography Data Sources

County	Topography Source	Datum
Wabasha	Wabasha County LiDAR – 2008	NAVD
VVdDdSIId	Wabasha County LIDAR – 2008	88

The effective model for the Mississippi River was based on the NAVD 88 vertical datum. The Buffalo County FIS reports a datum conversion of 0.0 between the NGVD 29 and NAVD 88 datums. All results are reported in the NAVD 88 datum.

V. HYDRAULIC MODELING

A. Duplicate Effective HEC-RAS Model

The duplicate effective HEC-RAS analysis for Mississippi River was obtained from the Minnesota Department of Natural Resources (MNDNR), updated in 2018 from a prior 2004 study and using the NAVD 88 datum. The duplicate effective model was computed in its native HEC-RAS version 4.1.0 to confirm the model results. No changes were made in the duplicate effective model.

Table 4: Duplicate Effective Digital Files

Source	File Name	Description
USACE (~ 2004, 2018)	UMR_floodway.prj	HEC-RAS 4.1.0 model from Prescott, WI to
		Guttenburg, IA

HEC-RAS model output for the duplicate effective model is included in Appendix C. A workmap is provided in Appendix A. Digital files of the received HEC-RAS models are included in the link in Appendix G.

B. Corrected Effective HEC-RAS Model

No corrections were made to the effective model and the duplicate effective model was treated as the corrected effective model.

C. Existing Condition HEC-RAS Model

An existing conditions HEC-RAS analysis for the Mississippi River was updated throughout the project area to provide better geometric data at the project site.

The following modifications were made in HEC-RAS to reflect the existing condition within the Mississippi River:

- Added 4 new cross sections (761.296, 761.268, 761.207, 761.2) to intersect the proposed barge docking site
 - Left overbank geometry and channel bathymetry were copied from adjacent cross sections into the new cross sections
 - Right overbank and some channel data came from LiDAR, site topographic survey, and site bathymetric survey data collected by AMI, Inc in 2022
- Geometry data and the right bank station was modified slightly in effective cross section 761.327 using LiDAR and site survey

File Name	Туре	Description
Mississippi_USACEModel_2018.prj	Project File	
Mississippi_USACEModel_2018.g03	Geometry	Existing terrain
Mississippi_USACEModel_2018.f02	Flow	Multiple Profile
Mississippi_USACEModel_2018.p03	Plan	Existing MP

Table 5: Existing Condition HEC-RAS Digital Files

The Existing Condition HEC-RAS data is provided in Appendix D. HEC-RAS workmaps are included in Appendix A. Digital files of all HEC-RAS files are included in the link in Appendix G.

D. Proposed Condition HEC-RAS Model

This condition includes all of the modifications made through the existing conditions model. The following modifications were made in HEC-RAS to reflect the proposed conditions of the Barge Facility site:

- Right overbank topographic data was extracted between XS 760.994 and 761.327 to reflect proposed development of the barge terminal facility, including temporary stockpiling of dredged material.
- Manning's n values were modified at the barge terminal cross sections to reflect the paved surface and access road
- Permanent ineffective flow regions were added at cross sections 761.268 and 761.296 to model stagnant regions on the upstream side of the unloading facility

Dredged areas within the Mississippi River shown in Appendix F were not accounted for in the proposed conditions analysis to provide a conservative estimate of project impacts.

File Name	Туре	Description
Mississippi_USACEModel_2018.prj	Project File	
Mississippi_USACEModel_2018.g08	Geometry	Proposed grading
Mississippi_USACEModel_2018.f02	Flow	Multiple Profile
Mississippi_USACEModel_2018.p07	Plan	Proposed MP

Table 6: Proposed Condition HEC-RAS Digital Files

The Proposed Condition HEC-RAS data is provided in Appendix E. HEC-RAS workmaps are included in Appendix A. A preliminary site plan showing the proposed site layout is included in Appendix F. Digital files of all HEC-RAS files are included in the link in Appendix G.

VI. COMPARISON OF 100-YEAR RESULTS

Table 8 summarizes the impact of the proposed project on the 100-year water surface elevations along the Mississippi River. The analyses presented address only the 100-year floodplain modeling, and does not include revised floodway analyses, or a determination of impacts other than the 100-year event.

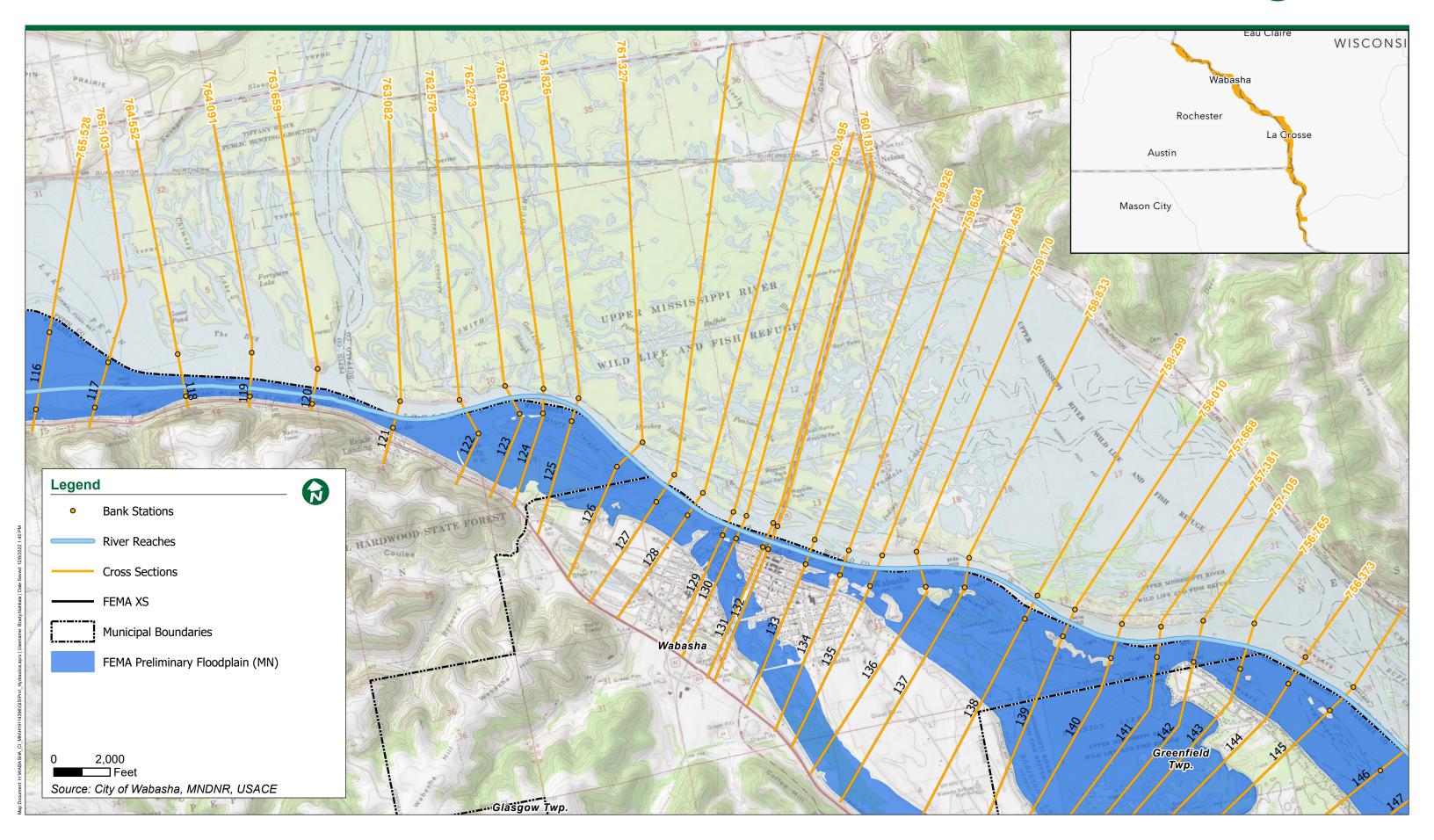
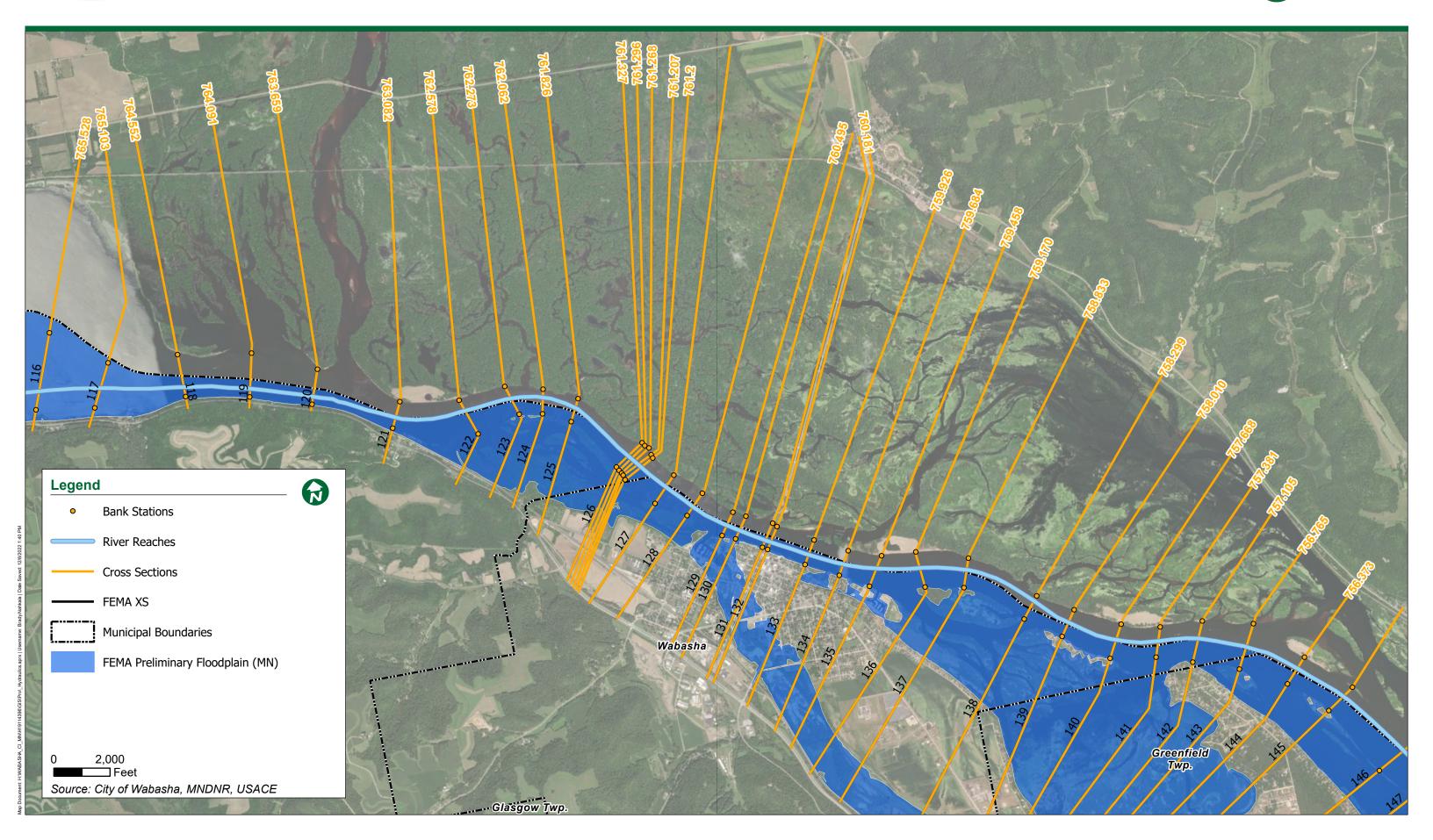

HEC-RAS Cross Section**	FEMA Cross Section (Model)	Published BFE WBCO, Prelim Model	DE WSE (100yr)	EX WSE (100yr)	Impact (DE-EX)	PR WSE (100yr)	Impact (PR – EX)
769.696	111	681.3	681.2528	681.2452	-0.0076	681.2452	0.0000
768.717	112	681.3	681.2484	681.2407	-0.0077	681.2407	0.0000
767.605	113	681.2	681.2431	681.2355	-0.0076	681.2355	0.0000
766.672	114	681.2	681.2372	681.2296	-0.0076	681.2296	0.0000
765.995	115	681.2	681.2308	681.2232	-0.0076	681.2232	0.0000
765.528	116	681.2	681.2227	681.2151	-0.0076	681.2151	0.0000
765.103	117	681.1	681.1874	681.1797	-0.0077	681.1797	0.0000
764.552	118	681	681.0563	681.0485	-0.0078	681.0485	0.0000
764.091	119	680.8	680.8628	680.8549	-0.0079	680.8549	0.0000
763.659	120	680.5	680.5348	680.5265	-0.0083	680.5264	-0.0001
763.082	121	680.1	680.1697	680.1608	-0.0089	680.1607	-0.0001
762.578	122	679.8	679.8575	679.8479	-0.0096	679.8478	-0.0001
762.273	123	679.5	679.5953	679.5851	-0.0102	679.5850	-0.0001
762.062	124	679.3	679.2567	679.2457	-0.0110	679.2454	-0.0003
761.826	125	679.1	679.0542	679.0428	-0.0114	679.0425	-0.0003
761.327	126	678.7	678.6602	678.6478	-0.0124	678.6475	-0.0003
761.296				678.6328		678.6293	-0.0035
761.268				678.6108		678.6052	-0.0056
761.207				678.5510		678.5463	-0.0047
761.2				678.5391		678.5364	-0.0027
760.994	127	678.3	678.2943	678.3035	0.0092	678.3035	0.0000
760.759	128	678.1	678.0528	678.0528	0.0000	678.0528	0.0000
760.495	129	677.8	677.8153	677.8153	0.0000	677.8153	0.0000
760.4	130	677.7	677.7733	677.7733	0.0000	677.7733	0.0000
760.216	131	677.6	677.6870	677.6870	0.0000	677.6870	0.0000
760.2		·	HW	Y 25		·	
760.181	132	677.5	677.4159	677.4159	0.0000	677.4159	0.0000
759.926	133	677.4	677.3667	677.3667	0.0000	677.3667	0.0000
759.684	134	677.3	677.3054	677.3054	0.0000	677.3054	0.0000
759.458	135	677.3	677.2606	677.2606	0.0000	677.2606	0.0000
759.17	136	677.2	677.1453	677.1453	0.0000	677.1453	0.0000
758.833	137	677	677.0261	677.0261	0.0000	677.0261	0.0000

Table 7: Comparison of 100-year WSELs*

*DE = Duplicate Effective Model, EX = Existing Model, PR = Proposed Model **Gray cells denote approximate project grading extents.

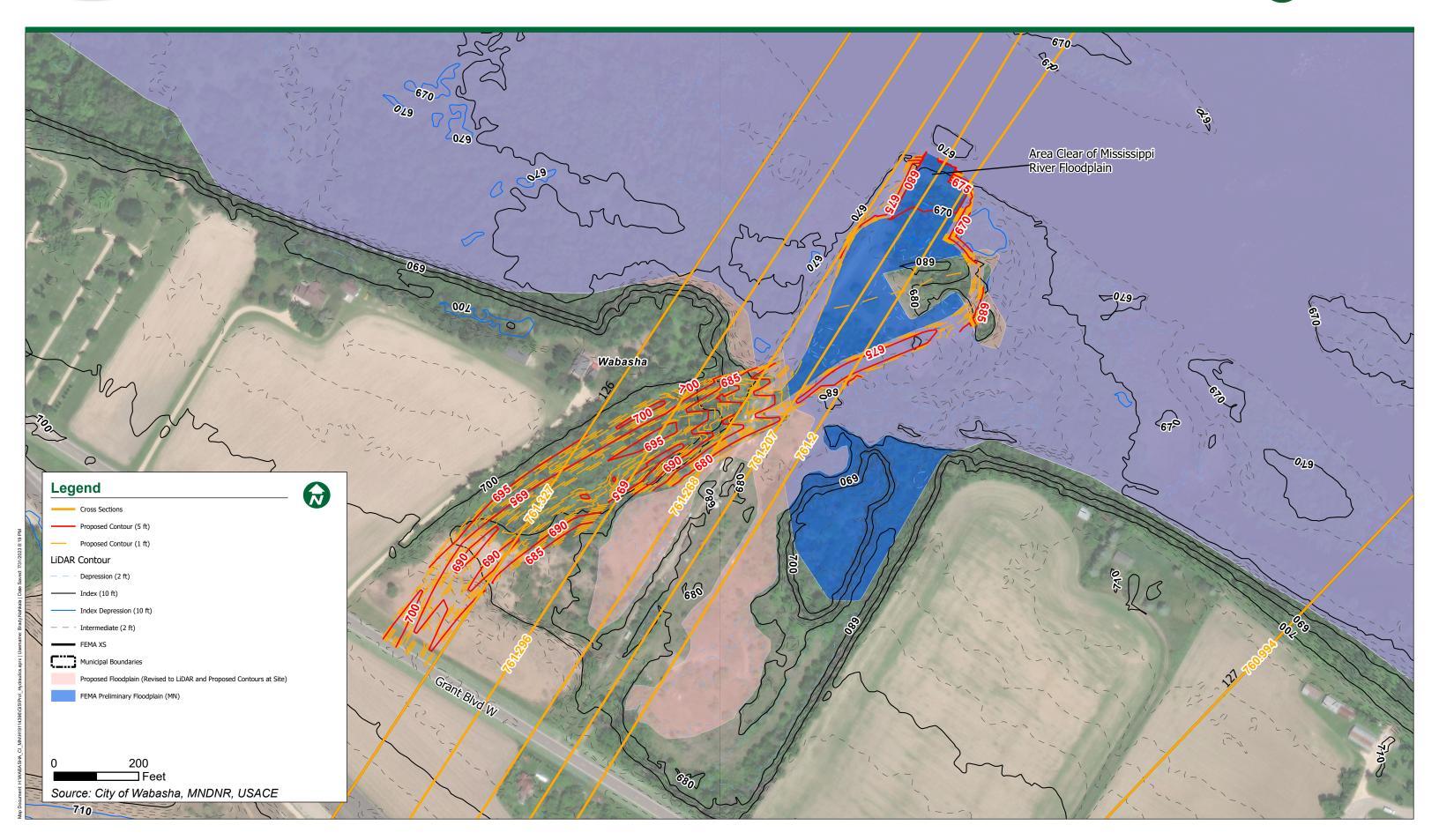
Appendix A: HEC-RAS Workmaps WABASHA

City of Wabasha


Corrected Effective HECRAS Workmap

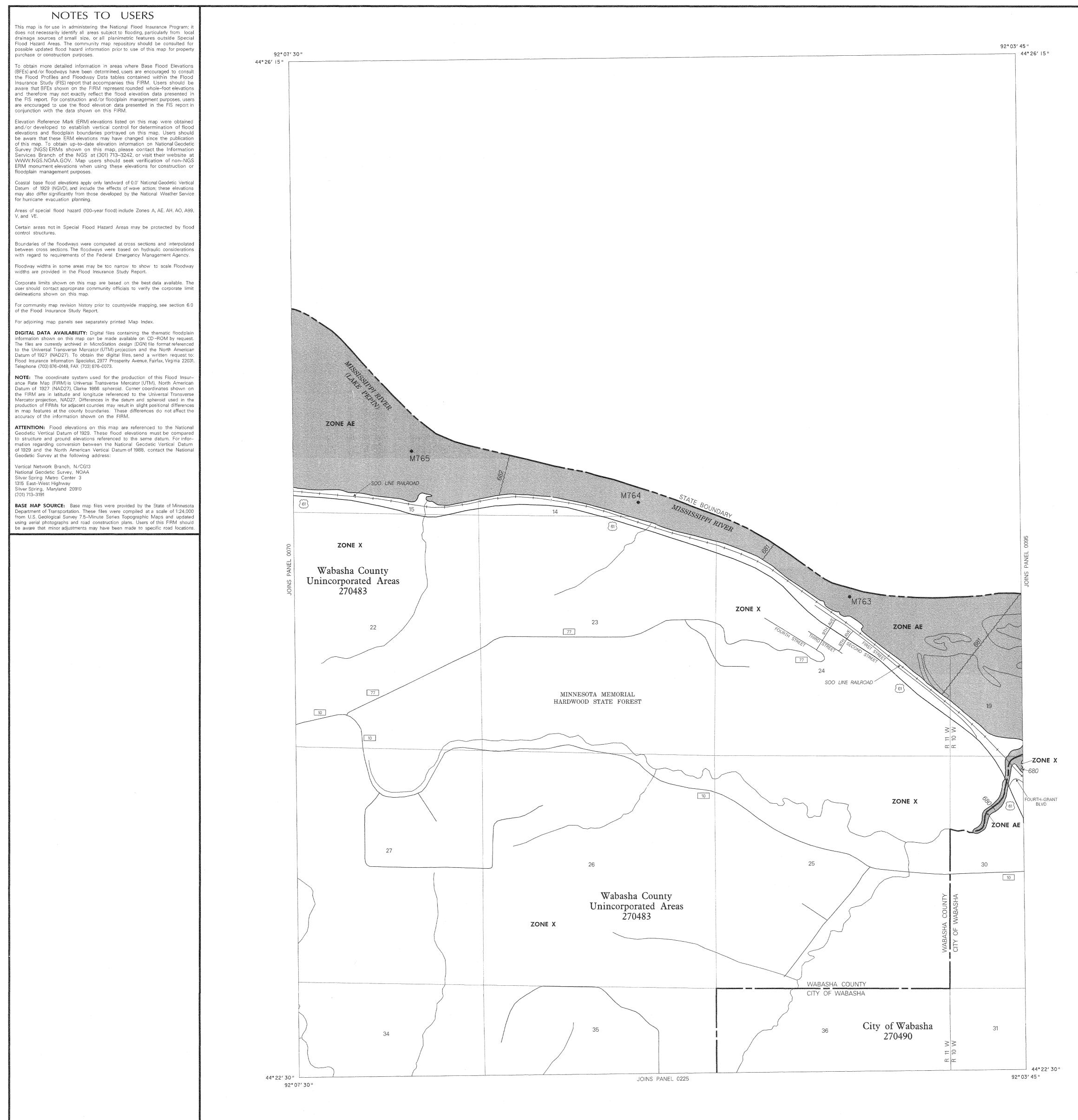
December 2022

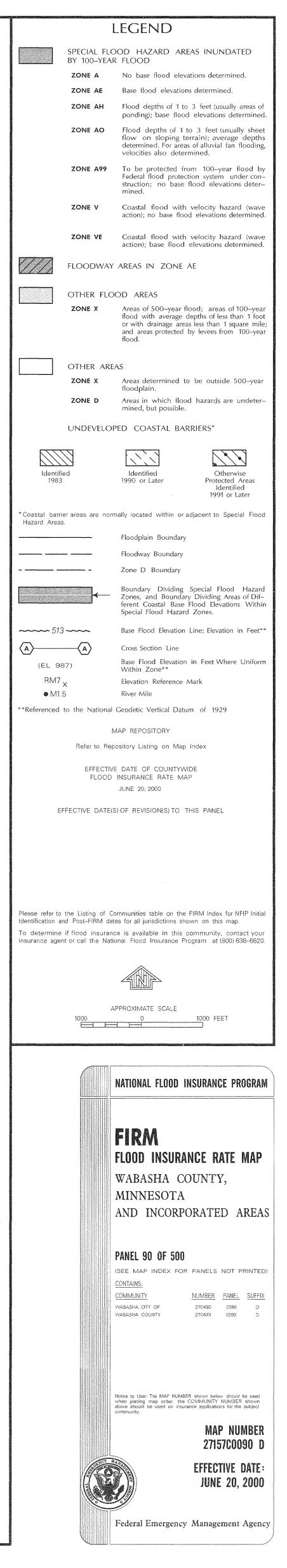
City of Wabasha


Existing and Proposed HECRAS Workmap December 2022

WABASHA

USACE Dredge Material Management Plan

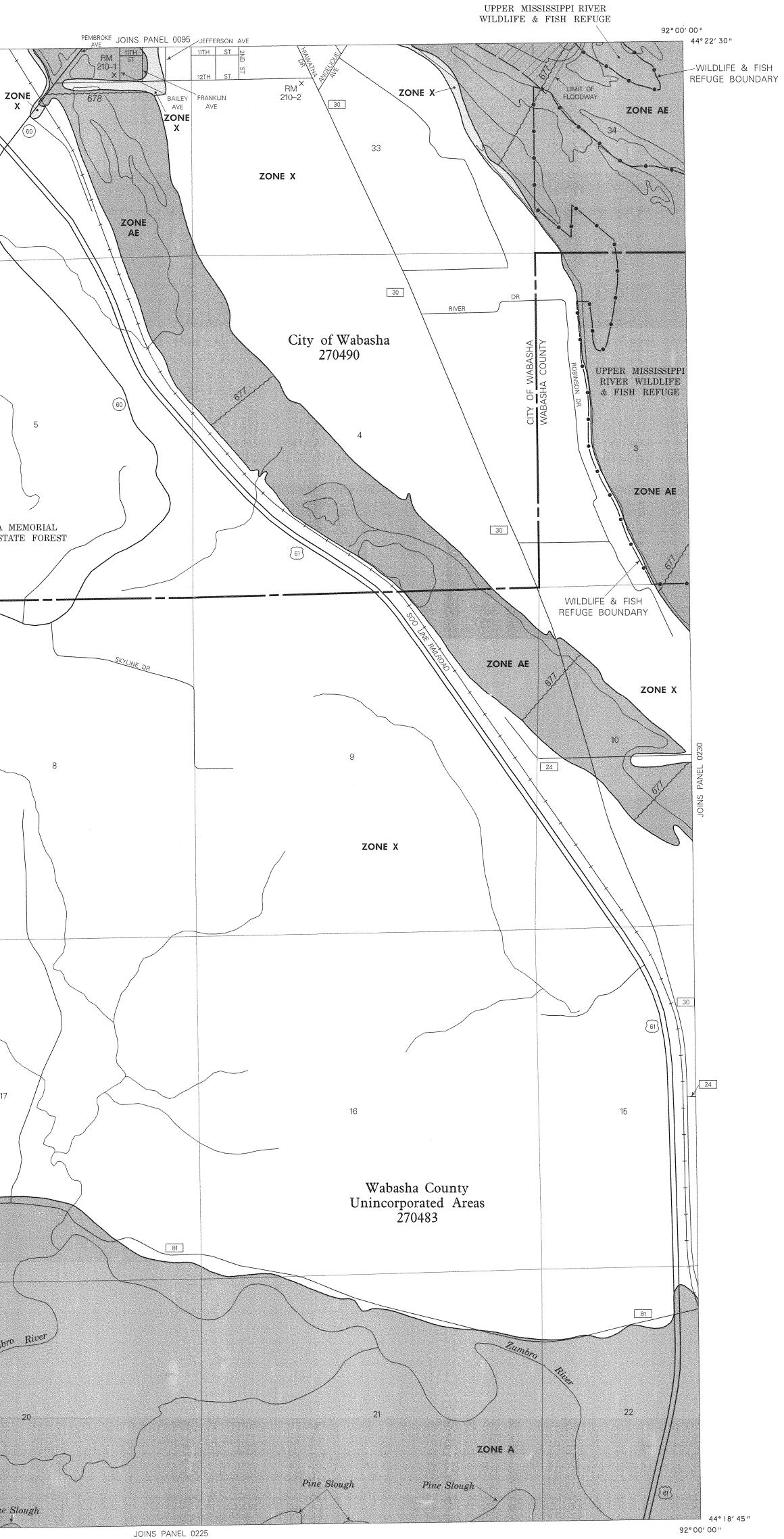

City of Wabasha



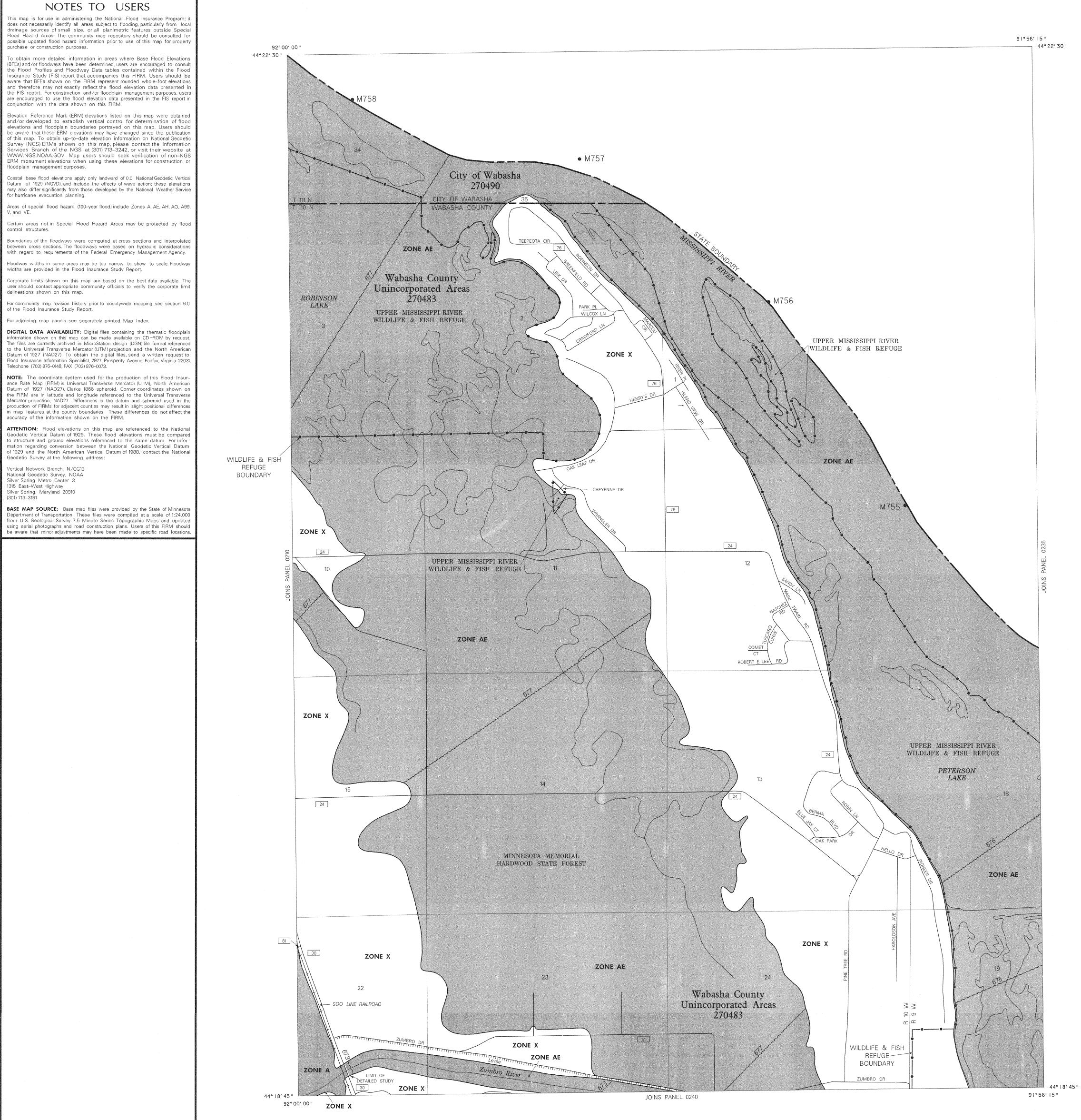
HECRAS Workmap August 2023



Appendix B: Effective Flood Insurance Study and Flood Insurance Rate Maps



	a na	
NOTES TO USERS		
This map is for use in administering the National Flood Insurance Program; it does not necessarily identify all areas subject to flooding, particularly from local		
drainage sources of small size, or all planimetric features outside Special Flood Hazard Areas. The community map repository should be consulted for possible updated flood hazard information prior to use of this map for property		
purchase or construction purposes. To obtain more detailed information in areas where Base Flood Elevations	92°03′4 44°26′15″	5 "
(BFEs) and /or floodways have been determined, users are encouraged to consult the Flood Profiles and Floodway Data tables contained within the Flood		
Insurance Study (FIS) report that accompanies this FIRM. Users should be aware that BFEs shown on the FIRM represent rounded whole-foot elevations and therefore may not exactly reflect the flood elevation data presented in		
the FIS report. For construction and/or floodplain management purposes, users are encouraged to use the flood elevation data presented in the FIS report in conjunction with the data shown on this FIRM.		
Elevation Reference Mark (ERM) elevations listed on this map were obtained		
and/or developed to establish vertical control for determination of flood elevations and floodplain boundaries portrayed on this map. Users should be aware that these ERM elevations may have changed since the publication		
of this map. To obtain up-to-date elevation information on National Geodetic Survey (NGS) ERMs shown on this map, please contact the Information Services Branch of the NGS at (301) 713–3242, or visit their website at		
WWW.NGS.NOAA.GOV. Map users should seek verification of non-NGS ERM monument elevations when using these elevations for construction or		
floodplain management purposes. Coastal base flood elevations apply only landward of 0.0' National Geodetic Vertical		
Datum of 1929 (NGVD), and include the effects of wave action; these elevations may also differ significantly from those developed by the National Weather Service for hurricane evacuation planning.		
Areas of special flood hazard (100-year flood) include Zones A, AE, AH, AO, A99,		
V, and VE. Certain areas not in Special Flood Hazard Areas may be protected by flood		
control structures.		
Boundaries of the floodways were computed at cross sections and interpolated between cross sections. The floodways were based on hydraulic considerations with regard to requirements of the Federal Emergency Management Agency.		
Floodway widths in some areas may be too narrow to show to scale. Floodway widths are provided in the Flood Insurance Study Report.		
Corporate limits shown on this map are based on the best data available. The		
user should contact appropriate community officials to verify the corporate limit delineations shown on this map.		
For community map revision history prior to countywide mapping, see section 6.0 of the Flood Insurance Study Report.		
For adjoining map panels see separately printed Map Index.		
DIGITAL DATA AVAILABILITY: Digital files containing the thematic floodplain information shown on this map can be made available on CD-ROM by request. The files are currently archived in MicroStation design (DGN) file format referenced		
to the Universal Transverse Mercator (UTM) projection and the North American Datum of 1927 (NAD27). To obtain the digital files, send a written request to:		
Flood Insurance Information Specialist, 2977 Prosperity Avenue, Fairfax, Virginia 22031. Telephone (703) 876–0148, FAX (703) 876–0073.		
NOTE: The coordinate system used for the production of this Flood Insur- ance Rate Map (FIRM) is Universal Transverse Mercator (UTM), North American		
Datum of 1927 (NAD27), Clarke 1866 spheroid. Corner coordinates shown on the FIRM are in latitude and longitude referenced to the Universal Transverse Mercator projection, NAD27. Differences in the datum and spheroid used in the		
production of FIRMs for adjacent counties may result in slight positional differences in map features at the county boundaries. These differences do not affect the		
accuracy of the information shown on the FIRM. ATTENTION: Flood elevations on this map are referenced to the National		
Geodetic Vertical Datum of 1929. These flood elevations must be compared to structure and ground elevations referenced to the same datum. For infor- mation regarding conversion between the National Geodetic Vertical Datum		
of 1929 and the North American Vertical Datum of 1988, contact the National Geodetic Survey at the following address:		
Vertical Network Branch, N/CG13 National Geodetic Survey, NOAA		
Silver Spring Metro Center 3 1315 East–West Highway Silver Spring, Maryland 20910		
(301) 713–3191		
BASE MAP SOURCE: Base map files were provided by the State of Minnesota Department of Transportation. These files were compiled at a scale of 1:24,000 from U.S. Geological Survey 7.5–Minute Series Topographic Maps and updated		
using aerial photographs and road construction plans. Users of this FIRM should be aware that minor adjustments may have been made to specific road locations.		
ELEVATION REFERENCE MARKS	00	
REFERENCE ELEVATION	.F 0090	
REFERENCE ELEVATION MARK IN FT. (NGVD) ¹ DESCRIPTION OF LOCATION RM 95-1 700.806 U.S. Coast and Geodetic Survey disk	8	
REFERENCE MARK ELEVATION IN FT. (NGVD) ¹ DESCRIPTION OF LOCATION RM 95-1 700.806 U.S. Coast and Geodetic Survey disk stamped N 248 1970, set on top of copper coated rod and is encased in 4inch iron pipe which projects 2 inches above	8	
REFERENCE MARK ELEVATION IN FT. (NGVD) ¹ DESCRIPTION OF LOCATION RM 95-1 700.806 U.S. Coast and Geodetic Survey disk stamped N 248 1970, set on top of copper coated rod and is encased in 4-inch iron pipe which projects 2 inches above surface, located approximately 154 feet southeast of centerline of crossing of Soo Line Railroad and Fourth-Grant	JOINS PANEL 0090	
REFERENCE MARK ELEVATION IN FT. (NGVD) ¹ DESCRIPTION OF LOCATION RM 95-1 700.806 U.S. Coast and Geodetic Survey disk stamped N 248 1970, set on top of copper coated rod and is encased in 4-inch iron pipe which projects 2 inches above surface, located approximately 154 feet southeast of centerline of crossing of Soo Line Railroad and Fourth-Grant Boulevard, approximately 25 feet north- east of centerline of Fourth-Grant Boulevard, approximately 33 feet north-	8	M762
REFERENCE MARKELEVATION IN FT. (NGVD)1DESCRIPTION OF LOCATIONRM 95-1700.806U.S. Coast and Geodetic Survey disk stamped N 248 1970, set on top of copper coated rod and is encased in 4-inch iron pipe which projects 2 inches above surface, located approximately 154 feet southeast of centerline of crossing of Soo Line Railroad and Fourth-Grant Boulevard, approximately 25 feet north- east of centerline of Fourth-Grant Boulevard, approximately 33 feet north- west of main entrance to Riverview Cemetery.	8	M762
REFERENCE MARKELEVATION IN FT. (NGVD)DESCRIPTION OF LOCATIONRM 95-1700.806U.S. Coast and Geodetic Survey disk stamped N 248 1970, set on top of copper coated rod and is encased in 4-inch iron pipe which projects 2 inches above surface, located approximately 154 feet southeast of centerline of crossing of Soo Line Railroad and Fourth-Grant Boulevard, approximately 25 feet north- east of centerline of Fourth-Grant Boulevard, approximately 33 feet north- west of main entrance to Riverview Cemetery.RM 95-2673.72Top of water valve, approximately 3 feet west of concrete pad in picnic area, approximately 50 feet west of large	8	M
REFERENCE MARKELEVATION IN FT. (NGVD)DESCRIPTION OF LOCATIONRM 95-1700.806U.S. Coast and Geodetic Survey disk stamped N 248 1970, set on top of copper coated rod and is encased in 4-inch iron pipe which projects 2 inches above surface, located approximately 154 feet southeast of centerline of crossing of Soo Line Railroad and Fourth-Grant Boulevard, approximately 25 feet north- east of centerline of Fourth-Grant Boulevard, approximately 33 feet north- west of main entrance to Riverview Cemetery.RM 95-2673.72Top of water valve, approximately 3 feet west of concrete pad in picnic area,	8	M762 ZONE AE
REFERENCE MARKELEVATION IN FT. (NGVD)DESCRIPTION OF LOCATIONRM 95-1700.806U.S. Coast and Geodetic Survey disk stamped N 248 1970, set on top of copper coated rod and is encased in 4-inch iron pipe which projects 2 inches above surface, located approximately 154 feet southeast of centerline of crossing of Soo Line Railroad and Fourth-Grant Boulevard, approximately 25 feet north- east of centerline of Fourth-Grant Boulevard, approximately 33 feet north- west of main entrance to Riverview Cemetery.RM 95-2673.72Top of water valve, approximately 3 feet north of railroad sproximately 20 feet north of railroad sproximately 30 feet noth of railroad sproximately 30 feet noth of railroad sproximately 30 feet 	8	ZONE AE Wabasha County
REFERENCE MARKELEVATION IN FT. (NGVD)DESCRIPTION OF LOCATIONRM 95-1700.806U.S. Coast and Geodetic Survey disk stamped N 248 1970, set on top of copper coated rod and is encased in 4-inch iron pipe which projects 2 inches above surface, located approximately 154 feet 	8	ZONE
REFERENCE MARKELEVATION IN FT. (NGVD)1DESCRIPTION OF LOCATIONRM 95-1700.806U.S. Coast and Geodetic Survey disk stamped N 248 1970, set on top of copper coated rod and is encased in 4-inch iron pipe which projects 2 inches above surface, located approximately 154 feet southeast of centerline of crossing of Soc Line Railroad and Fourth-Grant Boulevard, approximately 25 feet north- east of centerline of Fourth-Grant Boulevard, approximately 33 feet north- west of main entrance to Riverview Cemetery.RM 95-2673.72Top of water valve, approximately 3 feet west of concrete pad in picnic area, approximately 50 feet west of large swing set, and approximately 320 feet north of railroad spur, and approxi- mately 610 feet west of gaging station.RM 95-3691.311U.S. Coast and Geodetic Survey disk stamped B 26 1933, set in top of south- west end of concrete guardrail, approxi- mately 77 feet north of north corner of	8	ZONE AE Wabasha County Unincorporated Area
REFERENCE MARKELEVATION IN FT. (NGVD)DESCRIPTION OF LOCATIONRM 95-1700.806U.S. Coast and Geodetic Survey disk stamped N 248 1970, set on top of copper coated rod and is encased in 4-inch iron pipe which projects 2 inches above surface, located approximately 154 feet southeast of centerline of crossing of Soo Line Railroad and Fourth-Grant Boulevard, approximately 25 feet north- 	8	ZONE AE Wabasha County Unincorporated Area
REFERENCE MARKLEVATION IN F. (NGVD)DESCRIPTION OF LOCATIONRM 95-1700.806U.S. Coast and Geodetic Survey disk stamped N 248 1970, set on top of copper ooted rod and is encased in 4-inch iron pipe which projects 2 inches above surface, located approximately 154 feet southeast of centerline of fourth-Grant Boulevard, approximately 25 feet north- east of centerline of Fourth-Grant 	8	ZONE AE S Wabasha County Unincorporated Area 270483
REFERENCE MARKELEVATION IN FT. (NGVD)1DESCRIPTION OF LOCATIONRM 95-1700.806U.S. Coast and Geodetic Survey disk stamped N 248 1970, set on top of copper coated rod and is encased in 4-inch iron pipe which projects 2 inches above surface, located approximately 154 feet southeast of centerline of fourth-Grant Boulevard, approximately 35 feet north- east of centerline of Fourth-Grant Boulevard, approximately 35 feet north- west of main entrance to Riverview Cemetery.RM 95-2673.72Top of water valve, approximately 3 feet west of concrete pad in picnic area, approximately 50 feet vest of large swing set, and approximately 30 feet 	JOINS PANEL	ZONE AE Wabasha County Unincorporated Area 270483
REFERENCE MARKELEVATION IN FT. (NGVD)DESCRIPTION OF LOCATIONRM 95-1700.806U.S. Coast and Geodetic Survey disk stamped N 248 1970, set on top of copper coated arod and is encased in 4-inch iron pipe which projects 2 inches above surface, located approximately 154 feet southeast of centerline of crossing of Soo Line Railroad and Pourth-Grant Boulevard, approximately 25 feet north- east of centerline of Fourth-Grant Boulevard, approximately 33 feet north- west of main entrance to Riverview 	8	ZONE AE Wabasha County Unincorporated Area 270483
REFERENCE MARKELEVATION IN FT. (NGVD)1DESCRIPTION OF LOCATIONRM 95-1700.806J.S. Coast and Geodetic Survey disk stamped N 248 1970, set on top of copper coated rod and is encased in 4-inch iron pipe which projects 2 inches above surface, located approximately 154 feet southeast of centerline of crossing of Soo Line Railroad and Fourth-Orant Boulevard, approximately 33 feet north- eest of centerline of Fourth-Orant Boulevard, approximately 33 feet north- west of main entrance to Riverview 	TOINS PANE	ZONE AE Wabasha County Unincorporated Area 270483
REFERENCE MARKELEVATION IN FT. (NGVD)1DESCRIPTION OF LOCATIONRM 95-1700.806U.S. Coast and Geodetic Survey disk stamped N 248 1970, set on top of copper coated rod and is encased in 4-inch iron pipe which projects 2 inches above southeast of centerline of fourth-Grant Boulevard, approximately 25 feet north- east of centerline of fourth-Grant Boulevard, approximately 33 feet north- west of main entrance to Riverview Cemterry.RM 95-2673.72Top of water valve, approximately 35 feet north of railroad spur, and approxi- 	TOINS PANE	ZONE AE Wabasha County Unincorporated Area 270483
REFERENCE MARKELEVATION IN FT. (NGVD)DESCRIPTION OF LOCATIONRM 95-1700.806U.S. Coast and Geodetic Survey disk stamped N 248 1970, set on top of copper coated rod and is encased in 4-inch iron pipe which projects 2 inches above surface, located approximately 154 feet southeast of centerline of crossing of Soc Line Railroad and Fourth-Orant Boulevard, approximately 25 feet north- east of centerline of Fourth-Orant Boulevard, approximately 33 feet north- west of main entrance to Riverview 	TOINS PANE	ZONE AE Wabasha County Unincorporated Area 270483 19 WABASHA COUNTY CITY OF WABASHA 680 ZONE AE x RM 95-1 M761
REFERENCE MARKELEVATION IN FT. (NGVD)DESCRIPTION OF LOCATIONRM 95-1700.806U.S. Coast and Geodetic Survey disk stamped N 248 1970, set on top of copper coated rod and is encased in 4-inch iron pipe which projects 2 inches above surface, located approximately 154 feet southeast of centerline of fourth-Grant Boulevard, approximately 25 feet north- east of concrete pad in picnic area, approximately 33 feet north- west of main entrance to Riverview Cemetery.RM 95-2673.72Top of water valve, approximately 3 feet west of concrete pad in picnic area, approximately 10 feet west of large swing set, and approximately 20 feet north of railroad spur, and approxi- mately 610 feet west of gaging station.RM 95-3691.311U.S. Coast and Geodetic Survey disk stamped B 26 1933, set in top of south- west of centerline of Main Street, approximately 11.7 feet south- set, approximately 11.7 feet south- set, approximately 11.7 feet south- west of concret guardrail, approxi- mately 11.7 feet south- set of drive bed at Fourth- Grant Boulevard.RM 95-5682.93Top nut of fire hydrant at intersection of Fourth-Grant Boulevard and Alleghany Avenue.RM 95-6700.035J.S. Geological Survey standerd disk, stamped A-26, set in concrete at base of southeast concrete bridge pier crossing So Line Railroad on Hiawatha Drive.RM 95-7691.67Top nut of fire hydrant at intersection of Franklin Avenue and Hiawatha Drive.RM 95-8685.59Top nut of fire hydrant at intersection of Ith Street and Franklin Avenue.	TOINS PANE	ZONE AE Wabasha County Unincorporated Area 270483
REFERENCE MARKELEVATION IN FT. (NGVD)DESCRIPTION OF LOCATIONRM 95-1700.806U.S. Coast and Geodetic Survey disk stamped N 248 1970, set on top of copper coated rod and is encased in 4-inch iron pipe which projects 2 inches above surface, located approximately 154 feet southeast of centerline of fourth-Grant Boulevard, approximately 25 feet north- east of concrete pad in picnic area, approximately 33 feet north- west of main entrance to Riverview Cemetery.RM 95-2673.72Top of water valve, approximately 3 feet 	TOINS PANE	ZONE AE Wabasha County Unincorporated Area 270483
REFERENCE MARKELEVATION IN FT. (NGVD)DESCRIPTION OF LOCATIONRM 95-1700.806U.S. Coast and Geodetic Survey disk stamped N 248 1970, set on top of copper coated rod and is encased in 4-inch iron pipe which projects 2 inches above surface, located approximately 154 feet southeast of centerline of fourth-Grant Boulevard, approximately 25 feet north- east of concrete pad in picnic area, approximately 33 feet north- west of main entrance to Riverview Cemetery.RM 95-2673.72Top of water valve, approximately 3 feet 	TOINS PANE	ZONE AE WABASHA COUNTY IS WABASHA COUNTY CITY OF WABASHA KIMIT OF RLOODWAY CITY OF WABASHA SOUNE AE X RM 95-1 ZONE AE AE AE
REFERENCE MARKELEVATION IN FT. (NGVD)DESCRIPTION OF LOCATIONRM 95-1700.806U.S. Coast and Geodetic Survey disk stamped N 248 1970, set on top of copper coated rod and is encased in 4-inch iron pipe which projects 2 inches above surface, located approximately 154 feet southeast of centerline of fourth-Grant Boulevard, approximately 25 feet north- east of concrete pad in picnic area, approximately 33 feet north- west of main entrance to Riverview Cemetery.RM 95-2673.72Top of water valve, approximately 3 feet west of concrete pad in picnic area, approximately 10 feet west of large swing set, and approximately 20 feet north of railroad spur, and approxi- mately 610 feet west of gaging station.RM 95-3691.311U.S. Coast and Geodetic Survey disk stamped B 26 1933, set in top of south- west of centerline of Main Street, approximately 11.7 feet south- set, approximately 11.7 feet south- set, approximately 11.7 feet south- west of concret guardrail, approxi- mately 11.7 feet south- set of drive bed at Fourth- Grant Boulevard.RM 95-5682.93Top nut of fire hydrant at intersection of Fourth-Grant Boulevard and Alleghany Avenue.RM 95-6700.035J.S. Geological Survey standerd disk, stamped A-26, set in concrete at base of southeast concrete bridge pier crossing So Line Railroad on Hiawatha Drive.RM 95-7691.67Top nut of fire hydrant at intersection of Franklin Avenue and Hiawatha Drive.RM 95-8685.59Top nut of fire hydrant at intersection of Ith Street and Franklin Avenue.	TOINS PANE	ZONE AE WABASHA COUNTY IS WABASHA COUNTY CITY OF WABASHA KIMIT OF RLOODWAY CITY OF WABASHA SOUNE AE X RM 95-1 ZONE AE AE AE
REFERENCE MARKELEVATION IN FT. (NGVD)DESCRIPTION OF LOCATIONRM 95-1700.806U.S. Coast and Geodetic Survey disk stamped N 248 1970, set on top of copper coated rod and is encased in 4-inch iron pipe which projects 2 inches above surface, located approximately 154 feet southeast of centerline of fourth-Grant Boulevard, approximately 33 feet north- eest of concrete pad in picnic area, approximately 35 feet north- west of concrete pad in picnic area, approximately 50 feet west of large swing set, and approximately 30 feet morth of railroad spur, and approxi- mately 610 feet west of gaging station.RM 95-3691.311U.S. Coast and Geodetic Survey disk stamped B 26 1933, set in top of south- west of centerline of Main Street, approximately 11.7 feet north or contro of post office, approximately 155 feet northeast of centerline of Main Street, approximately 11.7 feet southeast of centerline of Fourth-Grant Boulevard.RM 95-4677.49Minnesota Highway Department disk set in southeast corner wing wall at intersec- tion of crossing river bed at Fourth- Grant Boulevard.RM 95-5682.93Top nut of fire hydrant at intersection of Fourth-Grant Boulevard and Alleghany Avenue.RM 95-6700.035U.S. Geological Survey standerd disk, stamped A-26, set in concrete at base of southeast concrete bridge pier crossing So Line Railroad on Hiawatha Drive.RM 95-7691.67Top nut of fire hydrant at intersection of Franklin Avenue and Hiawatha Drive.RM 95-8685.59Top nut of fire hydrant at intersection of Franklin Avenue and Hiawatha Drive.	TOINS PANE	ZONE AE WABASHA COUNTY 19 WABASHA COUNTY GITY OF WABASHA GRU AE X RM 95-1 ZONE X ZONE AE X RM 95-1 ZONE X ZONE AE X RM 95-1 ZONE X ZONE AE
REFERENCE MARKELEVATION IN FT. (NGVD)DESCRIPTION OF LOCATIONRM 95-1700.806U.S. Coast and Geodetic Survey disk stamped N 248 1970, set on top of copper coated rod and is encased in 4-inch iron pipe which projects 2 inches above surface, located approximately 154 feet southeast of centerline of fourth-Grant Boulevard, approximately 33 feet north- eest of concrete pad in picnic area, approximately 35 feet north- west of concrete pad in picnic area, approximately 50 feet west of large swing set, and approximately 30 feet morth of railroad spur, and approxi- mately 610 feet west of gaging station.RM 95-3691.311U.S. Coast and Geodetic Survey disk stamped B 26 1933, set in top of south- west of centerline of Main Street, approximately 11.7 feet north or contro of post office, approximately 155 feet northeast of centerline of Main Street, approximately 11.7 feet southeast of centerline of Fourth-Grant Boulevard.RM 95-4677.49Minnesota Highway Department disk set in southeast corner wing wall at intersec- tion of crossing river bed at Fourth- Grant Boulevard.RM 95-5682.93Top nut of fire hydrant at intersection of Fourth-Grant Boulevard and Alleghany Avenue.RM 95-6700.035U.S. Geological Survey standerd disk, stamped A-26, set in concrete at base of southeast concrete bridge pier crossing So Line Railroad on Hiawatha Drive.RM 95-7691.67Top nut of fire hydrant at intersection of Franklin Avenue and Hiawatha Drive.RM 95-8685.59Top nut of fire hydrant at intersection of Franklin Avenue and Hiawatha Drive.	TOINS PANE	ZONE AE WABASHA COUNTY UNINCORPORATED ARE 270483 WABASHA COUNTY CITY OF WABASHA 680 ZONE AE X RM 95-1 ZONE X ZONE AE AE AE AE AE AE AE AE AE A
REFERENCE MARKELEVATION IN FT. (NGVD)DESCRIPTION OF LOCATIONRM 95-1700.806U.S. Coast and Geodetic Survey disk stamped N 248 1970, set on top of copper coated rod and is encased in 4-inch iron pipe which projects 2 inches above surface, located approximately 154 feet southeast of centerline of fourth-Grant Boulevard, approximately 33 feet north- eest of concrete pad in picnic area, approximately 35 feet north- west of concrete pad in picnic area, approximately 50 feet west of large swing set, and approximately 30 feet morth of railroad spur, and approxi- mately 610 feet west of gaging station.RM 95-3691.311U.S. Coast and Geodetic Survey disk stamped B 26 1933, set in top of south- west of centerline of Main Street, approximately 11.7 feet north or contro of post office, approximately 155 feet northeast of centerline of Main Street, approximately 11.7 feet southeast of centerline of Fourth-Grant Boulevard.RM 95-4677.49Minnesota Highway Department disk set in southeast corner wing wall at intersec- tion of crossing river bed at Fourth- Grant Boulevard.RM 95-5682.93Top nut of fire hydrant at intersection of Fourth-Grant Boulevard and Alleghany Avenue.RM 95-6700.035U.S. Geological Survey standerd disk, stamped A-26, set in concrete at base of southeast concrete bridge pier crossing So Line Railroad on Hiawatha Drive.RM 95-7691.67Top nut of fire hydrant at intersection of Franklin Avenue and Hiawatha Drive.RM 95-8685.59Top nut of fire hydrant at intersection of Franklin Avenue and Hiawatha Drive.	TOINS PANE	ZONE AE Wabasha County Unincorporated Area 270483 19 WABASHA COUNTY CITY OF WABASHA WABASHA COUNTY CITY OF WABASHA COUNTY CITY OF WABASH
REFERENCE MARKELEVATION IN FT. (NGVD)DESCRIPTION OF LOCATIONRM 95-1700.806U.S. Coast and Geodetic Survey disk stamped N 248 1970, set on top of copper coated rod and is encased in 4-inch iron pipe which projects 2 inches above surface, located approximately 154 feet southeast of centerline of fourth-Grant Boulevard, approximately 33 feet north- eest of concrete pad in picnic area, approximately 35 feet north- west of concrete pad in picnic area, approximately 50 feet west of large swing set, and approximately 30 feet morth of railroad spur, and approxi- mately 610 feet west of gaging station.RM 95-3691.311U.S. Coast and Geodetic Survey disk stamped B 26 1933, set in top of south- west of centerline of Main Street, approximately 10.7 feet north or contro of post office, approximately 10 feet southeast of centerline of Fourth-Creant Boulevard.RM 95-4677.49Minnesota Highway Department disk set in southeast of centerline of Main Street, approximately 11.7 feet southeast of centerline of Fourth-Grant Boulevard.RM 95-5682.93Top nut of fire hydrant at intersection of Fourth-Grant Boulevard and Alleghany Avenue.RM 95-6700.035U.S. Geological Survey standerd disk, stamped A-26, set in concrete at base of southeast concrete bridge pier crossing Southeast concrete bri	TOINS PANE	ZONE AE Wabasha County Unincorporated Area 270483 19 WABASHA COUNTY CITY OF WABASHA WABASHA COUNTY CITY OF WABASHA COUNTY CITY OF WABASH
REFERENCE MARKELEVATION IN FT. (NGVD)DESCRIPTION OF LOCATIONRM 95-1700.806U.S. Coast and Geodetic Survey disk stamped N 248 1970, set on top of copper coated rod and is encased in 4-inch iron pipe which projects 2 inches above surface, located approximately 154 feet southeast of centerline of fourth-Grant Boulevard, approximately 33 feet north- eest of concrete pad in picnic area, approximately 35 feet north- west of concrete pad in picnic area, approximately 50 feet west of large swing set, and approximately 30 feet morth of railroad spur, and approxi- mately 610 feet west of gaging station.RM 95-3691.311U.S. Coast and Geodetic Survey disk stamped B 26 1933, set in top of south- west of centerline of Main Street, approximately 10.7 feet north or contro of post office, approximately 10 feet southeast of centerline of Fourth-Creant Boulevard.RM 95-4677.49Minnesota Highway Department disk set in southeast of centerline of Main Street, approximately 11.7 feet southeast of centerline of Fourth-Grant Boulevard.RM 95-5682.93Top nut of fire hydrant at intersection of Fourth-Grant Boulevard and Alleghany Avenue.RM 95-6700.035U.S. Geological Survey standerd disk, stamped A-26, set in concrete at base of southeast concrete bridge pier crossing Southeast concrete bri	TOINS PANE	ZONE AE Wabasha County Unincorporated Area 270483 19 WABASHA COUNTY CITY OF WABASHA WABASHA COUNTY CITY OF WABASHA COUNTY CITY OF WABASH
REFERENCE MARKELEVATION IN FT. (NGVD)DESCRIPTION OF LOCATIONRM 95-1700.806U.S. Coast and Geodetic Survey disk stamped N 248 1970, set on top of copper coated rod and is encased in 4-inch iron pipe which projects 2 inches above surface, located approximately 154 feet southeast of centerline of fourth-Grant Boulevard, approximately 33 feet north- eest of concrete pad in picnic area, approximately 35 feet north- west of concrete pad in picnic area, approximately 50 feet west of large swing set, and approximately 30 feet morth of railroad spur, and approxi- mately 610 feet west of gaging station.RM 95-3691.311U.S. Coast and Geodetic Survey disk stamped B 26 1933, set in top of south- west of centerline of Main Street, approximately 10.7 feet north or contro of post office, approximately 10 feet southeast of centerline of Fourth-Creant Boulevard.RM 95-4677.49Minnesota Highway Department disk set in southeast of centerline of Main Street, approximately 11.7 feet southeast of centerline of Fourth-Grant Boulevard.RM 95-5682.93Top nut of fire hydrant at intersection of Fourth-Grant Boulevard and Alleghany Avenue.RM 95-6700.035U.S. Geological Survey standerd disk, stamped A-26, set in concrete at base of southeast concrete bridge pier crossing Southeast concrete bri	TOINS PANE	WABASHA COUNTY II II WABASHA COUNTY II WABASHA COUNTY II II II II II II II II II I
REFERENCE MARKELEVATION IN FT. (NGVD)DESCRIPTION OF LOCATIONRM 95-1700.806U.S. Coast and Geodetic Survey disk stamped N 248 1970, set on top of copper coated rod and is encased in 4-inch iron pipe which projects 2 inches above surface, located approximately 154 feet southeast of centerline of fourth-Grant Boulevard, approximately 33 feet north- eest of concrete pad in picnic area, approximately 35 feet north- west of concrete pad in picnic area, approximately 50 feet west of large swing set, and approximately 30 feet morth of railroad spur, and approxi- mately 610 feet west of gaging station.RM 95-3691.311U.S. Coast and Geodetic Survey disk stamped B 26 1933, set in top of south- west of centerline of Main Street, approximately 10.7 feet north or contro of post office, approximately 10 feet southeast of centerline of Fourth-Creant Boulevard.RM 95-4677.49Minnesota Highway Department disk set in southeast of centerline of Main Street, approximately 11.7 feet southeast of centerline of Fourth-Grant Boulevard.RM 95-5682.93Top nut of fire hydrant at intersection of Fourth-Grant Boulevard and Alleghany Avenue.RM 95-6700.035U.S. Geological Survey standerd disk, stamped A-26, set in concrete at base of southeast concrete bridge pier crossing Southeast concrete bri	TOINS PANE	AF WABASHA COUNTY UNINCORPORATE UNITY OF WABASHA CITY OF WABASHA City of Wabasha
REFERENCE MARKELEVATION IN FT. (NGVD)DESCRIPTION OF LOCATIONRM 95-1700.806U.S. Coast and Geodetic Survey disk stamped N 248 1970, set on top of copper coated rod and is encased in 4-inch iron pipe which projects 2 inches above surface, located approximately 154 feet southeast of centerline of fourth-Grant Boulevard, approximately 33 feet north- eest of concrete pad in picnic area, approximately 35 feet north- west of concrete pad in picnic area, approximately 50 feet west of large swing set, and approximately 30 feet morth of railroad spur, and approxi- mately 610 feet west of gaging station.RM 95-3691.311U.S. Coast and Geodetic Survey disk stamped B 26 1933, set in top of south- west of centerline of Main Street, approximately 10.7 feet north or contro of post office, approximately 10 feet southeast of centerline of Fourth-Creant Boulevard.RM 95-4677.49Minnesota Highway Department disk set in southeast of centerline of Main Street, approximately 11.7 feet southeast of centerline of Fourth-Grant Boulevard.RM 95-5682.93Top nut of fire hydrant at intersection of Fourth-Grant Boulevard and Alleghany Avenue.RM 95-6700.035U.S. Geological Survey standerd disk, stamped A-26, set in concrete at base of southeast concrete bridge pier crossing Southeast concrete bri	TOINS PANE	Wabasha County Unincorporated Area 270483 19 WABASHA COUNTY CITY OF WABASHA KIM 95-1 ZONE X 30 X 2014 8 X 2014 X 2
REFERENCE MARKELEVATION IN FT. (NGVD)DESCRIPTION OF LOCATIONRM 95-1700.806U.S. Coast and Geodetic Survey disk stamped N 248 1970, set on top of copper coated rod and is encased in 4-inch iron pipe which projects 2 inches above surface, located approximately 154 feet southeast of centerline of fourth-Grant Boulevard, approximately 33 feet north- eest of concrete pad in picnic area, approximately 35 feet north- west of concrete pad in picnic area, approximately 50 feet west of large swing set, and approximately 30 feet morth of railroad spur, and approxi- mately 610 feet west of gaging station.RM 95-3691.311U.S. Coast and Geodetic Survey disk stamped B 26 1933, set in top of south- west of centerline of Main Street, approximately 10.7 feet north or contro of post office, approximately 10 feet southeast of centerline of Fourth-Creant Boulevard.RM 95-4677.49Minnesota Highway Department disk set in southeast of centerline of Main Street, approximately 11.7 feet southeast of centerline of Fourth-Grant Boulevard.RM 95-5682.93Top nut of fire hydrant at intersection of Fourth-Grant Boulevard and Alleghany Avenue.RM 95-6700.035U.S. Geological Survey standerd disk, stamped A-26, set in concrete at base of southeast concrete bridge pier crossing Southeast concrete bri	TOINS PANE	Zonse AE 39 WARASHA COLINY CHY OF WARASHA COLINY CHY OF WARASHA X RM 95-1 ZONE X 30 30 30 30 30 30 30 30 30 30 30 30 30
REFERENCE MARKELEVATION IN FT. (NGVD)DESCRIPTION OF LOCATIONRM 95-1700.806U.S. Coast and Geodetic Survey disk stamped N 248 1970, set on top of copper coated rod and is encased in 4-inch iron pipe which projects 2 inches above surface, located approximately 154 feet southeast of centerline of fourth-Grant Boulevard, approximately 33 feet north- eest of concrete pad in picnic area, approximately 35 feet north- west of concrete pad in picnic area, approximately 50 feet west of large swing set, and approximately 30 feet morth of railroad spur, and approxi- mately 610 feet west of gaging station.RM 95-3691.311U.S. Coast and Geodetic Survey disk stamped B 26 1933, set in top of south- west of centerline of Main Street, approximately 10.7 feet north or contro of post office, approximately 10 feet southeast of centerline of Fourth-Creant Boulevard.RM 95-4677.49Minnesota Highway Department disk set in southeast of centerline of Main Street, approximately 11.7 feet southeast of centerline of Fourth-Grant Boulevard.RM 95-5682.93Top nut of fire hydrant at intersection of Fourth-Grant Boulevard and Alleghany Avenue.RM 95-6700.035U.S. Geological Survey standerd disk, stamped A-26, set in concrete at base of southeast concrete bridge pier crossing Southeast concrete bri	TOINS PANE	AE WABASHA COUNTY UNINCORPORATEd Area 270483 WABASHA COUNTY UNINCORPORATED TO TO TO TO TO TO TO TO TO TO
REFERENCE MARKELEVATION IN FT. (NGVD)DESCRIPTION OF LOCATIONRM 95-1700.806U.S. Coast and Geodetic Survey disk stamped N 248 1970, set on top of copper coated rod and is encased in 4-inch iron pipe which projects 2 inches above surface, located approximately 154 feet southeast of centerline of fourth-Grant Boulevard, approximately 33 feet north- eest of concrete pad in picnic area, approximately 35 feet north- west of concrete pad in picnic area, approximately 50 feet west of large swing set, and approximately 30 feet morth of railroad spur, and approxi- mately 610 feet west of gaging station.RM 95-3691.311U.S. Coast and Geodetic Survey disk stamped B 26 1933, set in top of south- west of centerline of Main Street, approximately 10.7 feet north or contro of post office, approximately 10 feet southeast of centerline of Fourth-Creant Boulevard.RM 95-4677.49Minnesota Highway Department disk set in southeast of centerline of Main Street, approximately 11.7 feet southeast of centerline of Fourth-Grant Boulevard.RM 95-5682.93Top nut of fire hydrant at intersection of Fourth-Grant Boulevard and Alleghany Avenue.RM 95-6700.035U.S. Geological Survey standerd disk, stamped A-26, set in concrete at base of southeast concrete bridge pier crossing Southeast concrete bri	TOINS PANE	ZONE AE
REFERENCE MARKELEVATION IN FT. (NGVD)DESCRIPTION OF LOCATIONRM 95-1700.806U.S. Coast and Geodetic Survey disk stamped N 248 1970, set on top of copper coated rod and is encased in 4-inch iron pipe which projects 2 inches above surface, located approximately 154 feet southeast of centerline of fourth-Grant Boulevard, approximately 33 feet north- eest of concrete pad in picnic area, approximately 35 feet north- west of concrete pad in picnic area, approximately 50 feet west of large swing set, and approximately 30 feet morth of railroad spur, and approxi- mately 610 feet west of gaging station.RM 95-3691.311U.S. Coast and Geodetic Survey disk stamped B 26 1933, set in top of south- west of centerline of Main Street, approximately 10.7 feet north or contro of post office, approximately 10 feet southeast of centerline of Fourth-Creant Boulevard.RM 95-4677.49Minnesota Highway Department disk set in southeast of centerline of Main Street, approximately 11.7 feet southeast of centerline of Fourth-Grant Boulevard.RM 95-5682.93Top nut of fire hydrant at intersection of Fourth-Grant Boulevard and Alleghany Avenue.RM 95-6700.035U.S. Geological Survey standerd disk, stamped A-26, set in concrete at base of southeast concrete bridge pier crossing Southeast concrete bri	TOINS PANE	ZONE AE WABASHA COUNTY Unincorporated Area 270483 WWABASHA COUNTY CITY OF WABASHA XRM 95-1 ZONE X ZONE X ZONE X City of Wabasha 200 XRM 95-1 ZONE X ZONE X City of Wabasha 200 XRM 95-1 30 XRM 95-1 ZONE X ZONE X Z
REFERENCE MARKELEVATION IN FT. (NGVD)DESCRIPTION OF LOCATIONRM 95-1700.806U.S. Coast and Geodetic Survey disk stamped N 248 1970, set on top of copper coated rod and is encased in 4-inch iron pipe which projects 2 inches above surface, located approximately 154 feet southeast of centerline of fourth-Grant Boulevard, approximately 33 feet north- eest of concrete pad in picnic area, approximately 35 feet north- west of concrete pad in picnic area, approximately 50 feet west of large swing set, and approximately 30 feet morth of railroad spur, and approxi- mately 610 feet west of gaging station.RM 95-3691.311U.S. Coast and Geodetic Survey disk stamped B 26 1933, set in top of south- west of centerline of Main Street, approximately 10.7 feet north or contro of post office, approximately 10 feet southeast of centerline of Fourth-Creant Boulevard.RM 95-4677.49Minnesota Highway Department disk set in southeast of centerline of Main Street, approximately 11.7 feet southeast of centerline of Fourth-Grant Boulevard.RM 95-5682.93Top nut of fire hydrant at intersection of Fourth-Grant Boulevard and Alleghany Avenue.RM 95-6700.035U.S. Geological Survey standerd disk, stamped A-26, set in concrete at base of southeast concrete bridge pier crossing Southeast concrete bri	TOINS PANE	VABASHA COUNTY Unincorporated Area 270483 WABASHA COUNTY UNINCORPORATION BROWN UNINCORPORATION AREA CITY OF WABASHA CONE X CITY OF WABASHA CITY OF WABASHA 270490 MINNESOTA MEMORIAL HARDWOOD STATE FOREST
REFERENCE MARKELEVATION IN FT. (NGVD)DESCRIPTION OF LOCATIONRM 95-1700.806U.S. Coast and Geodetic Survey disk stamped N 248 1970, set on top of copper coated rod and is encased in 4-inch iron pipe which projects 2 inches above surface, located approximately 154 feet southeast of centerline of fourth-Grant Boulevard, approximately 33 feet north- eest of concrete pad in picnic area, approximately 35 feet north- west of concrete pad in picnic area, approximately 50 feet west of large swing set, and approximately 30 feet morth of railroad spur, and approxi- mately 610 feet west of gaging station.RM 95-3691.311U.S. Coast and Geodetic Survey disk stamped B 26 1933, set in top of south- west of centerline of Main Street, approximately 11.7 feet north or contro of post office, approximately 155 feet northeast of centerline of Main Street, approximately 11.7 feet southeast of centerline of Fourth-Grant Boulevard.RM 95-4677.49Minnesota Highway Department disk set in southeast corner wing wall at intersec- tion of crossing river bed at Fourth- Grant Boulevard.RM 95-5682.93Top nut of fire hydrant at intersection of Fourth-Grant Boulevard and Alleghany Avenue.RM 95-6700.035U.S. Geological Survey standerd disk, stamped A-26, set in concrete at base of southeast concrete bridge pier crossing So Line Railroad on Hiawatha Drive.RM 95-7691.67Top nut of fire hydrant at intersection of Franklin Avenue and Hiawatha Drive.RM 95-8685.59Top nut of fire hydrant at intersection of Ioth Street and Franklin Avenue.	ZONE X	ZONE AE 19 WABASHA COUNTY OTY OF WABASHA COTY OF WABASHA X RM 95-1 ZONE X 20NE X City of Wabasha 270483 X RM 95-1 ZONE X City of Wabasha 270483 X RM 95-1 X
REFERENCE MARKELEVATION IN FT. (NGVD)DESCRIPTION OF LOCATIONRM 95-1700.806U.S. Coast and Geodetic Survey disk stamped N 248 1970, set on top of copper coated rod and is encased in 4-inch iron pipe which projects 2 inches above surface, located approximately 154 feet southeast of centerline of fourth-Grant Boulevard, approximately 25 feet north- east of concrete pad in picnic area, approximately 33 feet north- west of main entrance to Riverview Cemetery.RM 95-2673.72Top of water valve, approximately 3 feet west of concrete pad in picnic area, approximately 10 feet west of large swing set, and approximately 20 feet north of railroad spur, and approxi- mately 610 feet west of gaging station.RM 95-3691.311U.S. Coast and Geodetic Survey disk stamped B 26 1933, set in top of south- west of centerline of Main Street, approximately 11.7 feet south- set, approximately 11.7 feet south- set, approximately 11.7 feet south- west of concret guardrail, approxi- mately 11.7 feet south- set of drive bed at Fourth- Grant Boulevard.RM 95-5682.93Top nut of fire hydrant at intersection of Fourth-Grant Boulevard and Alleghany Avenue.RM 95-6700.035J.S. Geological Survey standerd disk, stamped A-26, set in concrete at base of southeast concrete bridge pier crossing So Line Railroad on Hiawatha Drive.RM 95-7691.67Top nut of fire hydrant at intersection of Franklin Avenue and Hiawatha Drive.RM 95-8685.59Top nut of fire hydrant at intersection of Ith Street and Franklin Avenue.	ZONE X	ZONE AE 19 WABASHA COUNTY OTY OF WABASHA COTY OF WABASHA X RM 95-1 ZONE X 20NE X City of Wabasha 270483 X RM 95-1 ZONE X City of Wabasha 270483 X RM 95-1 X



		egend	
	SPECIAL FLC)OD HAZARD AREA	s inundated
	BY 100-YEAF	R FLOOD No base flood elevati	ions determined.
	ZONE AE	Base flood elevations	
	ZONE AH	. Ç	elevations determined.
	ZONE AO	flow on sloping terr	3 feet (usually sheet rain); average depths of alluvial fan flooding, ined.
	ZONE A99	To be protected from Federal flood protectic struction; no base flo mined.	on system under con- ood elevations deter-
	ZONE V	Coastal flood with v action); no base flood	elocity hazard (wave elevations determined.
	ZONE VE	Coastal flood with v action); base flood e	elocity hazard (wave levations determined.
\Box	FLOODWAY	AREAS IN ZONE A	E
	other flo	od areas	
	ZONE X	flood with average de or with drainage areas	od; areas of 100–year pths of less than 1 foot less than 1 square mile; / levees from 100–year
	OTHER ARE	AS Areas determined to	ba outsida 500 year
	ZONE X	floodplain.	hazards are undeter-
		mined, but possible.	
	UNDEVELO	PED COASTAL BARF	<pre>{IERS*</pre>
	\square		
Identif 1983		Identified 1990 or Later	Otherwise Protected Areas Identified 1991 or Later
*Coastal barr	ier areas are norr	nally located within or ad	
Hazard Area		Floodplain Boundary	
		Floodway Boundary	
	-	Zone D Boundary Boundary Dividing S	inecial Flood Horows
		Zones, and Boundary	Dividing Areas of Dif- lood Elevations Within
~~~~ 513		Base Flood Elevation L	ine; Elevation in Feet**
(A)	(A) 87)	Cross Section Line Base Flood Elevation i	n Feet Where Uniform
RM7		Within Zone** Elevation Reference M	ark
<ul> <li>M1.</li> <li>**Referenced</li> </ul>		River Mile Geodetic Vertical Datum	of 1929
	١	MAP REPOSITORY	
	Refer to Rep	pository Listing on Map II	ndex
		E DATE OF COUNTYWID INSURANCE RATE MAP	E
		JUNE 20, 2000	
E	FFECTIVE DATE(	S) OF REVISION(S) TO TH	IS PANEL
ldentification a To determine	and Post-FIRM dat if flood insuran	ommunities table on the F tes for all jurisdictions shov ce is available in this co	vn on this map. mmunity, contact your
insurance age	nt or call the Nati	onal Flood Insurance Pro	gram at (800) 638–6620.
	A 1000	APPROXIMATE SCALE	1000 FEET
		-	
		NATIONAL FLOOD IN	SURANCE PROGRAM
		FIRM	
		FLOOD INSURAN	ICE RATE MAP
		WABASHA CO	UNTY,
-		MINNESOTA AND INCORPO	RATED AREAS
÷			
		PANEL 95 OF 500	
		(SEE MAP INDEX FOR CONTAINS:	PANELS NOT PRINTED)
		COMMUNITY WABASHA, CITY OF	NUMBER PANEL SUFFIX 270490 0095 D
		WABASHA COUNTY	270483 0095 D
		Notice to User: The MAP NUMBER when placing map order; the C	OMMUNITY NUMBER shown
		above should be used on insurani community.	ce applications for the subject
			MAP NUMBER 27157C0095 D
		LAN	
	STORE TO A		EFFECTIVE DATE:
			JUNE 20, 2000
		Fadaral F.	

<b>NOTES TO USERS</b> This map is for use in administering the National Flood Insurance Program; it does not necessarily identify all areas subject to flooding, particularly from local drainage sources of small size, or all planimetric features outside Special Flood Hazard Areas. The community map repository should be consulted for possible updated flood hazard information prior to use of this map for property purchase or construction purposes.	92°03′45 "	
To obtain more detailed information in areas where Base Flood Elevations (BFEs) and/or floodways have been determined, users are encouraged to consult the Flood Profiles and Floodway Data tables contained within the Flood Insurance Study (FIS) report that accompanies this FIRM. Users should be aware that BFEs shown on the FIRM represent rounded whole-foot elevations and therefore may not exactly reflect the flood elevation data presented in the FIS report. For construction and/or floodplain management purposes, users are encouraged to use the flood elevation data presented in the FIS report in	44° 22′ 30 "	HUUUSTRIAL CT (61)
conjunction with the data shown on this FIRM. Elevation Reference Mark (ERM) elevations listed on this map were obtained and/or developed to establish vertical control for determination of flood elevations and floodplain boundaries portrayed on this map. Users should be aware that these ERM elevations may have changed since the publication of this map. To obtain up-to-date elevation information on National Geodetic Survey (NGS) ERMs shown on this map, please contact the Information Services Branch of the NGS at (301) 713–3242, or visit their website at WWW.NGS.NOAA.GOV. Map users should seek verification of non-NGS ERM monument elevations when using these elevations for construction or	31 City of Wabasha 270490	ZONE X
floodplain management purposes. Coastal base flood elevations apply only landward of 0.0' National Geodetic Vertical Datum of 1929 (NGVD), and include the effects of wave action; these elevations may also differ significantly from those developed by the National Weather Service for hurricane evacuation planning. Areas of special flood hazard (100-year flood) include Zones A, AE, AH, AO, A99, V, and VE.	T 111 N T 110 N	
Certain areas not in Special Flood Hazard Areas may be protected by flood control structures. Boundaries of the floodways were computed at cross sections and interpolated between cross sections. The floodways were based on hydraulic considerations with regard to requirements of the Federal Emergency Management Agency. Floodway widths in some areas may be too narrow to show to scale. Floodway widths are provided in the Flood Insurance Study Report.		
Corporate limits shown on this map are based on the best data available. The user should contact appropriate community officials to verify the corporate limit delineations shown on this map. For community map revision history prior to countywide mapping, see section 6.0 of the Flood Insurance Study Report. For adjoining map panels see separately printed Map Index. <b>DIGITAL DATA AVAILABILITY:</b> Digital files containing the thematic floodplain	6	
information shown on this map can be made available on CD-ROM by request. The files are currently archived in MicroStation design (DGN) file format referenced to the Universal Transverse Mercator (UTM) projection and the North American Datum of 1927 (NAD27). To obtain the digital files, send a written request to: Flood Insurance Information Specialist, 2977 Prosperity Avenue, Fairfax, Virginia 22031. Telephone (703) 876–0148, FAX (703) 876–0073. <b>NOTE:</b> The coordinate system used for the production of this Flood Insurance Rate Map (FIRM) is Universal Transverse Mercator (UTM), North American Datum of 1927 (NAD27), Clarke 1866 spheroid. Corner coordinates shown on		MINNESOTA M
the FIRM are in latitude and longitude referenced to the Universal Transverse Mercator projection, NAD27. Differences in the datum and spheroid used in the production of FIRMs for adjacent counties may result in slight positional differences in map features at the county boundaries. These differences do not affect the accuracy of the information shown on the FIRM. <b>ATTENTION:</b> Flood elevations on this map are referenced to the National Geodetic Vertical Datum of 1929. These flood elevations must be compared to structure and ground elevations referenced to the same datum. For infor- mation regarding conversion between the National Geodetic Vertical Datum	CITY OF WABASHA WABASHA COUNTY	HARDWOOD STAT
of 1929 and the North American Vertical Datum of 1988, contact the National Geodetic Survey at the following address: Vertical Network Branch, N/CG13 National Geodetic Survey, NOAA Silver Spring Metro Center 3 1315 East–West Highway Silver Spring, Maryland 20910 (301) 713–3191	60	
<b>BASE MAP SOURCE:</b> Base map files were provided by the State of Minnesota Department of Transportation. These files were compiled at a scale of 1:24,000 from U.S. Geological Survey 7.5–Minute Series Topographic Maps and updated using aerial photographs and road construction plans. Users of this FIRM should be aware that minor adjustments may have been made to specific road locations.		
ELEVATION REFERENCE MARKS         REFERENCE MARK       ELEVATION IN FT. (NGVD) ¹ DESCRIPTION OF LOCATION         RM 210-1       676.49       Top nut of fire hydrant at intersection of 12th Street and Bailey Avenue.         RM 210-2       698.440       U.S. Coast and Geodetic Survey disk stamped M 248 1970, set in top of concrete post which is level with surface of ground, located approximately 150 feet west of intersection of 12th Street and Hiawatha Drive, approximately 30 feet south of centerline of 12th Street. ¹ National Geodetic Vertical Datum of 1929	Wabasha County Unincorporated Areas 270483	
-		
	ZONE X	17
	-Zumbro River	
	ZONE A	Zumbro
	son Slough	
	44°   8' 45 " 92° 03' 45 "	Pine S



		EGEND
	SPECIAL FLC BY 100-YEAR	ood Hazard areas inundated R Flood
	ZONE A ZONE AE	No base flood elevations determined. Base flood elevations determined.
	ZONE AH	Flood depths of 1 to 3 feet (usually areas of ponding); base flood elevations determined.
	ZONE AO	Flood depths of 1 to 3 feet (usually sheet flow on sloping terrain); average depths determined. For areas of alluvial fan flooding, velocities also determined.
	ZONE A99	To be protected from 100–year flood by Federal flood protection system under con– struction; no base flood elevations deter– mined.
	ZONE V	Coastal flood with velocity hazard (wave action); no base flood elevations determined.
	ZONE VE	Coastal flood with velocity hazard (wave action); base flood elevations determined.
	FLOODWAY	AREAS IN ZONE AE
	other flo <b>zone x</b>	OD AREAS Areas of 500-year flood; areas of 100-year flood with average depths of less than 1 foot or with drainage areas less than 1 square mile; and areas protected by levees from 100-year flood.
	OTHER ARE	
	ZONE X	Areas determined to be outside 500-year floodplain. Areas in which flood hazards are undeter-
		mined, but possible. PED COASTAL BARRIERS*
<b></b>		
Identif 1983		Identified 1990 or Later Identified 1991 or Later
		1991 of Later nally located within or adjacent to Special Flood
Hazard Area	J.	Floodplain Boundary
		Floodway Boundary Zone D Boundary
		Boundary Dividing Special Flood Hazard Zones, and Boundary Dividing Areas of Dif- ferent Coastal Base Flood Elevations Within
~~~~ 51,	3	Special Flood Hazard Zones. Base Flood Elevation Line; Elevation in Feet**
(A)	(A)	Cross Section Line
(EL 9 RM7		Base Flood Elevation in Feet Where Uniform Within Zone** Elevation Reference Mark
• M1	~	River Mile
**Referenced		Geodetic Vertical Datum of 1929 /IAP REPOSITORY
		ository Listing on Map Index
		E DATE OF COUNTYWIDE INSURANCE RATE MAP
		JUNE 20, 2000
E		5) OF REVISION(S) TO THIS PANEL
Identification a	and Post-FIRM dat a if flood insurand	ommunities table on the FIRM Index for NFIP Initial es for all jurisdictions shown on this map. ce is available in this community, contact your onal Flood Insurance Program at (800) 6386620.
	۵	PPROXIMATE SCALE
	1000	0 1000 FEET
	nti umuni popi katalan kana katalan kat	
		NATIONAL FLOOD INSURANCE PROGRAM
		FIRM
		FLOOD INSURANCE RATE MAP
		WABASHA COUNTY, MINNESOTA
		AND INCORPORATED AREAS
		PANEL 210 OF 500
		(SEE MAP INDEX FOR PANELS NOT PRINTED)
		COMMUNITY NUMBER PANEL SUFFIX WABASHA, CITY OF 270490 0210 D
		WABASHA COUNTY 270483 0210 D
		Notice to User: The MAP NUMBER shown below should be used when placing map order; the COMMUNITY NUMBER shown above should be used on insurance applications for the subject
		community.
		27157C0210 D
		EFFECTIVE DATE:
	THE	JUNE 20, 2000
		Federal Emergency Management Agency
	1001001010101010101010101010101010101010)

		Egend						
		DOD HAZARD AREAS INUNDATED						
	BY 100-YEAR							
	ZONE AE	Base flood elevations determined.						
	ZONE AH	Flood depths of 1 to 3 feet (usually areas of ponding); base flood elevations determined.						
	ZONE AO	Flood depths of 1 to 3 feet (usually sheet flow on sloping terrain); average depths determined. For areas of alluvial fan flooding, velocities also determined.						
	ZONE A99	To be protected from 100-year flood by Federal flood protection system under con- struction; no base flood elevations deter- mined.						
	ZONE V	Coastal flood with velocity hazard (wave action); no base flood elevations determined.						
	ZONE VE	Coastal flood with velocity hazard (wave action); base flood elevations determined.						
	FLOODWAY	AREAS IN ZONE AE						
	other flo	OD AREAS						
	ZONE X	Areas of 500–year flood; areas of 100–year flood with average depths of less than 1 foot or with drainage areas less than 1 square mile; and areas protected by levees from 100–year flood.						
	OTHER ARE							
	ZONE X	Areas determined to be outside 500–year floodplain. Areas in which flood hazards are undeter–						
		mined, but possible.						
		PED COASTAL BARRIERS*						
Identifi	ed	Identified Otherwise						
1983		1990 or Later Protected Areas Identified 1991 or Later						
*Coastal barri Hazard Areas		nally located within or adjacent to Special Flood						
Aleds		Floodplain Boundary						
-		Floodway Boundary Zone D Boundary						
	<	Boundary Dividing Special Flood Hazard Zones, and Boundary Dividing Areas of Dif– ferent Coastal Base Flood Elevations Within Special Flood Hazard Zones.						
513		Base Flood Elevation Line; Elevation in Feet**						
(EL 98	(A)	Cross Section Line Base Flood Elevation in Feet Where Uniform						
RM7		Within Zone** Elevation Reference Mark						
 M1.8 **Referenced 		River Mile Geodetic Vertical Datum of 1929						
		MAP REPOSITORY						
	Refer to Rep	ository Listing on Map Index						
		E DATE OF COUNTYWIDE INSURANCE RATE MAP						
r-r		JUNE 20, 2000 S) OF REVISION(S) TO THIS PANEL						
	FECHVE DATE(3	OF REVISION(3) TO THIS PANEL						
		ommunities table on the FIRM Index for NFIP Initial es for all jurisdictions shown on this map.						
		ce is available in this community, contact your onal Flood Insurance Program at (800) 638–6620.						
		PPROXIMATE SCALE						
	A 1000	PPROXIMATE SCALE 0 1000 FEET						
		NATIONAL FLOOD INSURANCE PROGRAM						
		FIRM Flood insurance rate map						
		FLUUD INSUKANGE KAIE MAP Wabasha county,						
		MINNESOTA						
		AND INCORPORATED AREAS						
		PANEL 230 OF 500						
		(SEE MAP INDEX FOR PANELS NOT PRINTED)						
		CONTAINS: COMMUNITY NUMBER PANEL SUFFIX						
		WABASHA, CITY OF 270490 0230 D WABASHA COUNTY 270483 0230 D						
		Notice to User: The MAP NUMBER shown below should be used when placing map order; the COMMUNITY NUMBER shown						
		above should be used on insurance applications for the subject community.						
		MAP NUMBER 27157C0230 D						
	A STORE OF	EFFECTIVE DATE:						
		JUNE 20, 2000						
		Federal Emergency Management Agency						

NOTES TO USERS This map is for use in administering the National Flood Insurance Program; it does not necessarily identify all areas subject to flooding, particularly from local drainage sources of small size, or all planimetric features outside Special	
 Flood Hazard Areas. The community map repository should be consulted for possible updated flood hazard information prior to use of this map for property purchase or construction purposes. To obtain more detailed information in areas where Base Flood Elevations (BFEs) and/or floodways have been determined, users are encouraged to consult the Flood Profiles and Floodway Data tables contained within the Flood Insurance Study (FIS) report that accompanies this FIRM. Users should be 	9 °56′ 5 " 44°22′30 "
aware that BFEs shown on the FIRM represent rounded whole-foot elevations and therefore may not exactly reflect the flood elevation data presented in the FIS report. For construction and/or floodplain management purposes, users are encouraged to use the flood elevation data presented in the FIS report in conjunction with the data shown on this FIRM. Elevation Reference Mark (ERM) elevations listed on this map were obtained	
and/or developed to establish vertical control for determination of flood elevations and floodplain boundaries portrayed on this map. Users should be aware that these ERM elevations may have changed since the publication of this map. To obtain up-to-date elevation information on National Geodetic Survey (NGS) ERMs shown on this map, please contact the Information Services Branch of the NGS at (301) 713–3242, or visit their website at WWW.NGS.NOAA.GOV. Map users should seek verification of non-NGS ERM monument elevations when using these elevations for construction or	
floodplain management purposes. Coastal base flood elevations apply only landward of 0.0' National Geodetic Vertical Datum of 1929 (NGVD), and include the effects of wave action; these elevations may also differ significantly from those developed by the National Weather Service for hurricane evacuation planning.	
Areas of special flood hazard (100-year flood) include Zones A, AE, AH, AO, A99, V, and VE. Certain areas not in Special Flood Hazard Areas may be protected by flood control structures.	
Boundaries of the floodways were computed at cross sections and interpolated between cross sections. The floodways were based on hydraulic considerations with regard to requirements of the Federal Emergency Management Agency. Floodway widths in some areas may be too narrow to show to scale. Floodway widths are provided in the Flood Insurance Study Report.	
Corporate limits shown on this map are based on the best data available. The user should contact appropriate community officials to verify the corporate limit delineations shown on this map. For community map revision history prior to countywide mapping, see section 6.0 of the Flood Insurance Study Report.	
For adjoining map panels see separately printed Map Index. DIGITAL DATA AVAILABILITY: Digital files containing the thematic floodplain information shown on this map can be made available on CD-ROM by request. The files are currently archived in MicroStation design (DGN) file format referenced to the Universal Transverse Mercator (UTM) projection and the North American Datum of 1927 (NAD27). To obtain the digital files, send a written request to:	
 Flood Insurance Information Specialist, 2977 Prosperity Avenue, Fairfax, Virginia 22031. Telephone (703) 876–0148, FAX (703) 876–0073. NOTE: The coordinate system used for the production of this Flood Insurance Rate Map (FIRM) is Universal Transverse Mercator (UTM), North American Datum of 1927 (NAD27), Clarke 1866 spheroid. Corner coordinates shown on the FIRM are in latitude and longitude referenced to the Universal Transverse Mercator projection, NAD27. Differences in the datum and spheroid used in the production of FIRMs for adjacent counties may result in slight positional differences in map features at the county boundaries. These differences do not affect the 	
accuracy of the information shown on the FIRM. ATTENTION: Flood elevations on this map are referenced to the National Geodetic Vertical Datum of 1929. These flood elevations must be compared to structure and ground elevations referenced to the same datum. For infor- mation regarding conversion between the National Geodetic Vertical Datum of 1929 and the North American Vertical Datum of 1988, contact the National Geodetic Survey at the following address:	
Vertical Network Branch, N/CG13 National Geodetic Survey, NOAA Silver Spring Metro Center 3 1315 East-West Highway Silver Spring, Maryland 20910 (301) 713-3191	
BASE MAP SOURCE: Base map files were provided by the State of Minnesota Department of Transportation. These files were compiled at a scale of 1:24,000 from U.S. Geological Survey 7.5–Minute Series Topographic Maps and updated using aerial photographs and road construction plans. Users of this FIRM should be aware that minor adjustments may have been made to specific road locations.	
	PANEL 0230
	d SNOC
	M754 UPPER MISSISSIPPI RIVER
	WILDLIFE & FISH REFUGE
	ZONE AE
	WILDLIFE & FISH
	REFUGE BOUNDARY M753 Wabasha County
	Unincorporated Areas 270483
	PETERSON LAKE
	57 ATTE BOUMDAAR
	I A C A C A C A C A C A C A C A C A C A
	M. W. W. Son
	44° 18' 45" 91° 56' 15" MINNESOTA MEMORIAL
	MINNESOTA MEMORIAL HARDWOOD STATE FOREST

JOINS PANEL 0245

44° 18′ 45 " 91°52′30"

PER	Μ	ISS	ISSIPP	I RIVER
DLIF	Έ	&	FISH	REFUGE

UPH

9|°52′30" - 44°22′30"

		LEGEND	
	SPECIAL FLC BY 100-YEAI	dod hazard area R flood	s inundated
	ZONE A	No base flood elevations	
	ZONE AH	Flood depths of 1 to 3 ponding); base flood d	feet (usually areas of
	ZONE AO	Flood depths of 1 to flow on sloping terr. determined. For areas o velocities also determi	3 feet (usually sheet ain); average depths f alluvial fan flooding,
	ZONE A99	To be protected from Federal flood protectio struction; no base flo mined.	n system under con-
	ZONE V	Coastal flood with ve action); no base flood	
	ZONE VE	Coastal flood with ve action); base flood el	elocity hazard (wave evations determined.
	FLOODWAY	AREAS IN ZONE AE	
	other flc	OD AREAS	
	ZONE X	Areas of 500year floo flood with average der or with drainage areas l and areas protected by flood.	oths of less than 1 foot ess than 1 square mile;
	other are		
	ZONE X	Areas determined to f floodplain. Areas in which flood	
		mined, but possible.	
	UNDEVELO	PED COASTAL BARR	IERS*
Identifi 1983		Identified 1990 or Later	Otherwise Protected Areas Identified
		nally located within or adji	1991 or Later acent to Special Flood
Hazard Areas		, Floodplain Boundary	
		Floodway Boundary Zone D Boundary	
	4	Boundary Dividing Sp Zones, and Boundary I ferent Coastal Base Flo Special Flood Hazard Z	Dividing Areas of Dif-
513	3	Base Flood Elevation Li	
(A)		Cross Section Line	East Million Link
(EL 98 RM7		Base Flood Elevation ir Within Zone** Elevation Reference Ma	
● M1.	5	River Mile	
**Referenced		Geodetic Vertical Datum	of 1929
		MAP REPOSITORY pository Listing on Map In	dex
		E DATE OF COUNTYWIDE INSURANCE RATE MAP	
	12000	JUNE 20, 2000	
E	FFECTIVE DATE(S) OF REVISION(S) TO THI	S PANEL
Identification a To determine	nd Post-FIRM da if flood insuran	ommunities table on the FII tes for all jurisdictions show ce is available in this cor onal Flood Insurance Prog	n on this map. mmunity, contact your
		APPROXIMATE SCALE	
	1000	0	1000 FEET
		NATIONAL FLOOD INS	URANCE PROGRAM
		FIRM FLOOD INSURAN WABASHA COU MINNESOTA AND INCORPON PANEL 235 OF 500 (SEE MAP INDEX FOR F CONTAINS:	UNTY, RATED AREAS
		COMMUNITY N WABASHA COUNTY WABASHA COUNTY Notice to User: The MAP NUMBER : when placing map order; the CO above should be used on insurance community.	MMUNITY NUMBER shown
			JUNE 20, 2000
		Federal Emergency N	Management Agency

This map is for use in administering the National Flood Insurance Program. It does not necessarily identify all areas subject to flooding, particularly from local drainage sources of small size. The community map repository should be consulted for possible updated or additional flood hazard information.

To obtain more detailed information in areas where **Base Flood Elevations** (BFEs) and/or floodways have been determined, users are encouraged to consult the Flood Profiles and Floodway Data and/or Summary of Stillwater Elevations tables contained within the Flood Insurance Study (FIS) Report that accompanies this FIRM. Users should be aware that BFEs shown on the FIRM represent rounded whole-foot elevations. These BFEs are intended for flood insurance rating purposes only and should not be used as the sole source of flood elevation information. Accordingly, flood elevation data presented in the FIS Report should be utilized in conjunction with the FIRM for purposes of construction and/or floodplain management.

Coastal Base Flood Elevations shown on this map apply only landward of 0.0' North American Vertical Datum of 1988 (NAVD 88). Users of this FIRM should be aware that coastal flood elevations are also provided in the Summary of Stillwater Elevations table in the Flood Insurance Study Report for this jurisdiction. Elevations shown in the Summary of Stillwater Elevations table should be used for construction and/or floodplain management purposes when they are higher than the elevations shown on this FIRM.

Boundaries of the floodways were computed at cross sections and interpolated between cross sections. The floodways were based on hydraulic considerations with regard to requirements of the National Flood Insurance Program. Floodway widths and other pertinent floodway data are provided in the Flood Insurance Study Report for this jurisdiction.

Certain areas not in Special Flood Hazard Areas may be protected by flood control structures. Refer to Section 2.4 "Flood Protection Measures" of the Flood Insurance Study Report for information on flood control structures for this jurisdiction.

The projection used in the preparation of this map was Universal Transverse Mercator (UTM) zone 15. The horizontal datum was NAD 83, GRS 1980 spheroid. Differences in datum, spheroid, projection or UTM zones used in the production of FIRMs for adjacent jurisdictions may result in slight positional differences in map features across jurisdiction boundaries. These differences do not affect the accuracy of this FIRM.

Flood elevations on this map are referenced to the North American Vertical Datum of 1988. These flood elevations must be compared to structure and ground elevations referenced to the same vertical datum. For information regarding conversion between the National Geodetic Vertical Datum of 1929 and the North American Vertical Datum of 1988, visit the National Geodetic Survey website at http://www.ngs.noaa.gov or contact the National Geodetic Survey at the following address:

NGS Information Services NOAA, N/NGS12 National Geodetic Survey SSMC-3, #9202 1315 East-West Highway Silver Spring, Maryland 20910-3282 (301) 713-3242

To obtain current elevation, description, and/or location information for bench marks shown on this map, please contact the Information Services Branch of the National Geodetic Survey at (301) 713-3242, or visit its website at http://www.ngs.noaa.gov.

Base map information shown on this FIRM was derived from digital orthophotography provided by the Buffalo County Land Management Office. This information was derived from 2006 digital orthophotography produced at a resolution of 1 foot.

The **profile baselines** depicted on this map represent the hydraulic modeling baselines that match the flood profiles in the FIS report. As a result of improved topographic data, the **profile baseline**, in some cases, may deviate significantly from the channel centerline or appear outside the SFHA.

Based on updated topographic information, this map reflects more detailed and up-to-date stream channel configurations and flood plain delineations than those shown on the previous FIRM for this jurisdiction. As a result, the Flood Profiles and Floodway Data tables for multiple streams in the Flood Insurance Study Report (which contains authoritative hydraulic data) may reflect stream channel distances that differ from what is shown on the map. Also, the road to floodplain relationships for unrevised streams may differ from what is shown on previous maps.

Corporate limits shown on this map are based on the best data available at the time of publication. Because changes due to annexations or de-annexations may have occurred after this map was published, map users should contact appropriate community officials to verify current corporate limit locations.

Please refer to the separately printed Map Index for an overview map of the county showing the layout of map panels; community map repository addresses; and a Listing of Communities table containing National Flood Insurance Program dates for each community as well as a listing of the panels on which each community is located.

Contact the FEMA Map Service Center at 1-800-358-9616 for information on available products associated with this FIRM. Available products may include previously issued Letters of Map Change, a Flood Insurance Study Report, and/or digital versions of this map. The FEMA Map Service Center may also be reached by Fax at 1-800-358-9620 and its website at http://msc.fema.gov.

If you have **questions about this map** or questions concerning the National Flood Insurance Program in general, please call 1- 877- FEMA MAP (1-877-336-2627) or visit the FEMA website at http://www.fema.gov/business/nfip/.

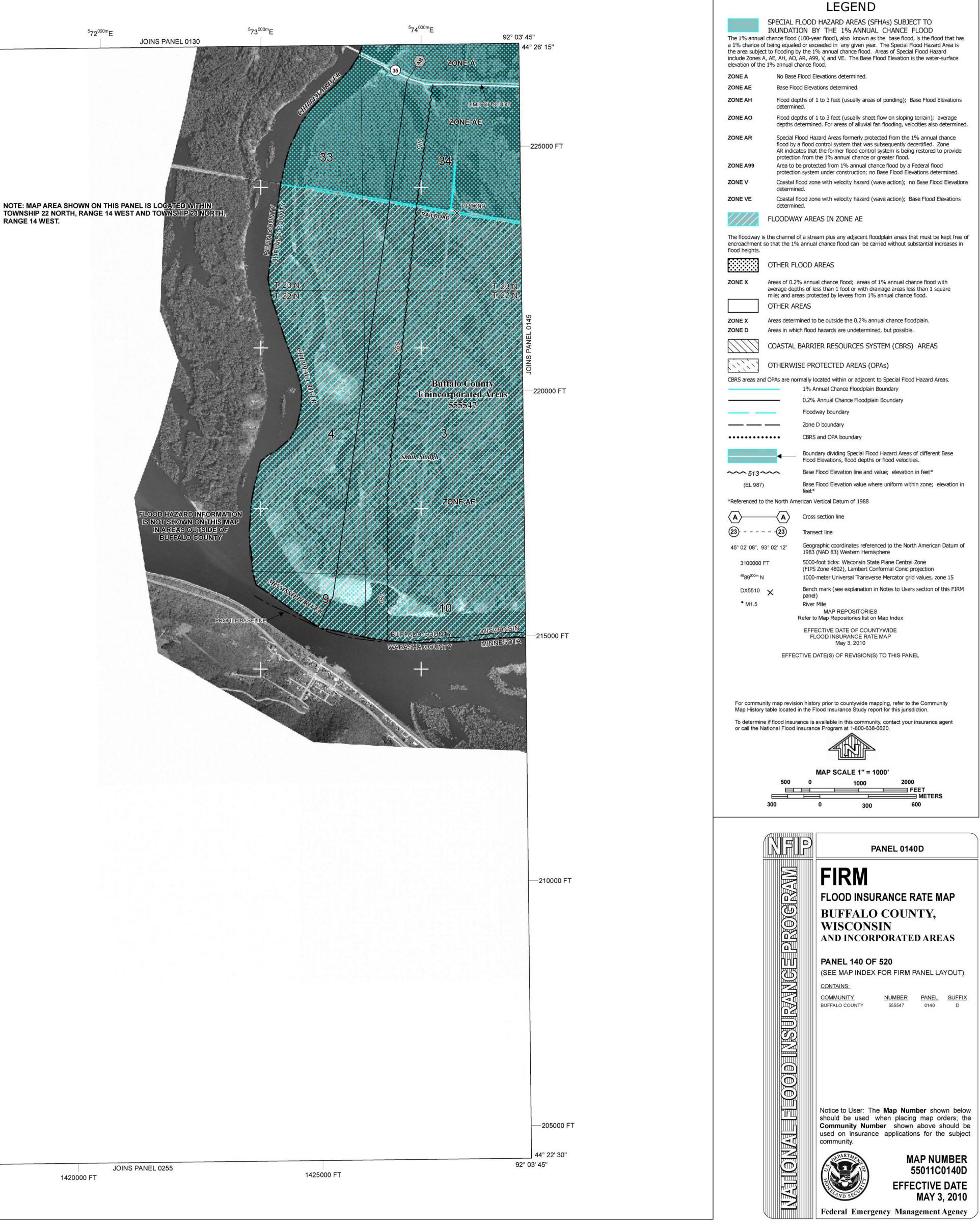
4917^{000m}N ⁴⁹16^{000m}N ⁴⁹15^{000m}N-

> 44° 22' 30" 92° 07' 30"

⁴⁹14^{000m}N-

1415000 FT

⁵70^{000m}E


92° 07' 30"

44° 26' 15"

⁴⁹20^{000m}N

⁴⁹19^{000m}N-

4918^{000m}N

This map is for use in administering the National Flood Insurance Program. It does not necessarily identify all areas subject to flooding, particularly from local drainage sources of small size. The community map repository should be consulted for possible updated or additional flood hazard information.

To obtain more detailed information in areas where **Base Flood Elevations** (BFEs) and/or floodways have been determined, users are encouraged to consult the Flood Profiles and Floodway Data and/or Summary of Stillwater Elevations tables contained within the Flood Insurance Study (FIS) Report that accompanies this FIRM. Users should be aware that BFEs shown on the FIRM represent rounded whole-foot elevations. These BFEs are intended for flood insurance rating purposes only and should not be used as the sole source of flood elevation information. Accordingly, flood elevation data presented in the FIS Report should be utilized in conjunction with the FIRM for purposes of construction and/or floodplain management.

Coastal Base Flood Elevations shown on this map apply only landward of 0.0' North American Vertical Datum of 1988 (NAVD 88). Users of this FIRM should be aware that coastal flood elevations are also provided in the Summary of Stillwater Elevations table in the Flood Insurance Study Report for this jurisdiction. Elevations shown in the Summary of Stillwater Elevations table should be used for construction and/or floodplain management purposes when they are higher than the elevations shown on this FIRM.

Boundaries of the floodways were computed at cross sections and interpolated between cross sections. The floodways were based on hydraulic considerations with regard to requirements of the National Flood Insurance Program. Floodway widths and other pertinent floodway data are provided in the Flood Insurance Study Report for this jurisdiction.

Certain areas not in Special Flood Hazard Areas may be protected by flood control structures. Refer to Section 2.4 "Flood Protection Measures" of the Flood Insurance Study Report for information on flood control structures for this jurisdiction.

The projection used in the preparation of this map was Universal Transverse Mercator (UTM) zone 15. The horizontal datum was NAD 83, GRS 1980 spheroid. Differences in datum, spheroid, projection or UTM zones used in the production of FIRMs for adjacent jurisdictions may result in slight positional differences in map features across jurisdiction boundaries. These differences do not affect the accuracy of this FIRM.

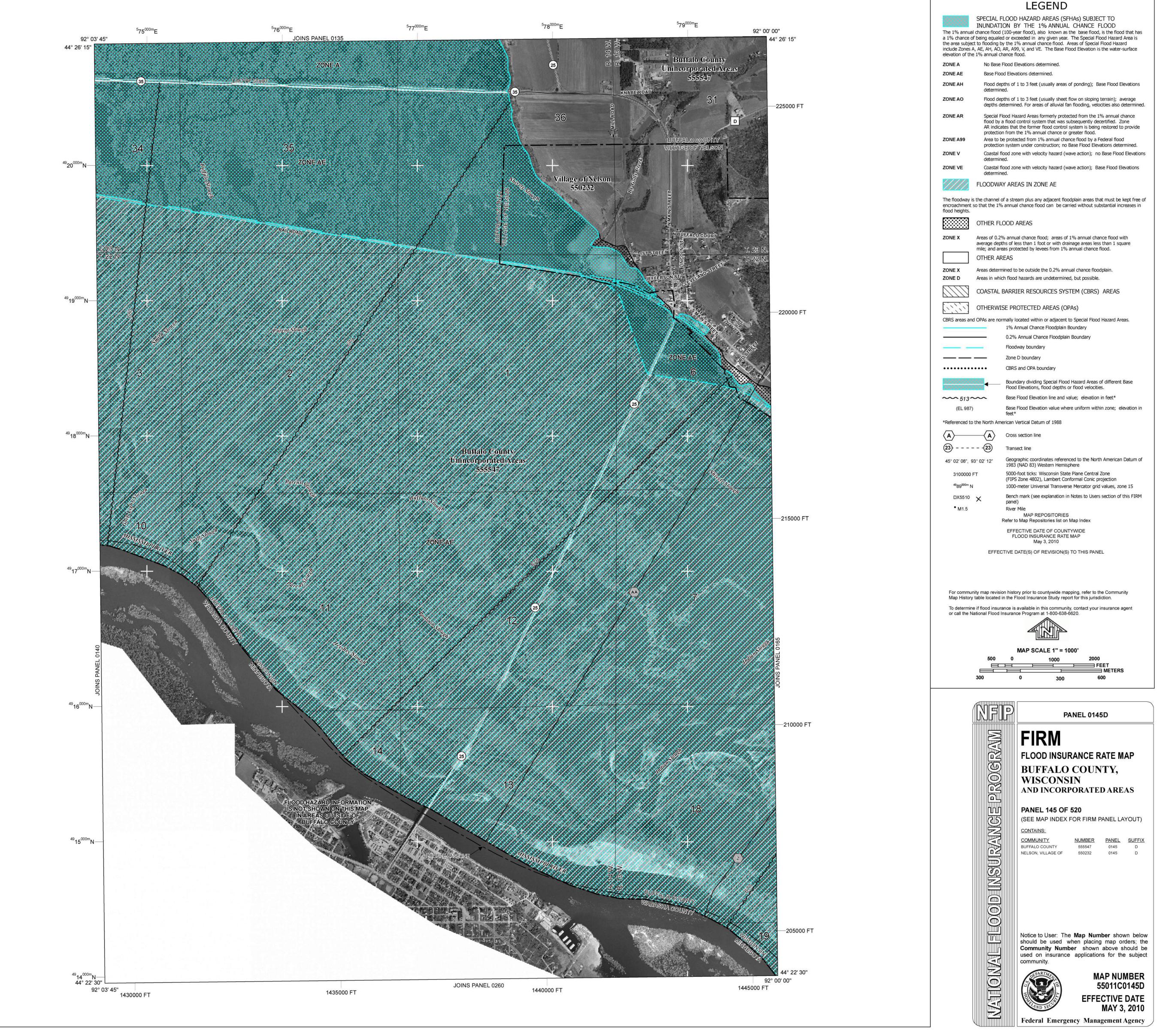
Flood elevations on this map are referenced to the North American Vertical Datum of 1988. These flood elevations must be compared to structure and ground elevations referenced to the same vertical datum. For information regarding conversion between the National Geodetic Vertical Datum of 1929 and the North American Vertical Datum of 1988, visit the National Geodetic Survey website at http://www.ngs.noaa.gov or contact the National Geodetic Survey at the following address:

NGS Information Services NOAA, N/NGS12 National Geodetic Survey SSMC-3, #9202 1315 East-West Highway Silver Spring, Maryland 20910-3282 (301) 713-3242

To obtain current elevation, description, and/or location information for bench marks shown on this map, please contact the Information Services Branch of the National Geodetic Survey at (301) 713-3242, or visit its website at http://www.ngs.noaa.gov.

Base map information shown on this FIRM was derived from digital orthophotography provided by the Buffalo County Land Management Office. This information was derived from 2006 digital orthophotography produced at a resolution of 1 foot.

The **profile baselines** depicted on this map represent the hydraulic modeling baselines that match the flood profiles in the FIS report. As a result of improved topographic data. the profile baseline, in some cases, may deviate significantly from the channel centerline or appear outside the SFHA.


Based on updated topographic information, this map reflects more detailed and up-to-date stream channel configurations and flood plain delineations than those shown on the previous FIRM for this jurisdiction. As a result, the Flood Profiles and Floodway Data tables for multiple streams in the Flood Insurance Study Report (which contains authoritative hydraulic data) may reflect stream channel distances that differ from what is shown on the map. Also, the road to floodplain relationships for unrevised streams may differ from what is shown on previous maps.

Corporate limits shown on this map are based on the best data available at the time of publication. Because changes due to annexations or de-annexations may have occurred after this map was published, map users should contact appropriate community officials to verify current corporate limit locations.

Please refer to the separately printed Map Index for an overview map of the county showing the layout of map panels; community map repository addresses; and a Listing of Communities table containing National Flood Insurance Program dates for each community as well as a listing of the panels on which each community is located.

Contact the FEMA Map Service Center at 1-800-358-9616 for information on available products associated with this FIRM. Available products may include previously issued Letters of Map Change, a Flood Insurance Study Report, and/or digital versions of this map. The FEMA Map Service Center may also be reached by Fax at 1-800-358-9620 and its website at http://msc.fema.gov.

If you have questions about this map or questions concerning the National Flood Insurance Program in general, please call 1- 877- FEMA MAP (1-877-336-2627) or visit the FEMA website at http://www.fema.gov/business/nfip/.

This map is for use in administering the National Flood Insurance Program. It does not necessarily identify all areas subject to flooding, particularly from local drainage sources of small size. The **community map repository** should be consulted for possible updated or additional flood hazard information.

To obtain more detailed information in areas where **Base Flood Elevations** (BFEs) and/or **floodways** have been determined, users are encouraged to consult the Flood Profiles and Floodway Data and/or Summary of Stillwater Elevations tables contained within the Flood Insurance Study (FIS) Report that accompanies this FIRM. Users should be aware that BFEs shown on the FIRM represent rounded whole-foot elevations. These BFEs are intended for flood elevation information. Accordingly, flood elevation data presented in the FIS Report should be utilized in conjunction with the FIRM for purposes of construction and/or floodplain management.

Coastal Base Flood Elevations shown on this map apply only landward of 0.0' North American Vertical Datum of 1988 (NAVD 88). Users of this FIRM should be aware that coastal flood elevations are also provided in the Summary of Stillwater Elevations table in the Flood Insurance Study Report for this jurisdiction. Elevations shown in the Summary of Stillwater Elevations table should be used for construction and/or floodplain management purposes when they are higher than the elevations shown on this FIRM.

Boundaries of the **floodways** were computed at cross sections and interpolated between cross sections. The floodways were based on hydraulic considerations with regard to requirements of the National Flood Insurance Program. Floodway widths and other pertinent floodway data are provided in the Flood Insurance Study Report for this jurisdiction.

Certain areas not in Special Flood Hazard Areas may be protected by **flood control structures**. Refer to Section 2.4 "Flood Protection Measures" of the Flood Insurance Study Report for information on flood control structures for this jurisdiction.

The **projection** used in the preparation of this map was Universal Transverse Mercator (UTM) zone 15. The **horizontal datum** was NAD 83, GRS 1980 spheroid. Differences in datum, spheroid, projection or UTM zones used in the production of FIRMs for adjacent jurisdictions may result in slight positional differences in map features across jurisdiction boundaries. These differences do not affect the accuracy of this FIRM.

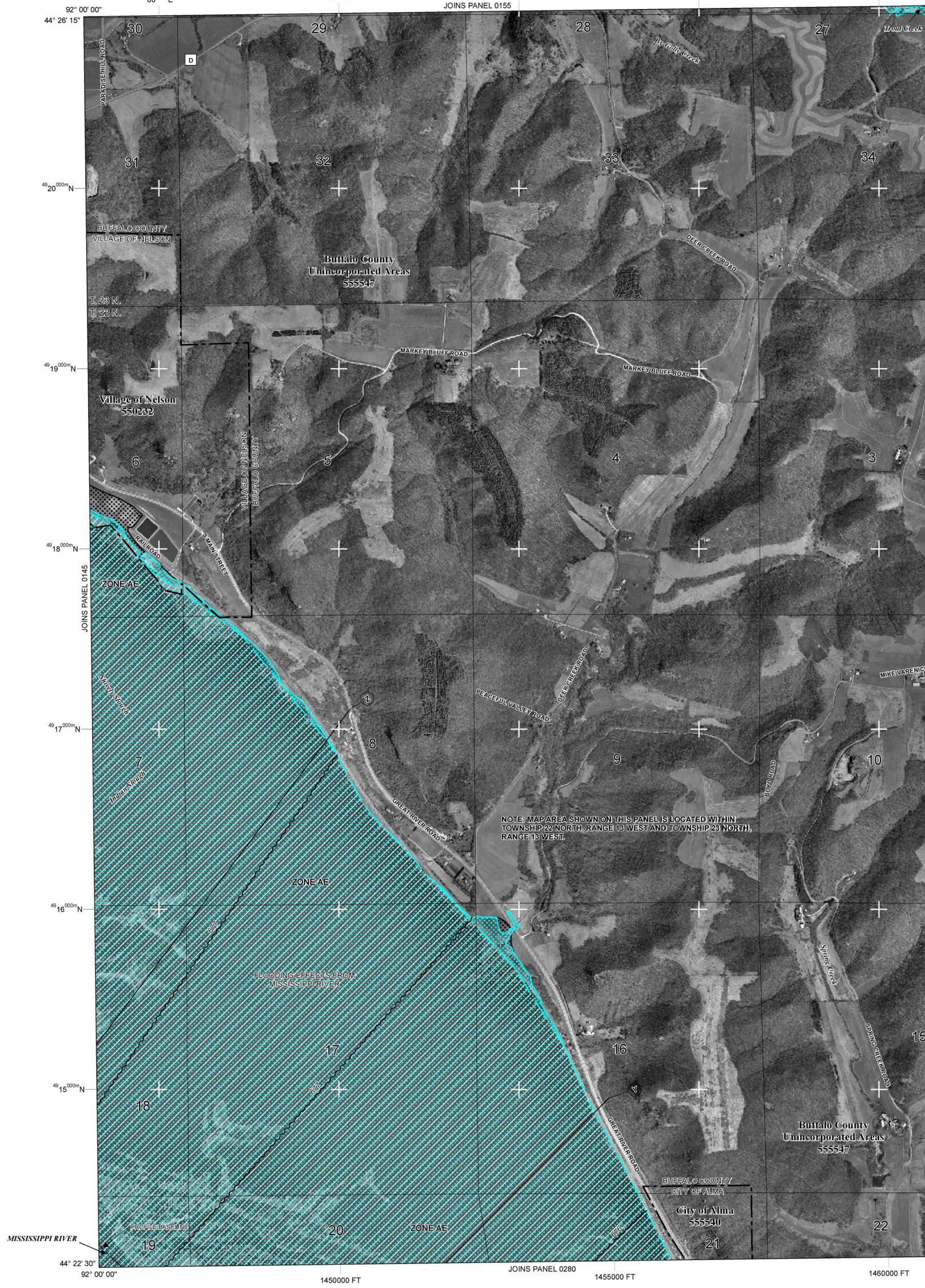
Flood elevations on this map are referenced to the North American Vertical Datum of 1988. These flood elevations must be compared to structure and ground elevations referenced to the same **vertical datum**. For information regarding conversion between the National Geodetic Vertical Datum of 1929 and the North American Vertical Datum of 1988, visit the National Geodetic Survey website at <u>http://www.ngs.noaa.gov</u> or contact the National Geodetic Survey at the following address:

NGS Information Services NOAA, N/NGS12 National Geodetic Survey SSMC-3, #9202 1315 East-West Highway Silver Spring, Maryland 20910-3282 (301) 713-3242

To obtain current elevation, description, and/or location information for **bench marks** shown on this map, please contact the Information Services Branch of the National Geodetic Survey at (301) 713-3242, or visit its website at <u>http://www.ngs.noaa.gov.</u>

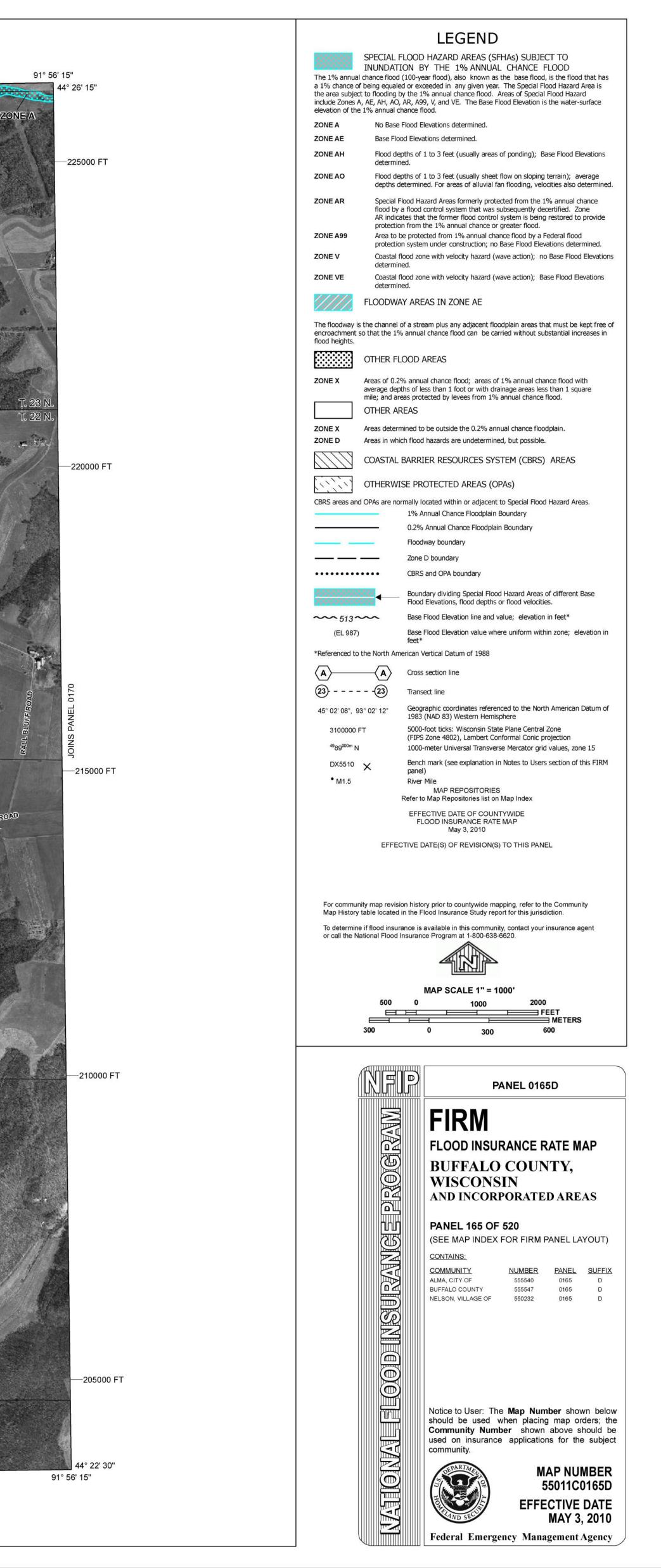
Base map information shown on this FIRM was derived from digital orthophotography provided by the Buffalo County Land Management Office. This information was derived from 2006 digital orthophotography produced at a resolution of 1 foot.

The **profile baselines** depicted on this map represent the hydraulic modeling baselines that match the flood profiles in the FIS report. As a result of improved topographic data, the **profile baseline**, in some cases, may deviate significantly from the channel centerline or appear outside the SFHA.


Based on updated topographic information, this map reflects more detailed and up-to-date **stream channel configurations and floodplain delineations** than those shown on the previous FIRM for this jurisdiction. As a result, the Flood Profiles and Floodway Data tables for multiple streams in the Flood Insurance Study Report (which contains authoritative hydraulic data) may reflect stream channel distances that differ from what is shown on the map. Also, the road to floodplain relationships for unrevised streams may differ from what is shown on previous maps.

Corporate limits shown on this map are based on the best data available at the time of publication. Because changes due to annexations or de-annexations may have occurred after this map was published, map users should contact appropriate community officials to verify current corporate limit locations.

Please refer to the separately printed **Map Index** for an overview map of the county showing the layout of map panels; community map repository addresses; and a Listing of Communities table containing National Flood Insurance Program dates for each community as well as a listing of the panels on which each community is located.


Contact the **FEMA Map Service Center** at 1-800-358-9616 for information on available products associated with this FIRM. Available products may include previously issued Letters of Map Change, a Flood Insurance Study Report, and/or digital versions of this map. The FEMA Map Service Center may also be reached by Fax at 1-800-358-9620 and its website at <u>http://msc.fema.gov</u>.

If you have **questions about this map** or questions concerning the National Flood Insurance Program in general, please call **1-877-FEMA MAP** (1-877-336-2627) or visit the FEMA website at <u>http://www.fema.gov/business/nfip/.</u>

⁵80^{000m}E

This map is for use in administering the National Flood Insurance Program. It does not necessarily identify all areas subject to flooding, particularly from local drainage sources of small size. The community map repository should be consulted for possible updated or additional flood hazard information.

To obtain more detailed information in areas where **Base Flood Elevations** (BFEs) and/or floodways have been determined, users are encouraged to consult the Flood Profiles and Floodway Data and/or Summary of Stillwater Elevations tables contained within the Flood Insurance Study (FIS) Report that accompanies this FIRM. Users should be aware that BFEs shown on the FIRM represent rounded whole-foot elevations. These BFEs are intended for flood insurance rating purposes only and should not be used as the sole source of flood elevation information. Accordingly, flood elevation data presented in the FIS Report should be utilized in conjunction with the FIRM for purposes of construction and/or floodplain management.

Coastal Base Flood Elevations shown on this map apply only landward of 0.0' North American Vertical Datum of 1988 (NAVD 88). Users of this FIRM should be aware that coastal flood elevations are also provided in the Summary of Stillwater Elevations table in the Flood Insurance Study Report for this jurisdiction. Elevations shown in the Summary of Stillwater Elevations table should be used for construction and/or floodplain management purposes when they are higher than the elevations shown on this FIRM.

Boundaries of the floodways were computed at cross sections and interpolated between cross sections. The floodways were based on hydraulic considerations with regard to requirements of the National Flood Insurance Program. Floodway widths and other pertinent floodway data are provided in the Flood Insurance Study Report for this jurisdiction.

Certain areas not in Special Flood Hazard Areas may be protected by flood control structures. Refer to Section 2.4 "Flood Protection Measures" of the Flood Insurance Study Report for information on flood control structures for this jurisdiction.

The projection used in the preparation of this map was Universal Transverse Mercator (UTM) zone 15. The horizontal datum was NAD 83, GRS 1980 spheroid. Differences in datum, spheroid, projection or UTM zones used in the production of FIRMs for adjacent jurisdictions may result in slight positional differences in map features across jurisdiction boundaries. These differences do not affect the accuracy of this FIRM.

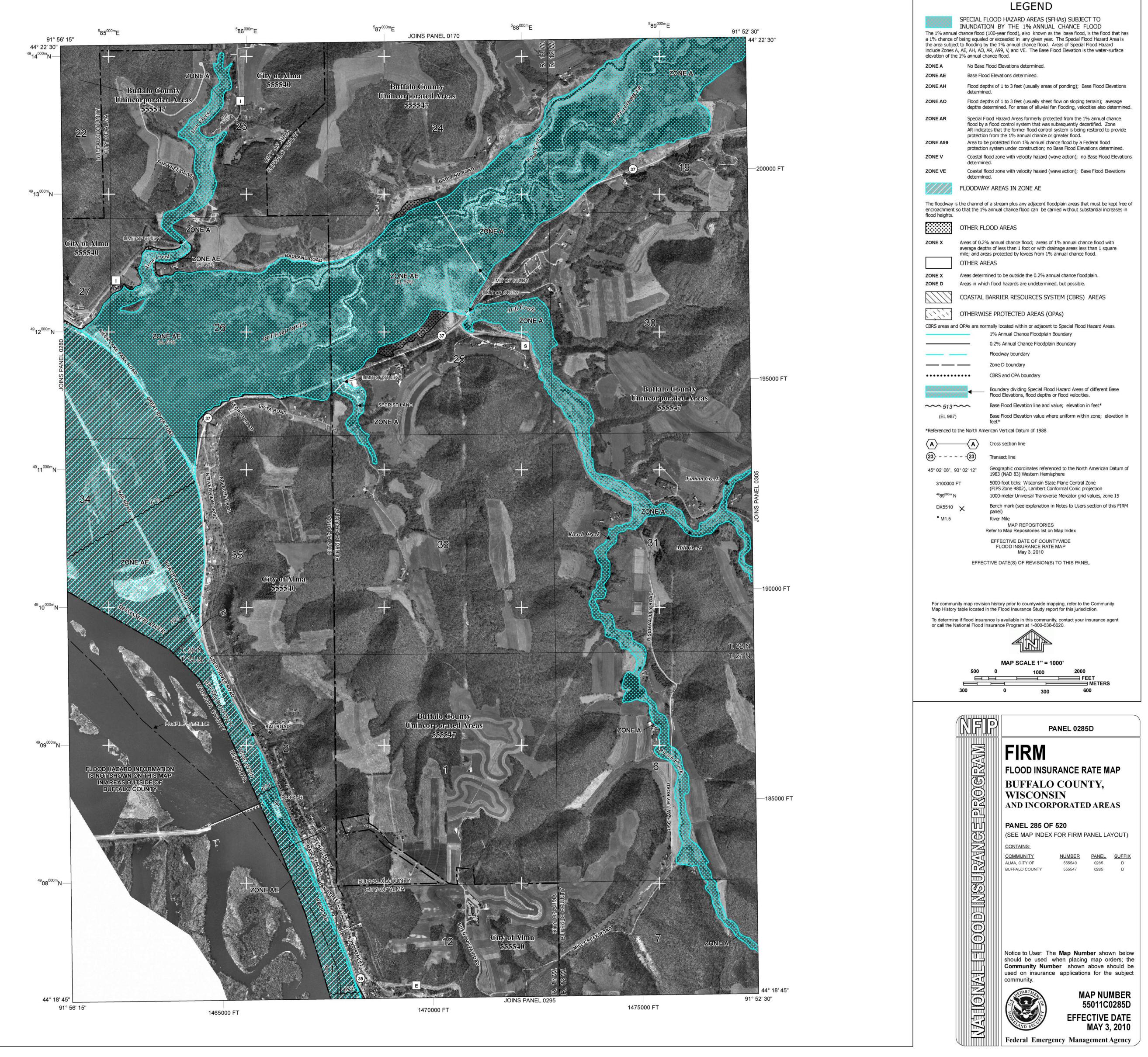
Flood elevations on this map are referenced to the North American Vertical Datum of 1988. These flood elevations must be compared to structure and ground elevations referenced to the same vertical datum. For information regarding conversion between the National Geodetic Vertical Datum of 1929 and the North American Vertical Datum of 1988, visit the National Geodetic Survey website at http://www.ngs.noaa.gov or contact the National Geodetic Survey at the following address:

NGS Information Services NOAA, N/NGS12 National Geodetic Survey SSMC-3, #9202 1315 East-West Highway Silver Spring, Maryland 20910-3282 (301) 713-3242

To obtain current elevation, description, and/or location information for bench marks shown on this map, please contact the Information Services Branch of the National Geodetic Survey at (301) 713-3242, or visit its website at http://www.ngs.noaa.gov.

Base map information shown on this FIRM was derived from digital orthophotography provided by the Buffalo County Land Management Office. This information was derived from 2006 digital orthophotography produced at a resolution of 1 foot.

The **profile baselines** depicted on this map represent the hydraulic modeling baselines that match the flood profiles in the FIS report. As a result of improved topographic data. the profile baseline, in some cases, may deviate significantly from the channel centerline or appear outside the SFHA.


Based on updated topographic information, this map reflects more detailed and up-to-date stream channel configurations and flood plain delineations than those shown on the previous FIRM for this jurisdiction. As a result, the Flood Profiles and Floodway Data tables for multiple streams in the Flood Insurance Study Report (which contains authoritative hydraulic data) may reflect stream channel distances that differ from what is shown on the map. Also, the road to floodplain relationships for unrevised streams may differ from what is shown on previous maps.

Corporate limits shown on this map are based on the best data available at the time of publication. Because changes due to annexations or de-annexations may have occurred after this map was published, map users should contact appropriate community officials to verify current corporate limit locations.

Please refer to the separately printed Map Index for an overview map of the county showing the layout of map panels; community map repository addresses; and a Listing of Communities table containing National Flood Insurance Program dates for each community as well as a listing of the panels on which each community is located.

Contact the FEMA Map Service Center at 1-800-358-9616 for information on available products associated with this FIRM. Available products may include previously issued Letters of Map Change, a Flood Insurance Study Report, and/or digital versions of this map. The FEMA Map Service Center may also be reached by Fax at 1-800-358-9620 and its website at http://msc.fema.gov.

If you have **questions about this map** or questions concerning the National Flood Insurance Program in general, please call **1-877-FEMA MAP** (1-877-336-2627) or visit the FEMA website at http://www.fema.gov/business/nfip/.

WABASHA COUNTY, MINNESOTA AND INCORPORATED AREAS

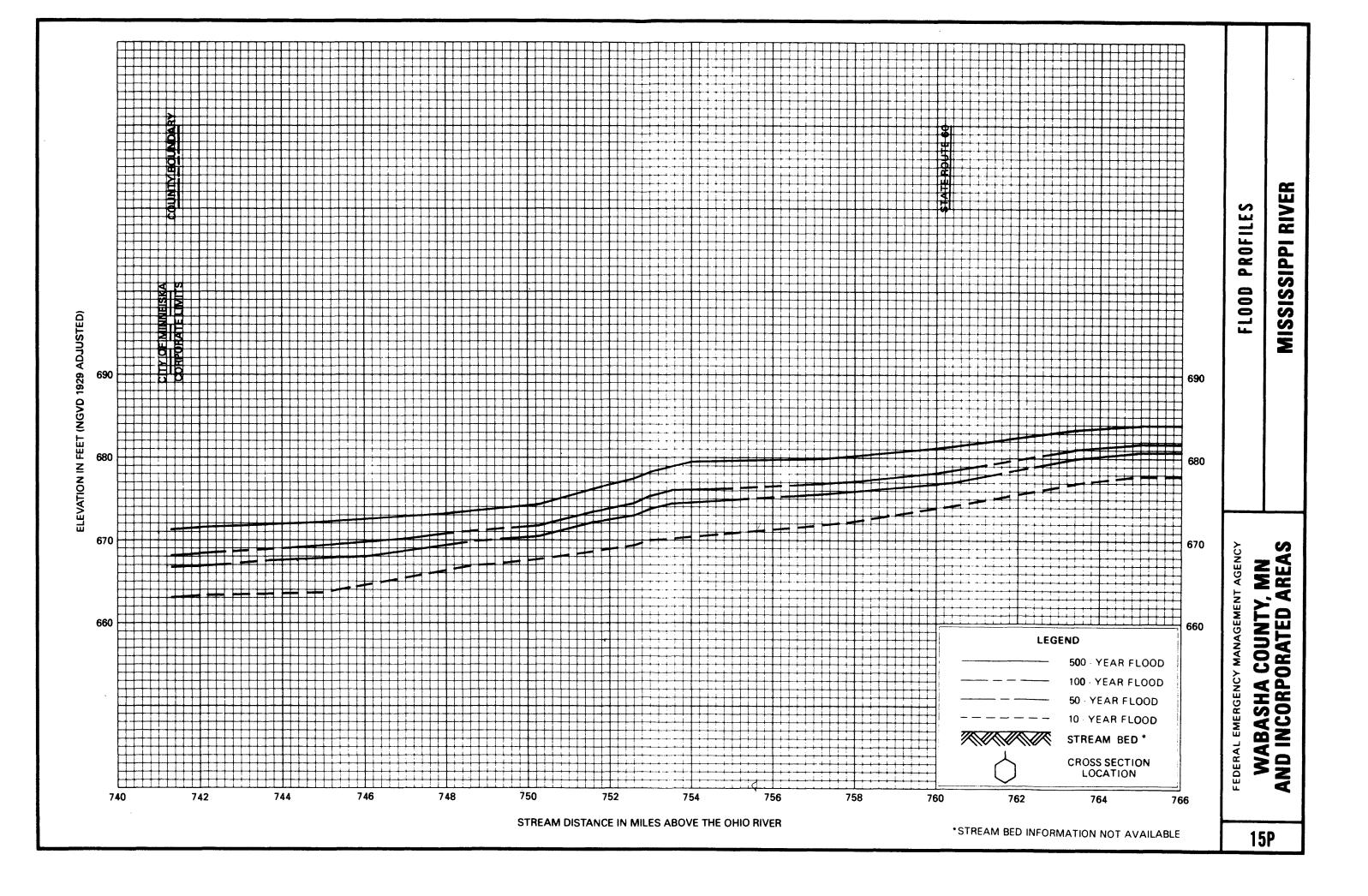
COMMUNITY NAME

ELGIN, CITY OF HAMMOND, CITY OF KELLOGG, CITY OF LAKE CITY, CITY OF MAZEPPA, CITY OF MILLVILLE, CITY OF MINNEISKA, CITY OF WABASHA, CITY OF WABASHA COUNTY (UNINCORPORATED AREAS) ZUMBRO FALLS, CITY OF

270491

COMMUNITY NUMBER

EFFECTIVE:


JUNE 20, 2000

Federal Emergency Management Agency

TABLE 2 - SUMMARY OF DISCHARGES - continued

FLOODING SOURCE	DRAINAGE AREA	PEAK DISCHARGES (cfs)						
AND LOCATION	(sq. miles)	<u>10-YEAR</u>	<u>50-YEAR</u>	<u>100-YEAR</u>	500-YEAR			
GILBERT CREEK								
At mouth Above confluence	27.06	3,200	5,100	6,300	10,000			
with Sugarloaf Creek	15.63	1,690	2,800	3,500	5,600			
MILLER CREEK								
At confluence with	15.04	• • • • •						
Mississippi River	17.24	2,100	3,400	4,300	7,100			
MISSISSIPPI RIVER At USGS gage								
No. 5-3835 at LaCrosse	62,800	162,000	229,000	260,000	*			
At USGS gage	02,000	102,000	227,000	200,000				
No. 5-3785 at Winona	59,200	154,000	223,000	254,000	331,000			
At Wabasha	56,610	145,000	210,000	240,000	320,000			
At USGS gage	,	,	,	, , , , , , , , , ,	,			
No. 5-3445 at Prescott	44,800	113,000	176,000	207,000	290,000			
At USGS gage	-	-	-		,			
No. 5-3310 at St. Paul	36,800	79,500	133,000	160,000	232,000			
NORTH FORK ZUMBRO	RIVER							
At confluence with								
Zumbro River	239	9,427	17,849	22,358	35,194			
Upstream of confluence								
of Trout Brook	182	8,151	16,220	20,710	33,966			
SOUTH ZUMBRO RIVER TRIBUTARY								
At mouth	1.59	490	880	1,115	1,765			
SUGARLOAF CREEK								
At confluence with Gilbert Creek	8.15	1,350	2,100	2,600	4,300			
WEST ZUMBRO RIVER TRIBUTARY At confluence with								
Zumbro River	9.68	2,255	3,930	4,880	7,470			
8		,	· ·	,	, · · -			

BUFFALO COUNTY, WISCONSIN AND INCORPORATED AREAS

Community Name	Community Number
Alma, City of	555540
Buffalo, City of	555546
Buffalo County (Unincorporated Areas)	555547
Cochrane, Village of	555550
Fountain City, City of	555555
Mondovi, City of	550031
Nelson, Village of	550232

EFFECTIVE: MAY 3, 2010 Federal Emergency Management Agency FLOOD INSURANCE STUDY NUMBER 55011CV000A Analyst Extension and ArcHydro Tools in conjunction with the USGS canopy cover raster (Reference 13).

Peak discharge-drainage area relationships for streams studied by detailed methods are shown in Table 2, Summary of Discharges.

			PEAK DISCHA	ARGES(cfs)	
	DRAINAGE	10-PERCENT	2-PERCENT	1-PERCENT	0.2-PERCENT
FLOODING SOURCE	AREA	ANNUAL	ANNUAL	ANNUAL	ANNUAL
AND LOCATION	(sq. miles)	CHANCE	CHANCE	CHANCE	<u>CHANCE</u>
BROWNLEE CREEK At Confluence with Mirror Lake	4.1	500	950	1,200	2,000
BUFFALO RIVER					
At Southern Mondovi Corporate Limit	218	6,000	10,000	12,000	16,000
MISSISSIPPI RIVER					
Just Downstream of					
Confluence with	*	*	*	229,611	*
Chippewa River				229,011	
At Buffalo City	*	*	*	236,145	*
At southern county	*	*	*		*
boundary	Ŧ	*	7	238,959	-r-
PEESO CREEK					
Above Mirror Lake	14.1	1,200	2,400	3,000	4,800
Below Mirror Lake	18.2	1,700	3,400	3,600	5,650
* Data not available or not calculat		1,700	2,100	5,000	5,050

TABLE 2 – SUMMARY OF DISCHARGES

Data not available or not calculated

3.2 Hydraulic Analyses

Analyses of the hydraulic characteristics of flooding from the sources studied were carried out to provide estimates of the elevations of floods of the selected recurrence intervals. Users should be aware that flood elevations shown on the FIRM represent rounded whole-foot elevations and may not exactly reflect the elevations shown on the Flood Profiles or in the Floodway Data tables in the FIS report. Flood elevations shown on the FIRM are primarily intended for flood insurance rating purposes. For construction and/or floodplain management purposes, users are cautioned to use the flood elevation data presented in this FIS in conjunction with the data shown on the FIRM.

City of Mondovi is the only community in Buffalo County which has a previously printed FIS report. The hydraulic analyses described in that report have been compiled and summarized below.

Roughness factors (Manning's "n" values) used in the hydraulic computations were chosen by engineering judgment and were based on field observations of the streams and floodplain areas. Roughness factors for all streams studied by detailed methods are shown in Table 3, "Manning's "n" Values."

Stream	Channel "n"	Overbank "n"
Brownlee Creek	0.040	0.080
Buffalo River	0.035	0.090-0.110
Mississippi River	0.028-0.038	0.045-0.150
Peeso Creek	0.040	0.080-0.110

TABLE 3 – MANNINGS "N" VALUES

For the flooding sources which are studied approximate analyses and listed in "2.1 Scope of Study", HEC-GeoRAS was used to convert centerline and cross section data created in ArcGIS (Reference 13) for use in HEC-RAS 3.1.3 (Reference 11). HEC-GeoRAS utilized an area Triangulated Irregular Network (TIN) model developed from 10 and 30 meter resolution National Elevation Dataset (NED) Digital Elevation Model (DEM) files to develop the model cross sections. The same TIN which was used for floodplain mapping. Road crossing locations were selected by looking at the aerial photos and modeled as inline structures. Normal depth was used as the downstream boundary condition for reaches in this study. The slope was calculated using the channel invert profile between the five downstream most cross sections (approximately most downstream mile of channel).

Locations of selected cross sections used in the hydraulic analyses are shown on the Flood Profiles (Exhibit 1). For stream segments for which a floodway was computed (Section 4.2), selected cross-section locations are also shown on the FIRM (Exhibit 2).

The hydraulic analyses for this study were based on unobstructed flow. The flood elevations shown on the Flood Profiles (Exhibit 1) are thus considered valid only if hydraulic structures remain unobstructed, operate properly, and do not fail.

3.3 Vertical Datum

All FIS reports and FIRMs are referenced to a specific vertical datum. The vertical datum provides a starting point against which flood, ground, and structure elevations can be referenced and compared. Until recently, the standard vertical datum used for newly created or revised FIS reports and FIRMs was the National Geodetic Vertical Datum of 1929 (NGVD). With the completion of the North American Vertical Datum of 1988 (NAVD), many FIS reports and FIRMs are now prepared using NAVD as the referenced vertical datum.

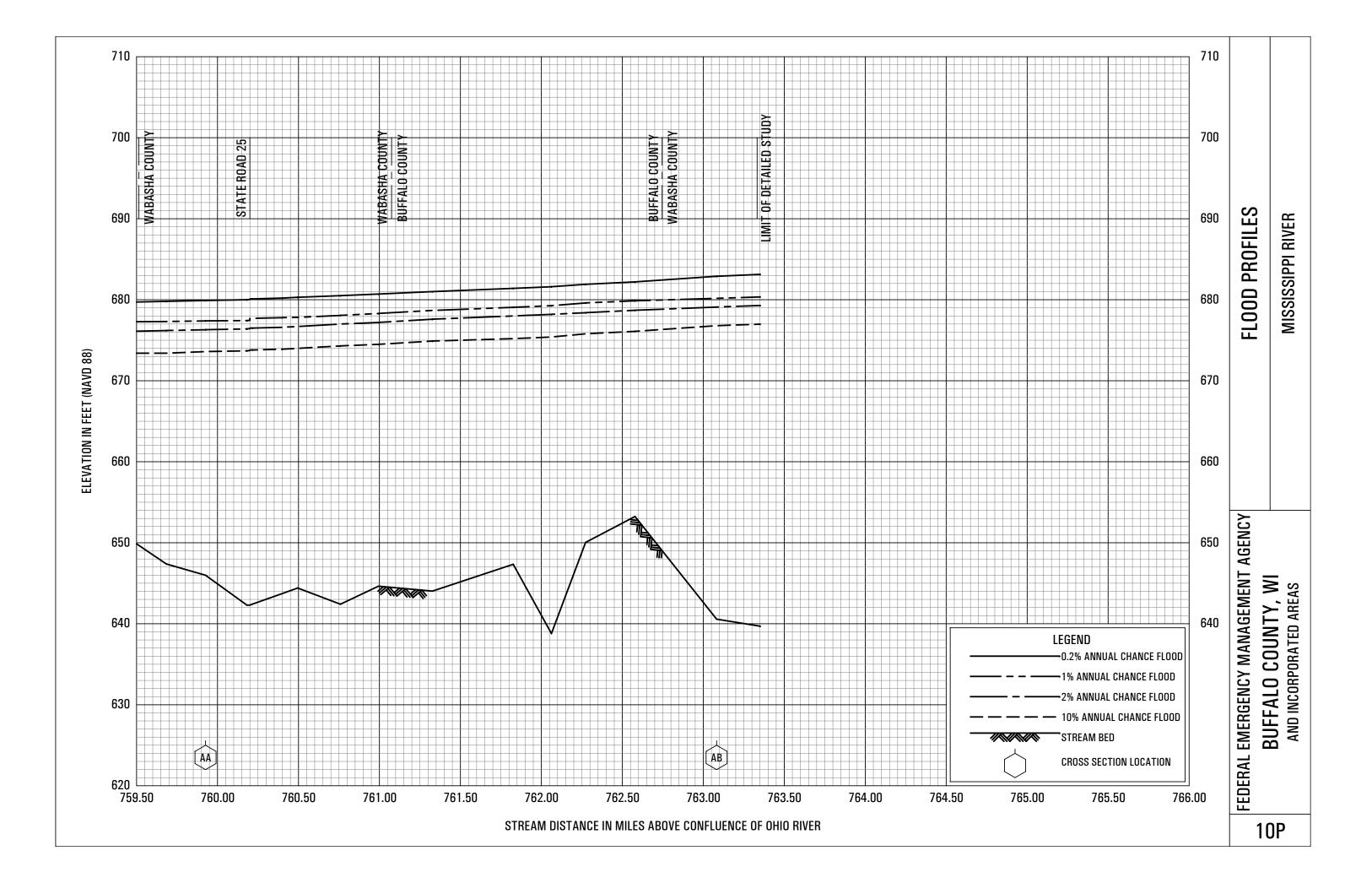
Flood elevations shown in this FIS report and on the FIRM are referenced to the NAVD. These flood elevations must be compared to structure and ground elevations referenced to the same vertical datum. Some of the data used in this revision were taken from the prior effective FIS reports and FIRMs and adjusted to NAVD88. The datum conversion factor from NGVD29 to NAVD88 in Buffalo County is 0.

For additional information regarding conversion between the NGVD and NAVD, visit the National Geodetic Survey website at <u>www.ngs.noaa.gov</u>, or contact the National Geodetic Survey at the following address:

Vertical Network Branch, N/CG13 National Geodetic Survey, NOAA Silver Spring Metro Center 3 1315 East-West Highway Silver Spring, Maryland 20910 (301) 713-3191

Temporary vertical monuments are often established during the preparation of a flood hazard analysis for the purpose of establishing local vertical control. Although these monuments are not shown on the FIRM, they may be found in the Technical Support Data Notebook associated with the FIS report and FIRM for this community. Interested individuals may contact FEMA to access these data.

To obtain current elevation, description, and/or location information for benchmarks shown on this map, please contact the Information Services Branch of the NGS at (301) 713-3242, or visit their website at <u>www.ngs.noaa.gov.</u>


4.0 **FLOODPLAIN MANAGEMENT APPLICATIONS**

The NFIP encourages State and local governments to adopt sound floodplain management programs. To assist in this endeavor, each FIS report provides 1-percent-annual-chance floodplain data, which may include a combination of the following: 10-, 2-, 1-, and 0.2-percent-annual-chance flood elevations; delineations of the 1and 0.2-percent-annual-chance floodplains; and a 1-percent-annual-chance floodway. This information is presented on the FIRM and in many components of the FIS report, including Flood Profiles, Floodway Data tables, and Summary of Stillwater Elevation tables. Users should reference the data presented in the FIS report as well as additional information that may be available at the local community map repository before making flood elevation and/or floodplain boundary determinations.

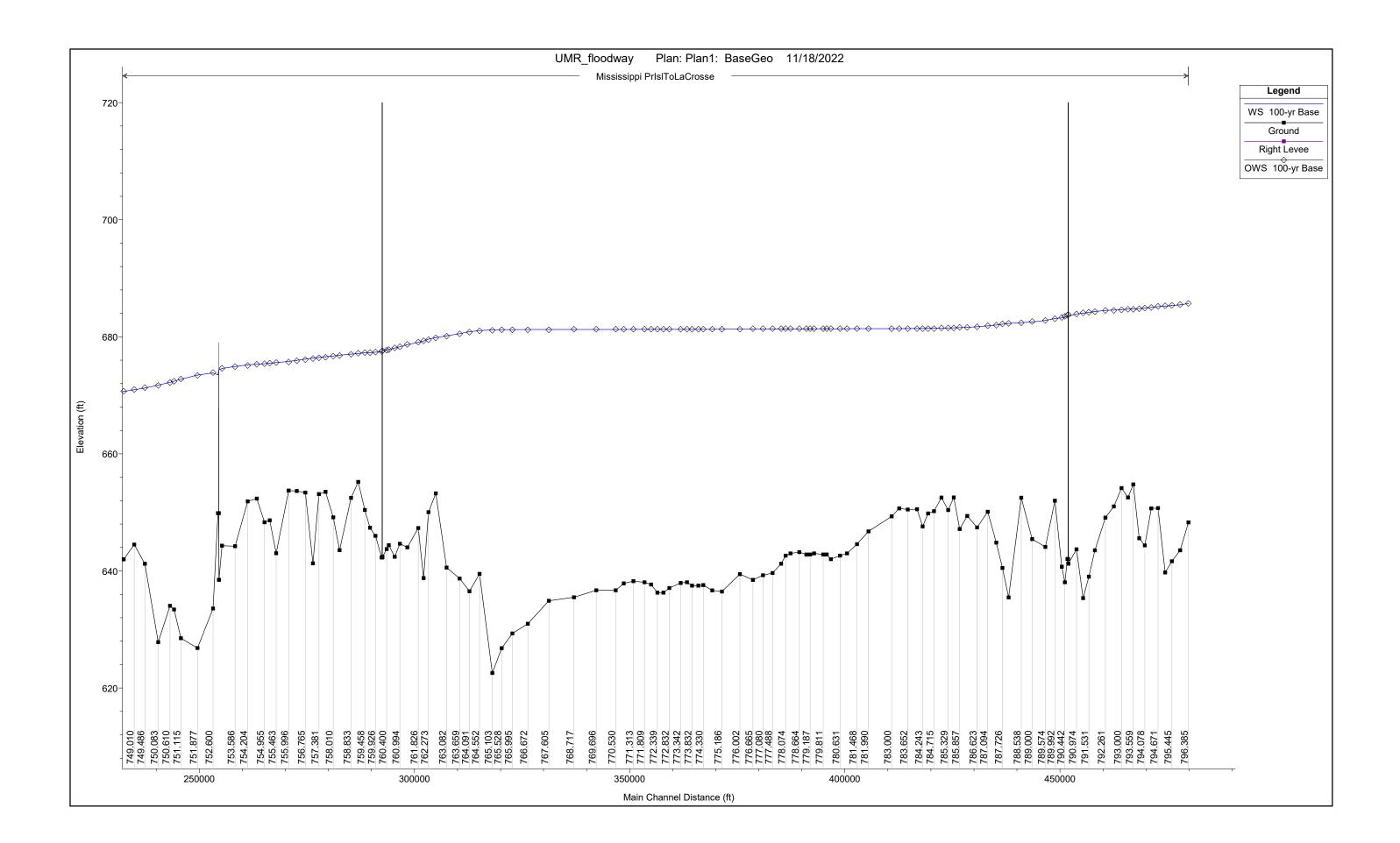
4.1 Floodplain Boundaries

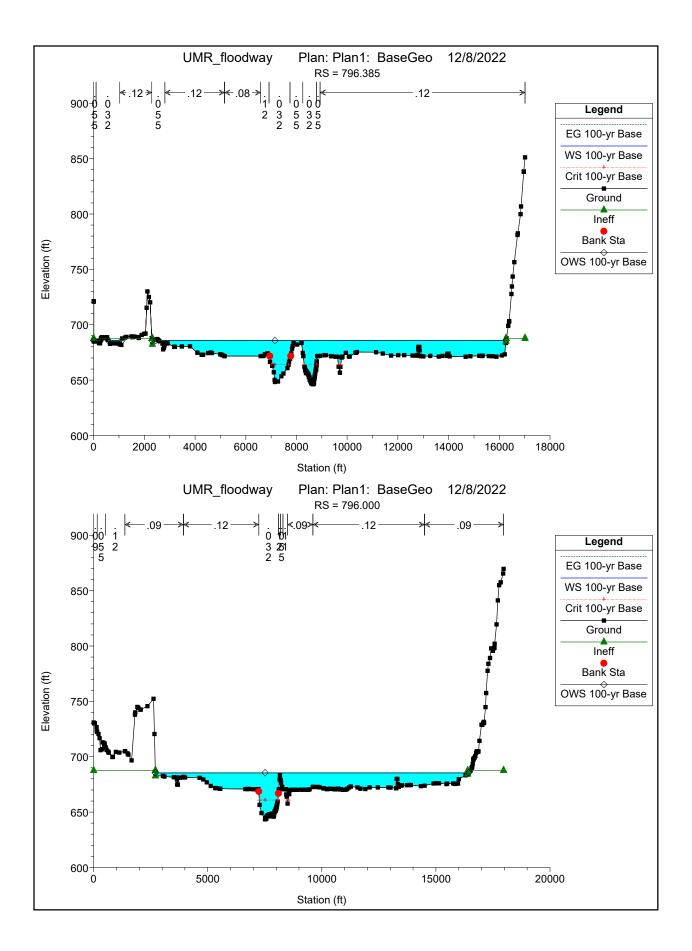
To provide a national standard without regional discrimination, the 1-percent-annual-chance flood has been adopted by FEMA as the base flood for floodplain management purposes. The 0.2-percent-annual-chance flood is employed to indicate additional areas of flood risk in the community. For each stream studied

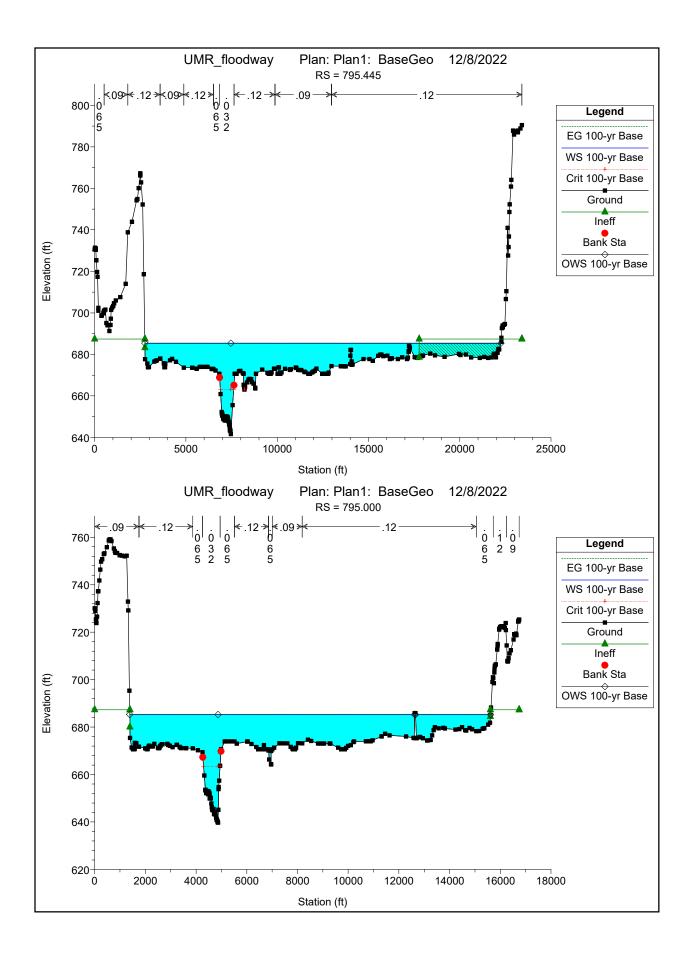
	FLOODING SO	URCE	F	LOODWAY		1-PERCENT-ANNUAL-CHANCE FLOOD WATER SURFACE ELEVATION (FEET NAVD 88)				
	CROSS SECTION	DISTANCE ¹	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE	
	MISSISSIPPI RIVER (continued)									
	Y	757.38 ¹	6,993 ³ / 7,732	107,582	2.1	676.5	676.5	676.5	0.0	
	Z	758.83 ¹	10,110 ³ / 12,695	151,616	1.5	677.0	677.0	677.0	0.0	
	AA	759.93 ¹	12,570 ³ / 12,654	146,492	1.6	677.4	677.4	677.4	0.0	
	AB	763.08 ¹	8,823 ³ / 9,234	106,298	2.2	680.2	680.2	680.2	0.0	
	PEESO CREEK									
	A	1,320 ²	245	1,273	2.8	787.9	787.9	787.9	0.0	
	В	2,640 ²	75	1,095	3.3	791.4	791.4	791.4	0.0	
	С	3,379 ²	121	968	3.7	792.0	792.0	792.0	0.0	
	D	6,072 ²	440	2,156	1.4	813.5	813.5	813.5	0.0	
	E	6,917 ²	428	1,337	2.2	816.7	816.7	816.7	0.0	
	F	8,395 ²	368	1,468	2.0	818.4	818.4	818.4	0.0	
	G	9,557 ²	359	1,301	2.3	820.8	820.8	820.8	0.0	
	Н	10,718 ²	415	1,036	2.9	824.2	824.2	824.2	0.0	
_	¹ MILES ABOVE CONFLUENC	E OF OHIO RIVER	, ² FEET ABOVE COM	NFLUENCE WITH	H BUFFALO RIVE	R, ³ FLOODWAY WI		ALO COUNTY		
		GENCY MANAG				F		Y DATA		
	-					MISSISSI	PPI RIVER	- PEESO C	REEK	

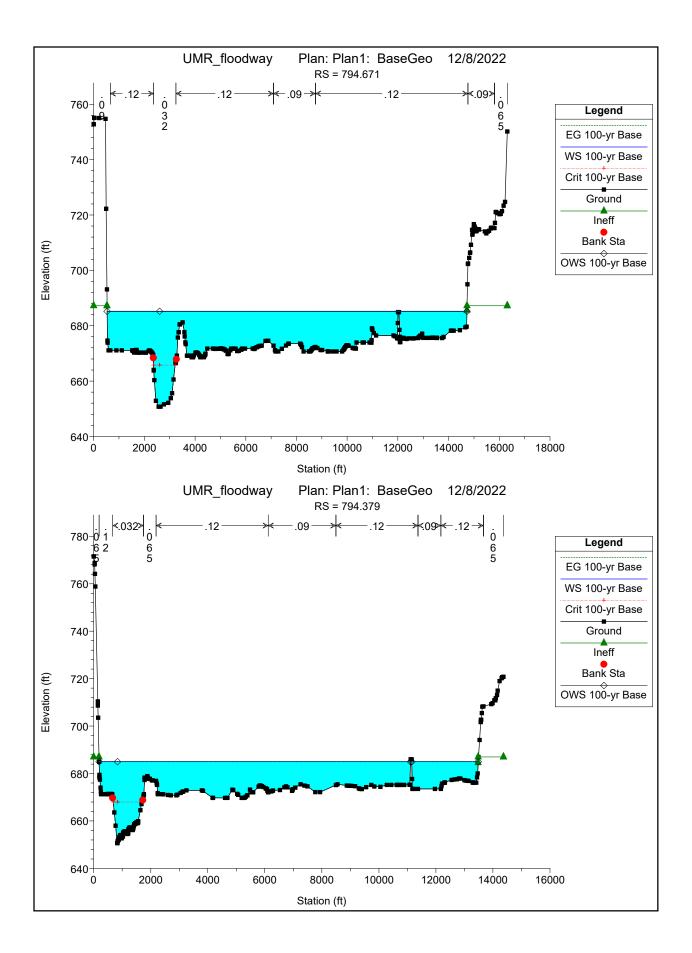
Appendix C: Duplicate Effective Condition HEC-RAS

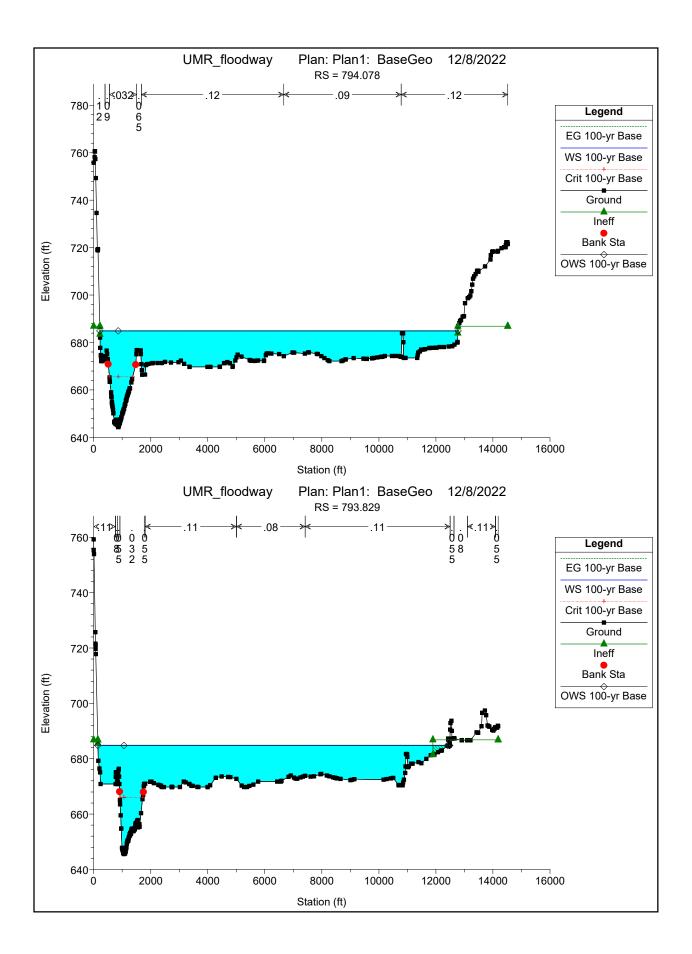
River	Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
				(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
lississippi	PrIsIToLaCrosse	796.385	100-yr Base	192930.00	648.28	685.68	663.85	685.73	0.000046	2.92	187564.30	14650.31	0.1
lississippi	PrIsIToLaCrosse	796.385	IA/MN Max	192930.00	648.28	686.14	663.85	686.19	0.000045	2.90	179526.80	11840.76	0.1
lississippi	PrIsIToLaCrosse	796.385	WI Fldwy	192930.00	648.28	685.68	663.85	685.73	0.000046	2.92	187485.80	13784.54	0.10
Aississippi	PrIsIToLaCrosse	796.000	100-yr Base	192930.00	643.51	685.46	660.87	685.59	0.000056	3.75	175775.00	13735.46	0.11
Aississippi	PrIsIToLaCrosse	796.000	IA/MN Max	192930.00	643.51	685.93	660.87	686.06	0.000055	3.74	165603.40	10748.33	0.11
Aississippi	PrIsIToLaCrosse	796.000	WI Fldwy	192930.00	643.51	685.47	660.87	685.60	0.000056	3.75	175618.40	13657.18	0.11
dia sta sta a t	DelatTal a Orana a	705 445	400 ··· D · · ·	400000 00	044.05	005.05	000.00	005.47	0.000000	0.00	404044.00	40500 75	0.40
Aississippi Aississippi	PrisiToLaCrosse	795.445	100-yr Base	192930.00	641.65	685.35	663.22	685.47	0.000062	3.82	184014.20	19506.75	0.12
Aississippi Aississippi	PrisiToLaCrosse PrisiToLaCrosse	795.445 795.445	IA/MN Max	192930.00 192930.00	641.65 641.65	685.82 685.35	663.22	685.94 685.48	0.000062	3.86 3.82	169215.50 183776.20	12245.59 19463.52	0.12
Aississippi	PHSHOLACIOSSE	795.445	WI Fldwy	192930.00	041.05	000.00	003.22	005.40	0.000062	3.02	103770.20	19403.32	0.12
Mississippi	PrisiToLaCrosse	795.000	100-yr Base	192930.00	639.73	685.23	663.51	685.37	0.000071	4.08	174186.00	14198.15	0.12
Vississippi	PrisiToLaCrosse	795.000	IA/MN Max	192930.00	639.73	685.70	663.51	685.84	0.000071	4.12	165870.10	12310.53	0.12
Vississippi	PrisiToLaCrosse	795.000	WI Fldwy	192930.00	639.73	685.24	663.51	685.37	0.000071	4.09	174023.00	14169.68	0.12
Mississippi	PrisiToLaCrosse	794.671	100-yr Base	196287.00	650.73	685.15	665.78	685.25	0.000080	3.57	186436.40	14193.77	0.11
Mississippi	PrIsIToLaCrosse	794.671	IA/MN Max	196287.00	650.73	685.62	665.78	685.72	0.000080	3.60	176270.30	12461.18	0.11
Mississippi	PrisiToLaCrosse	794.671	WI Fldwy	196287.00	650.73	685.15	665.78	685.25	0.000080	3.57	186102.60	14155.82	0.11
Mississippi	PrIsIToLaCrosse	794.379	100-yr Base	196231.00	650.68	685.01	667.96	685.14	0.000082	3.79	166574.60	13249.98	0.13
Mississippi	PrisiToLaCrosse	794.379	IA/MN Max	196231.00	650.68	685.48	667.96	685.61	0.000083	3.82	155273.80	11468.66	0.13
Mississippi	PrIsIToLaCrosse	794.379	WI Fldwy	196231.00	650.68	685.02	667.96	685.14	0.000082	3.78	166615.90	13247.32	0.13
Mississippi	PrIsIToLaCrosse	794.078	100-yr Base	196276.00	644.35	684.90	665.58	685.04	0.000082	3.95	159785.40	12555.05	0.13
Mississippi	PrIsIToLaCrosse	794.078	IA/MN Max	196276.00	644.35	685.36	665.58	685.51	0.000082	3.99	147640.50	10495.11	0.13
Mississippi	PrIsIToLaCrosse	794.078	WI Fldwy	196276.00	644.35	684.90	665.58	685.04	0.000081	3.94	159826.80	12552.36	0.13
diamine in the	Duit 1 0	700.000	400 - 5	4000	A ·						40000	1005	-
Vississippi	PrisiToLaCrosse	793.829	100-yr Base	196321.00	645.57	684.80	666.01	684.94	0.000079	3.98	158531.70	12273.51	0.13
Mississippi	PrisiToLaCrosse	793.829	IA/MN Max	196321.00	645.57	685.27	666.01	685.41	0.000079	4.02	147591.60	9999.41	0.13
Mississippi	PrisiToLaCrosse	793.829	WI Fldwy	196321.00	645.57	684.81	666.01	684.94	0.000079	3.98	158499.60	12254.52	0.13
4 111	DelatTal a Orana a	700.550	400 ··· · D · · ·	400000 00	054.70	004.75	007.40	004.00	0.000054	0.00	474040.00	44704.04	0.40
Mississippi Mississippi	PrIsIToLaCrosse PrIsIToLaCrosse	793.559 793.559	100-yr Base	196366.00 196366.00	654.79 654.79	684.75 685.22	667.42	684.82 685.29	0.000051	2.92	171040.00 157729.00	11794.31 9978.20	0.10
		_											
Mississippi	PrIsIToLaCrosse	793.559	WI Fldwy	196366.00	654.79	684.76	667.42	684.83	0.000051	2.92	170970.00	11769.49	0.10
Mississippi	PrisiToLaCrosse	793.302	100-yr Base	196412.00	652.56	684.72	668.29	684.76	0.000037	2.43	173988.40	11833.52	0.08
Mississippi	PrisiToLaCrosse	793.302	IA/MN Max	196412.00	652.56	685.19	668.26	685.23	0.000037	2.46	165441.50	10708.68	0.00
Vississippi	PrisiToLaCrosse	793.302	WI Fldwy	196412.00	652.56	684.73	668.30	684.76	0.000037	2.43	173907.60	11812.73	0.00
mooroorppi	111011020010000	100.002		100112.00	002.00		000.00	00.170	0.000007	2.10	110001100	11012.10	0.00
Mississippi	PrisiToLaCrosse	793.000	100-yr Base	196355.00	654.16	684.65	668.44	684.70	0.000048	2.79	173376.90	11766.48	0.10
Mississippi	PrisiToLaCrosse	793.000	IA/MN Max	196355.00	654.16	685.12	668.51	685.17	0.000048	2.82	168595.00	10848.41	0.10
Mississippi	PrisiToLaCrosse	793.000	WI Fldwy	196355.00	654.16	684.66	668.42	684.71	0.000048	2.79	173416.40	11764.02	0.10
			,										
Mississippi	PrIsIToLaCrosse	792.640	100-yr Base	196445.00	651.01	684.57	667.14	684.62	0.000046	2.93	168609.30	11179.80	0.10
Mississippi	PrisiToLaCrosse	792.640	IA/MN Max	196445.00	651.01	685.04	667.20	685.09	0.000046	2.97	165429.30	10531.88	0.10
Mississippi	PrisiToLaCrosse	792.640	WI Fldwy	196445.00	651.01	684.57	667.14	684.63	0.000046	2.94	168238.00	11124.58	0.10
Mississippi	PrIsIToLaCrosse	792.261	100-yr Base	196491.00	649.10	684.51	666.99	684.56	0.000051	3.04	165372.00	12153.93	0.10
Mississippi	PrIsIToLaCrosse	792.261	IA/MN Max	196491.00	649.10	684.97	667.01	685.03	0.000051	3.07	158080.20	10890.89	0.10
Mississippi	PrIsIToLaCrosse	792.261	WI Fldwy	196491.00	649.10	684.51	666.98	684.57	0.000051	3.04	165410.70	12151.06	0.10
Mississippi	PrIsIToLaCrosse	791.792	100-yr Base	196479.00	643.53	684.31	665.27	684.46	0.000077	4.08	87137.81	6936.83	0.13
Mississippi	PrisiToLaCrosse	791.792	IA/MN Max	196479.00	643.53	684.77	665.25	684.92	0.000077	4.12	83953.83	5244.41	0.13
Mississippi	PrIsIToLaCrosse	791.792	WI Fldwy	196479.00	643.53	684.31	665.27	684.46	0.000077	4.08	87153.33	6936.15	0.13
	DelatTal a Orana a	704 504	400 ··· D · · ·	400504.00	000.00	004.47	004.07	004.00	0.000000	4.54	70440 74	E 474 00	0.11
Mississippi	PrisiToLaCrosse	791.531	100-yr Base	196524.00	639.03	684.17	664.97	684.36	0.000092	4.54	73116.74	5474.92 4403.72	0.14
Mississippi	PrisiToLaCrosse	791.531	IA/MN Max	196524.00	639.03	684.62	664.97	684.82	0.000092	4.59	70361.47		0.14
Mississippi	PrIsIToLaCrosse	791.531	WI Fldwy	196524.00	639.03	684.17	664.96	684.36	0.000092	4.54	73040.93	5449.89	0.14
Mississippi	PrisiToLaCrosse	791.273	100-yr Base	196570.00	635.36	684.01	665.67	684.25	0.000118	5.25	70319.23	5513.64	0.16
Mississippi Mississippi	PrisiToLaCrosse	791.273	IA/MN Max	196570.00		684.01	665.68	684.25	0.000118	5.25	70319.23 66895.91	4611.66	0.16
Mississippi	PrisiToLaCrosse	791.273	WI Fldwy	196570.00		684.02	665.69		0.000118	5.30	70242.34	5489.69	0.16
		101.270			000.00	004.02	000.09	004.20	0.000110	0.20	, 5242.04	0400.00	5.10
Mississippi	PrisiToLaCrosse	790.974	100-yr Base	196615.00	643.70	683.91	665.49	684.15	0.000121	4.89	67803.86	6017.63	0.16
Mississippi	PrIsIToLaCrosse	790.974	IA/MN Max	196615.00	643.70	684.37	665.48	684.61	0.000123	4.91	66319.66	5521.83	0.16
Mississippi	PrIsIToLaCrosse	790.974	WI Fldwy	196615.00	643.70	683.91	665.49	684.15	0.000121	4.89	67574.91	5965.48	0.16
Mississippi	PrisiToLaCrosse	790.604	100-yr Base	196558.00	641.25	683.48	665.90	683.91	0.000183	6.26	42269.49	8473.58	0.20
Mississippi	PrIsIToLaCrosse	790.604	IA/MN Max	196558.00	641.25	683.97	665.90	684.38	0.000172	6.13	43401.88	8570.36	0.19
Mississippi	PrIsIToLaCrosse	790.604	WI Fldwy	196558.00	641.25	683.48	665.90	683.91	0.000183	6.26	42277.02	8473.98	0.20
Mississippi	PrIsIToLaCrosse	790.6		Bridge									
Mississippi	PrIsIToLaCrosse	790.563	100-yr Base	196558.00	642.03	683.45	665.98	683.86	0.000177	6.14	44264.93	8452.49	0.19
Mississippi	PrIsIToLaCrosse	790.563	IA/MN Max	196558.00	642.03	683.95	665.98	684.34	0.000167	6.01	45403.81	8299.07	0.19
Mississippi	PrIsIToLaCrosse	790.563	WI Fldwy	196558.00	642.03	683.46	665.98	683.87	0.000177	6.14	44272.11	8305.89	0.19
		700 417	100 5	105									
Vississippi	PrisiToLaCrosse	790.442	100-yr Base	196604.00	638.05	683.35	660.85	683.56	0.000087	4.75	103697.90	7528.26	0.14
Vississippi	PrisiToLaCrosse	790.442	IA/MN Max	196604.00	638.05	683.84	660.85	684.05	0.000089	4.75	100447.10	7093.95	0.14
Vississippi	PrisiToLaCrosse	790.442	WI Fldwy	196604.00	638.05	683.35	660.85	683.56	0.000087	4.75	103716.60	7528.34	0.14
Alecicolani	Printal comme	700 202	100 yr Pess	106604.00	640 70	602.04	663.00	602.40	0.000087		102764 40	6440.44	0.44
Vississippi	PrisiToLaCrosse	790.302	100-yr Base	196604.00	640.72	683.24	663.03	683.42	0.000087	4.44	102764.10	6412.14	0.14
Mississippi	PrisiToLaCrosse	790.302	IA/MN Max	196604.00	640.72	683.73	663.01	683.91	0.000088	4.44	97743.20	5776.19	0.13
Vississippi	PrisiToLaCrosse	790.302	WI Fldwy	196604.00	640.72	683.25	663.03	683.42	0.000087	4.44	102630.00	6386.29	0.14
dississioni	PrisiToLaCrosse	789.992	100-yr Base	196649.00	652.00	683.12	668.86	683.24	0.000111	3.78	102201.80	6271.39	0.13
Aississippi Aississippi													
Aississippi Aississippi	PrisiToLaCrosse	789.992	IA/MN Max	196649.00	652.00	683.60	668.86	683.73	0.000110	3.82	100565.60	5917.70	0.13
Aississippi	PrisiToLaCrosse	789.992	WI Fldwy	196649.00	652.00	683.12	668.86	683.24	0.000110	3.78	102222.10	6271.42	0.13
	PrisiToLaCrosse	789.574	100-yr Base	196739.00	644.09	682.80	668.35	682.96	0.000116	4.50	92405.25	6593.69	0.15
Aississippi						002.001	000.33	002.30	0.000110				

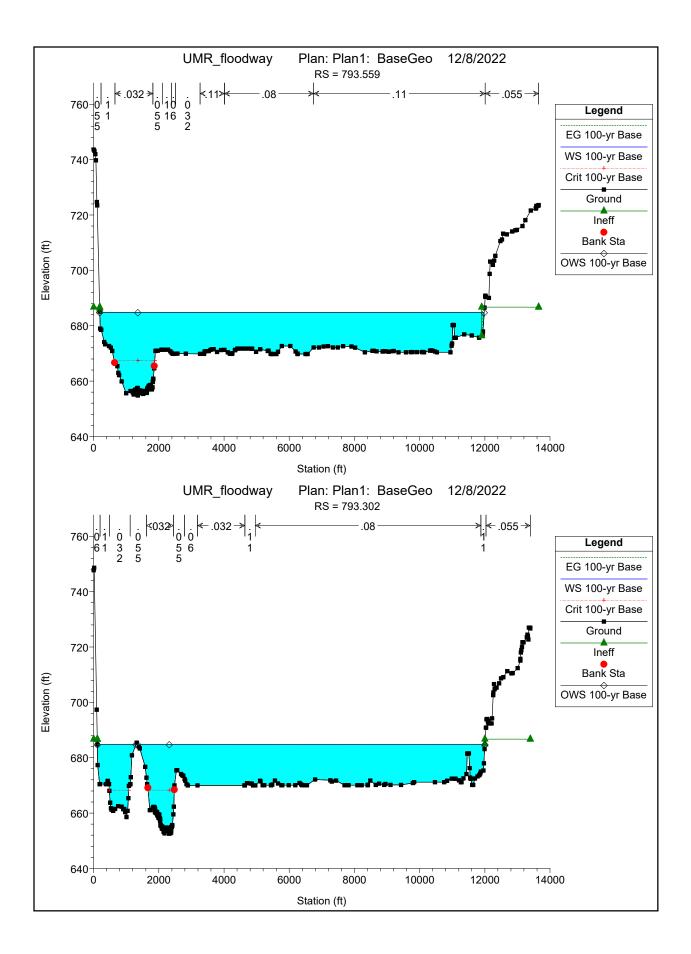

HEC-RAS Plan River	Reach	ser Defined (Co River Sta	ntinued) Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
Niver	Reach	Tuver Sta	FIOILIE	(cfs)	(ft)	(ft)	(ft)	E.G. Elev (ft)	E.G. Slope (ft/ft)	(ft/s)	(sq ft)	(ft)	Floude # Chil
Mississippi	PrisiToLaCrosse	789.574	WI Fldwy	196739.00	644.09	682.81	668.35	682.97	0.000115	4.50	92427.75	6593.63	0.15
Mississippi	PrIsIToLaCrosse	789.000	100-yr Base	196728.00	645.43	682.53	666.57	682.65	0.000084	3.72	117110.00	7798.20	0.13
Mississippi	PrisiToLaCrosse	789.000	IA/MN Max	196728.00	645.43	683.01	666.54	683.14	0.000083	3.76	114597.40	7119.46	0.13
Mississippi	PrIsIToLaCrosse	789.000	WI Fldwy	196728.00	645.43	682.53	666.57	682.65	0.000083	3.72	117137.70	7547.64	0.13
Mississippi	PrIsIToLaCrosse	788.538	100-yr Base	196819.00	652.50	682.41	662.57	682.46	0.000045	2.76	133198.20	8108.47	0.09
Mississippi	PrisiToLaCrosse	788.538	IA/MN Max	196819.00	652.50	682.90	662.53	682.95	0.000045	2.79	133036.80	7810.16	0.09
Mississippi	PrIsIToLaCrosse	788.538	WI Fldwy	196819.00	652.50	682.41	662.57	682.47	0.000045	2.76	133062.50	8080.88	0.09
Mississippi Mississippi	PrisiToLaCrosse PrisiToLaCrosse	787.988 787.988	100-yr Base IA/MN Max	196807.00 196807.00	635.48 635.48	682.27 682.76	667.70 667.72	682.34 682.83	0.000059	2.99 3.02	117606.40 111667.70	7465.81 6509.01	0.10
Mississippi	PrisiToLaCrosse	787.988	WI Fldwy	196807.00	635.48	682.28	667.70	682.34	0.000059	2.99	117634.10	7465.82	0.10
moorooppi	THOREELEOID	101.000		100001100	000.10	002.20		002.01	0.000000	2.00		1100.02	0.10
Mississippi	PrIsIToLaCrosse	787.726	100-yr Base	196852.00	640.50	682.16	666.21	682.24	0.000067	3.47	106969.50	7360.30	0.11
Mississippi	PrIsIToLaCrosse	787.726	IA/MN Max	196852.00	640.50	682.64	665.95	682.73	0.000067	3.49	106891.00	7100.28	0.11
Mississippi	PrIsIToLaCrosse	787.726	WI Fldwy	196852.00	640.50	682.16	666.21	682.25	0.000067	3.47	106734.50	7326.86	0.11
Mississippi	PrIsIToLaCrosse	787.466	100-yr Base	196898.00	644.85	682.01	664.20	682.09	0.000058	3.21	114502.50	7641.71	0.11
Mississippi	PrisiToLaCrosse	787.466	IA/MN Max	196898.00	644.85	682.50	664.20	682.58	0.000058	3.24	114624.50	7381.92	0.11
Mississippi	PrisiToLaCrosse	787.466	WI Fldwy	196898.00	644.85	682.02	664.19	682.09	0.000058	3.22	114300.60	7610.39	0.11
Mississippi	PrisiToLaCrosse	787.094	100-yr Base	196943.00	650.12	681.87	665.34	681.96	0.000069	3.42	122804.90	7668.62	0.12
Mississippi	PrisiToLaCrosse	787.094	IA/MN Max	196943.00	650.12	682.36	665.34	682.45	0.000070	3.44	113730.40	6405.07	0.12
Mississippi	PrIsIToLaCrosse	787.094	WI Fldwy	196943.00	650.12	681.87	665.34	681.96	0.000069	3.42	122607.20	7535.80	0.12
Mississippi	PrIsIToLaCrosse	786.623	100-yr Base	196932.00	647.42	681.72	666.85	681.81	0.000069	3.48	124788.60	8330.97	0.12
Mississippi	PrIsIToLaCrosse	786.623	IA/MN Max	196932.00	647.42	682.20	666.85	682.30	0.000070	3.50	116666.00	6883.66	0.12
Mississippi	PrIsIToLaCrosse	786.623	WI Fldwy	196932.00	647.42	681.72	666.85	681.81	0.000069	3.48	124812.90	8321.70	0.12
		700.46	100 5	105		L							
Mississippi	PrisiToLaCrosse	786.191 786.191	100-yr Base	197022.00 197022.00	649.40 649.40	681.61 682.10	667.63 667.60	681.66 682.15	0.000045	2.69	153450.50 146057.20	9456.37 8323.46	0.09
Mississippi Mississippi	PrisiToLaCrosse PrisiToLaCrosse	786.191	IA/MN Max WI Fldwy	197022.00	649.40 649.40	682.10	667.60	682.15	0.000045	2.72	146057.20 153289.00	9212.24	0.09
moorooippi				107022.00	040.40	001.02	007.00	001.00	0.00040	2.05	100200.00	JZ 12.24	0.05
Mississippi	PrisiToLaCrosse	785.857	100-yr Base	197068.00	647.16	681.57	667.79	681.59	0.000022	2.05	166759.00	11945.99	0.07
Mississippi	PrisiToLaCrosse	785.857	IA/MN Max	197068.00	647.16	682.05	667.79	682.08	0.000022	2.07	146722.50	8708.91	0.07
Mississippi	PrIsIToLaCrosse	785.857	WI Fldwy	197068.00	647.16	681.57	667.79	681.60	0.000022	2.05	166781.80	10926.58	0.07
Medical	Delattal a October	705 504	400	407044.00	050.50	004.55	000.07	004 57	0.000045		177659.80	44404 75	0.05
Mississippi Mississippi	PrisiToLaCrosse PrisiToLaCrosse	785.584 785.584	100-yr Base IA/MN Max	197011.00 197011.00	652.56 652.56	681.55 682.03	666.97 666.99	681.57 682.05	0.000015	1.41	170527.20	11191.75 9871.01	0.05
Mississippi	PrisiToLaCrosse	785.584	WI Fldwy	197011.00	652.56	681.55	666.97	681.57	0.000015	1.41	177688.30	11142.60	0.05
Mississippi	PrisiToLaCrosse	785.329	100-yr Base	197056.00	650.40	681.52	666.22	681.54	0.000014	1.46	166766.40	10502.23	0.05
Mississippi	PrisiToLaCrosse	785.329	IA/MN Max	197056.00	650.40	682.01	666.48	682.03	0.000014	1.48	160780.30	8925.93	0.05
Mississippi	PrIsIToLaCrosse	785.329	WI Fldwy	197056.00	650.40	681.52	666.22	681.55	0.000014	1.46	166748.60	10466.58	0.05
Mississippi	PrIsIToLaCrosse	785.017	100-yr Base	197102.00	652.52	681.49	666.06	681.52	0.000017	1.58	148301.90	9163.74	0.06
Mississippi	PrisiToLaCrosse	785.017	IA/MN Max	197102.00	652.52	681.97	665.95	682.00	0.000017	1.61	143081.60	8028.24	0.06
Mississippi	PrIsIToLaCrosse	785.017	WI Fldwy	197102.00	652.52	681.49	666.04	681.52	0.000017	1.58	148260.30	9087.17	0.06
Mississippi	PrisiToLaCrosse	784.715	100-yr Base	197147.00	650.20	681.45	665.65	681.49	0.000018	1.63	138980.80	8268.56	0.06
Mississippi	PrisiToLaCrosse PrisiToLaCrosse	784.715 784.715	IA/MN Max WI Fldwy	197147.00 197147.00	650.20 650.20	681.94 681.46	665.84 665.65	681.97 681.49	0.000018	1.63 1.63	133313.70 138910.80	7065.73 8206.29	0.06
Mississippi	FIISITOLACIOSSE	704.713	WITTOWY	19/14/.00	030.20	001.40	005.05	001.49	0.000018	1.03	130910.00	0200.29	0.00
Mississippi	PrisiToLaCrosse	784.471	100-yr Base	197090.00	649.82	681.44	664.44	681.46	0.000013	1.42	157382.70	8355.15	0.05
Mississippi	PrIsIToLaCrosse	784.471	IA/MN Max	197090.00	649.82	681.93	664.44	681.95	0.000013	1.44	154828.90	7892.35	0.05
Mississippi	PrIsIToLaCrosse	784.471	WI Fldwy	197090.00	649.82	681.44	664.44	681.47	0.000013	1.42	157407.50	8294.68	0.05
		701010	100 0	107100.00	0.47.50			001.15			150000.00	0.070.00	0.05
Mississippi Mississippi	PrisiToLaCrosse PrisiToLaCrosse	784.243 784.243	100-yr Base IA/MN Max	197136.00 197136.00	647.59 647.59	681.42 681.91	664.87 664.94	681.45 681.94	0.000013	1.49 1.50	152636.30 149230.50	8072.39 7448.05	0.05
Mississippi	PrisiToLaCrosse	784.243	WI Fldwy	197136.00	647.59	681.43	664.87	681.45	0.000013	1.49	152658.70	8015.38	0.05
Mississippi	PrIsIToLaCrosse	784.020	100-yr Base	197181.00	650.53	681.42	663.18	681.44	0.000009	1.20	180051.80	8796.44	0.04
Mississippi	PrisiToLaCrosse	784.020	IA/MN Max	197181.00	650.53	681.90	663.21	681.92	0.000009	1.21	176602.40	8305.17	0.04
Mississippi	PrIsIToLaCrosse	784.020	WI Fldwy	197181.00	650.53	681.42	663.18	681.44	0.000009	1.20	180077.60	8793.51	0.04
Mississippi	PrIsIToLaCrosse	783.652	100-yr Base	197226.00	650.49	681.41	660.33	681.42	0.000005	0.91	217873.30	9686.19	0.03
Mississippi	PrisiToLaCrosse	783.652	IA/MN Max	197226.00	650.49	681.90	660.32	681.91	0.000005	0.92	213394.40	9031.64	0.03
Mississippi	PrIsIToLaCrosse	783.652	WI Fldwy	197226.00	650.49	681.41	660.33	681.42	0.000005	0.91	217891.50	9624.99	0.03
Mississippi	PrisiToLaCrosse	783.304	100-yr Base	197170.00	650.69	681.40	658.55	681.41	0.000004	0.88	232379.60	9984.76	0.03
Mississippi Mississippi	PrisiToLaCrosse PrisiToLaCrosse	783.304 783.304	IA/MN Max WI Fldwy	197170.00 197170.00	650.69 650.69	681.89 681.40	658.55 658.55	681.90 681.42	0.000004	0.87	224753.50 232409.30	8744.21 9983.38	0.03
Mississippi	I IISH ULACIUSSE	103.304	windwy	19/1/0.00	000.09	001.40	000.00	001.42	0.000004	0.68	202409.30	3903.38	0.03
Mississippi	PrIsIToLaCrosse	783.000	100-yr Base	197215.00	649.31	681.40	656.78	681.41	0.000003	0.73	271963.60	10415.25	0.02
Mississippi	PrIsIToLaCrosse	783.000	IA/MN Max	197215.00	649.31	681.89	656.78	681.89	0.000003	0.73	265943.60	9749.04	0.02
Mississippi	PrIsIToLaCrosse	783.000	WI Fldwy	197215.00	649.31	681.40	656.78	681.41	0.000003	0.73	271994.70	10412.90	0.02
Mississiani	DelalTal aQuerra	791.000	100 v# D	107004.00	040	004.00	050.05	004.00	0.000000	0.00	005007 70	11 100 00	0.00
Mississippi Mississippi	PrisiToLaCrosse PrisiToLaCrosse	781.990 781.990	100-yr Base IA/MN Max	197294.00 197294.00	646.75 646.75	681.39 681.87	653.65 653.65	681.39 681.88	0.000002	0.62	335887.70 328322.90	11492.02 10749.50	0.02
Mississippi Mississippi	PrisiToLaCrosse	781.990	WI Fldwy	197294.00	646.75	681.87	653.65	681.88	0.000002	0.62	328322.90	10749.50	0.02
				2.201.00	2.10.1.0					0.02			0.02
Mississippi	PrIsIToLaCrosse	781.468	100-yr Base	197385.00	644.58	681.38	652.63	681.39	0.000002	0.61	350903.20	11860.60	0.02
Mississippi	PrIsIToLaCrosse	781.468	IA/MN Max	197385.00	644.58	681.87	652.62	681.88	0.000002	0.61	342643.40	11015.29	0.02
Mississippi	PrisiToLaCrosse	781.468	WI Fldwy	197385.00	644.58	681.39	652.63	681.39	0.000002	0.61	350756.00	11760.95	0.02
		780.984	100-yr Base	197476.00	643.00	681.38	651.11	681.38	0.000002	0.70	317206.40	11414.83	0.02
	PrisiTol aCrosso				043.00	001.38	001.11	001.30			011200.40	11414.03	
Mississippi	PrisiToLaCrosse PrisiToLaCrosse				643.00	681.86	651.12	681.87	0,0000021	0.71	307463.90	10401.18	0.02
Mississippi Mississippi Mississippi	PrIsIToLaCrosse PrIsIToLaCrosse PrIsIToLaCrosse	780.984 780.984 780.984	IA/MN Max WI Fldwy	197476.00 197476.00	643.00 643.00	681.86 681.38	651.12 651.11	681.87 681.39	0.000002	0.71	307463.90 317202.60	10401.18 11397.29	0.02
Mississippi Mississippi Mississippi	PrIsIToLaCrosse PrIsIToLaCrosse	780.984 780.984	IA/MN Max WI Fldwy	197476.00 197476.00	643.00	681.38	651.11	681.39	0.000002	0.70	317202.60	11397.29	0.02
Mississippi Mississippi	PrisiToLaCrosse	780.984	IA/MN Max	197476.00									

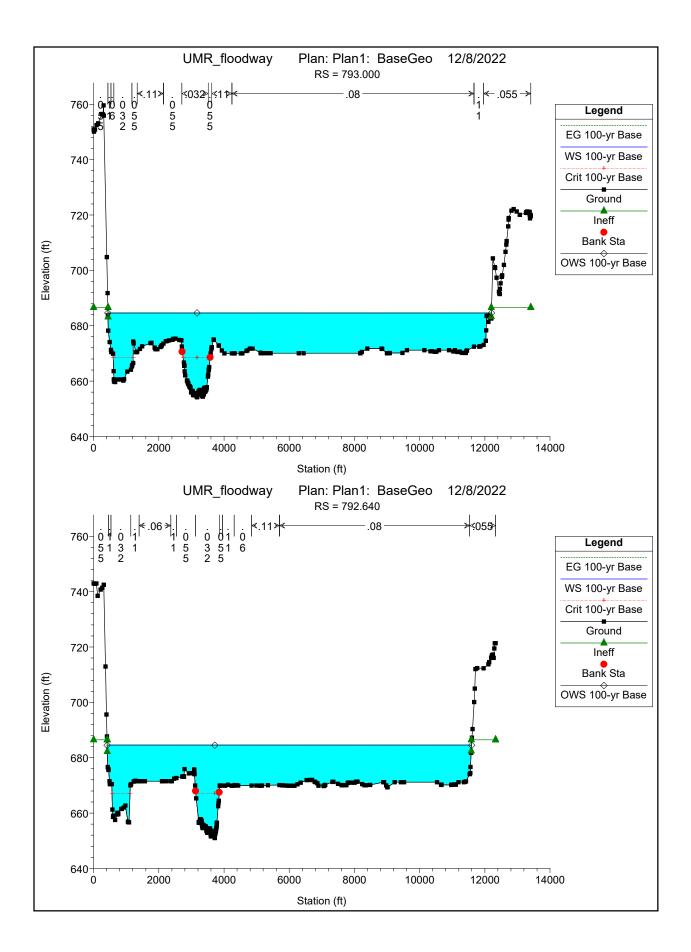

River	n: Plan1 Locations: U Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
				(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
Mississippi	PrisiToLaCrosse	780.631	WI Fldwy	197419.00	642.60	681.37	650.23	681.38	0.000003	0.84	277171.20	11478.29	0.03
Mississippi	PrIsIToLaCrosse	780.191	100-yr Base	197510.00	642.01	681.36	649.67	681.37	0.000003	0.83	273337.60	11036.73	0.03
Mississippi	PrisiToLaCrosse	780.191	IA/MN Max	197510.00	642.01	681.85	649.68	681.86	0.000003	0.84	259801.60	9354.60	0.03
Mississippi	PrisiToLaCrosse	780.191	WI Fldwy	197510.00	642.01	681.36	649.67	681.37	0.000003	0.83	273370.50	11035.33	0.03
		770.004	100 5	(00000.00				001.07		0.74	000754.00	1001015	
Mississippi Mississippi	PrisiToLaCrosse PrisiToLaCrosse	779.984 779.984	100-yr Base IA/MN Max	198626.00 198626.00	642.80 642.80	681.36 681.85	649.94 649.93	681.37 681.85	0.000002	0.74	292751.20 285430.10	10640.15 9589.15	0.02
Mississippi	PrisiToLaCrosse	779.984	WI Fldwy	198626.00	642.80	681.36	649.94	681.37	0.000002	0.74	292783.00	10637.98	
Mississippi	PrisiToLaCrosse	779.811	100-yr Base	198615.00	642.80	681.36	649.88	681.37	0.000002	0.66	317517.60	10485.84	0.02
Mississippi	PrisiToLaCrosse	779.811	IA/MN Max	198615.00	642.80	681.85	649.88	681.85	0.000002	0.67	310787.90	9826.24	0.02
Mississippi	PrisiToLaCrosse	779.811	WI Fldwy	198615.00	642.80	681.36	649.88	681.37	0.000002	0.66	317521.10	10473.85	0.02
Mississippi	PrisiToLaCrosse	779.388	100-yr Base	198832.00	643.00	681.35	649.80	681.36	0.000002	0.67	307850.30	9928.49	0.02
Mississippi	PrisiToLaCrosse	779.388	IA/MN Max	198832.00	643.00	681.84	649.80	681.85	0.000002	0.67	300637.00	9014.51	0.02
Mississippi	PrisiToLaCrosse	779.388	WI Fldwy	198832.00	643.00	681.36	649.80	681.36	0.000002	0.67	307880.00	9915.47	0.02
Mississippi	PrisiToLaCrosse	779.187	100-yr Base	198866.00	642.80	681.35	649.46	681.36	0.000002	0.71	293556.80	12155.20	0.02
Mississippi Mississippi	PrisiToLaCrosse PrisiToLaCrosse	779.187 779.187	IA/MN Max WI Fldwy	198866.00 198866.00	642.80 642.80	681.84 681.35	649.45 649.45	681.85 681.36	0.000002	0.71	285342.60 293585.00	8490.13 9449.95	0.02
wississippi	FIISITOLACIOSSE	115.101	Wirridwy	190000.00	042.00	001.33	049.43	001.30	0.000002	0.71	293303.00	5445.55	0.02
Mississippi	PrisiToLaCrosse	779.000	100-yr Base	198900.00	642.80	681.35	649.02	681.36	0.000002	0.70	288168.40	8854.24	0.02
Mississippi	PrIsIToLaCrosse	779.000	IA/MN Max	198900.00	642.80	681.84	649.02	681.84	0.000002	0.71	282411.00	8138.86	0.02
Mississippi	PrIsIToLaCrosse	779.000	WI Fldwy	198900.00	642.80	681.35	649.02	681.36	0.000002	0.70	288194.60	8817.69	0.02
Minut	Delutt 1 0	770.001	400 - 5	40000	0		A · · · ·				07004	A . · · · ·	ļ]
Mississippi Mississippi	PrisiToLaCrosse	778.664 778.664	100-yr Base	199026.00	643.20 643.20	681.35	649.19 649.19	681.35 681.84	0.000002	0.73	278804.40	8443.44 7922.29	0.02
Mississippi Mississippi	PrisiToLaCrosse PrisiToLaCrosse	778.664	IA/MN Max WI Fldwy	199026.00 199026.00	643.20	681.83 681.35	649.19	681.84	0.000002	0.74	273571.70 278829.60	7922.29 8437.31	0.02
					0.0.20	001.00	0.0.10	001.00	2.000002	0.70		5101.01	0.02
Mississippi	PrisiToLaCrosse	778.290	100-yr Base	199152.00	643.00	681.34	648.85	681.35	0.000003	0.85	252871.70	8402.05	0.02
Mississippi	PrIsIToLaCrosse	778.290	IA/MN Max	199152.00	643.00	681.83	648.85	681.84	0.000003	0.85	244461.40	7323.56	0.02
Mississippi	PrisiToLaCrosse	778.290	WI Fldwy	199152.00	643.00	681.34	648.85	681.35	0.000003	0.85	252896.80	8392.53	0.02
Mississippi	PrisiToLaCrosse	778.074	100-yr Base	199186.00	642.60	681.33	648.04	681.34	0.000003	0.96	227615.70	8275.74	0.03
Mississippi	PrisiToLaCrosse	778.074	IA/MN Max	199186.00	642.60	681.82	648.04	681.83	0.000003	0.96	211534.40	5970.74	0.03
Mississippi	PrisiToLaCrosse	778.074	WI Fldwy	199186.00	642.60	681.33	648.04	681.35	0.000003	0.96	227640.50	8275.77	0.03
			ĺ ĺ										
Mississippi	PrIsIToLaCrosse	777.875	100-yr Base	199232.00	641.22	681.33	647.37	681.34	0.000003	0.94	228968.40	8214.97	0.03
Mississippi	PrIsIToLaCrosse	777.875	IA/MN Max	199232.00	641.22	681.82	647.37	681.83	0.000003	0.95	216609.70	6130.99	0.03
Mississippi	PrIsIToLaCrosse	777.875	WI Fldwy	199232.00	641.22	681.33	647.37	681.34	0.000003	0.94	228944.10	8189.28	0.03
Mississippi	PrisiToLaCrosse	777.488	100-yr Base	199232.00	639.64	681.31	646.63	681.33	0.000005	1.18	200816.40	8529.91	0.03
Mississippi	PrisiToLaCrosse	777.488	IA/MN Max	199232.00	639.64	681.80	646.63	681.82	0.000005	1.10	188679.50	6284.56	0.03
Mississippi	PrisiToLaCrosse	777.488	WI Fldwy	199232.00	639.64	681.32	646.63	681.34	0.000005	1.18	200818.00	8502.00	0.03
Mississippi	PrisiToLaCrosse	777.080	100-yr Base	199232.00	639.25	681.31	646.05	681.32	0.000003	0.93	239466.20	8219.94	0.03
Mississippi	PrisiToLaCrosse	777.080	IA/MN Max	199232.00	639.25	681.80	646.05	681.81	0.000003	0.93	226582.10	6592.74	0.03
Mississippi	PrIsIToLaCrosse	777.080	WI Fldwy	199232.00	639.25	681.31	646.05	681.32	0.000003	0.93	239397.50	8187.34	0.03
Mississippi	PrIsIToLaCrosse	776.665	100-yr Base	199232.00	638.46	681.30	645.03	681.31	0.000003	0.87	235203.20	6742.25	0.02
Mississippi	PrisiToLaCrosse	776.665	IA/MN Max	199232.00	638.46	681.79	645.03	681.80	0.000003	0.88	229092.10	5931.80	0.02
Mississippi	PrIsIToLaCrosse	776.665	WI Fldwy	199232.00	638.46	681.31	645.03	681.32	0.000003	0.87	235223.20	6728.42	0.02
		770.000	100. 5	(00000.00	000.45						050000 10	7015.05	
Mississippi Mississippi	PrisiToLaCrosse PrisiToLaCrosse	776.002	100-yr Base IA/MN Max	199232.00 199232.00	639.45 639.45	681.30 681.78	644.60 644.60	681.31 681.79	0.000002	0.82	256289.40 248922.40	7015.05 6456.90	0.02
Mississippi	PrisiToLaCrosse	776.002	WI Fldwy	199232.00	639.45	681.30	644.60	681.31	0.000002	0.82	256310.30	7001.74	0.02
	-		, í										
Mississippi	PrIsIToLaCrosse	775.186	100-yr Base	199232.00	636.49	681.29	644.23	681.30	0.000002	0.75	285520.80	8317.92	0.02
Mississippi	PrIsIToLaCrosse	775.186	IA/MN Max	199232.00	636.49	681.78	644.23	681.78	0.000002	0.75	272979.80	7421.44	0.02
Mississippi	PrIsIToLaCrosse	775.186	WI Fldwy	199232.00	636.49	681.29	644.23	681.30	0.000002	0.75	285544.30	8315.76	0.02
Mississippi	PrIsIToLaCrosse	774.739	100-yr Base	199232.00	636.68	681.28	644.14	681.29	0.000003	0.81	262015.80	8225.18	0.02
Mississippi	PrisiToLaCrosse	774.739	IA/MN Max	199232.00	636.68	681.77	644.14	681.78	0.000003	0.82	248122.20	6477.78	0.02
Mississippi	PrisiToLaCrosse	774.739	WI Fldwy	199232.00	636.68	681.28	644.14	681.29	0.000003	0.81	261957.00	8209.27	0.02
Minut	Delutt 1 0	774 004	400 - 5	4000	ac = -		A · · · -				0.1707		L
Mississippi	PrisiToLaCrosse	774.330 774.330	100-yr Base IA/MN Max	199232.00 199232.00	637.58	681.27 681.76	644.78 644.78	681.28 681.77	0.000003	1.02	217298.80 201372.70	8549.18 5245.21	0.03
Mississippi Mississippi	PrisiToLaCrosse PrisiToLaCrosse	774.330	WI Fldwy	199232.00	637.58 637.58	681.76	644.78	681.77	0.000003	1.03	201372.70 217324.00	5245.21 8509.62	0.03
					557.50	551.27	544.70	551.25	0.000000	1.02		5505.0Z	0.03
Mississippi	PrIsIToLaCrosse	774.110	100-yr Base	199232.00	637.48	681.27	643.30	681.28	0.000002	0.74	294488.30	9496.50	0.02
Mississippi	PrIsIToLaCrosse	774.110	IA/MN Max	199232.00	637.48	681.76	643.30	681.77	0.000002	0.75	281926.80	7379.76	0.02
Mississippi	PrisiToLaCrosse	774.110	WI Fldwy	199232.00	637.48	681.27	643.30	681.28	0.000002	0.74	294493.20	9470.86	0.02
Mississippi	PrisiToLaCrosse	773.832	100-yr Base	199232.00	637.48	681.27	642.91	681.28	0.000001	0.64	328770.40	9884.96	0.02
Mississippi	PrisiToLaCrosse	773.832	IA/MN Max	199232.00	637.48	681.76	642.91	681.76	0.000001	0.64	316778.10	7815.81	0.02
Mississippi	PrisiToLaCrosse	773.832	WI Fldwy	199232.00	637.48	681.27	642.91	681.28	0.000001	0.64	328799.10	9882.99	0.02
Mississippi	PrisiToLaCrosse	773.623	100-yr Base	199232.00	638.07	681.27	642.94	681.27	0.000001	0.57	366788.50	10392.47	0.02
Mississippi	PrisiToLaCrosse PrisiToLaCrosse	773.623	IA/MN Max	199232.00	638.07	681.76	642.94	681.76	0.000001	0.57	355849.90	9153.40 10384.46	0.02
Mississippi	FISHOLACIOSSE	773.623	WI Fldwy	199232.00	638.07	681.27	642.94	681.28	0.000001	0.57	366817.80	10384.46	0.02
Mississippi	PrIsIToLaCrosse	773.342	100-yr Base	199232.00	637.94	681.27	643.11	681.27	0.000001	0.56	370102.20	10624.69	0.02
Mississippi	PrisiToLaCrosse	773.342	IA/MN Max	199232.00	637.94	681.76	643.11	681.76	0.000001	0.57	357607.80	9068.54	0.02
Mississippi	PrisiToLaCrosse	773.342	WI Fldwy	199232.00	637.94	681.27	643.11	681.28	0.000001	0.56	370130.40	10607.93	0.02
Mississippi	PrisiToLaCrosse	772.832	100-yr Base	199232.00	637.08	681.26	643.38	681.27	0.000001	0.66	313843.40	9562.99	0.02
Mississippi Mississippi	PrisiToLaCrosse PrisiToLaCrosse	772.832 772.832	IA/MN Max WI Fldwy	199232.00 199232.00	637.08 637.08	681.75 681.27	643.38 643.38	681.76 681.27	0.000001	0.67	303217.50 313861.70	7677.77 9546.98	0.02
maaraarphi	a nanoLaciosse	112.002		133232.00	037.08	001.27	043.38	001.27	0.000001	0.00	010001.70	5040.98	0.02
Mississippi	PrisiToLaCrosse	772.560	100-yr Base	199232.00	636.29	681.26	642.39	681.27	0.000001	0.58	355996.10	10878.88	0.02
Mississippi	PrisiToLaCrosse	772.560	IA/MN Max	199232.00	636.29	681.75	642.40	681.75	0.000001	0.58	346150.40	8531.46	

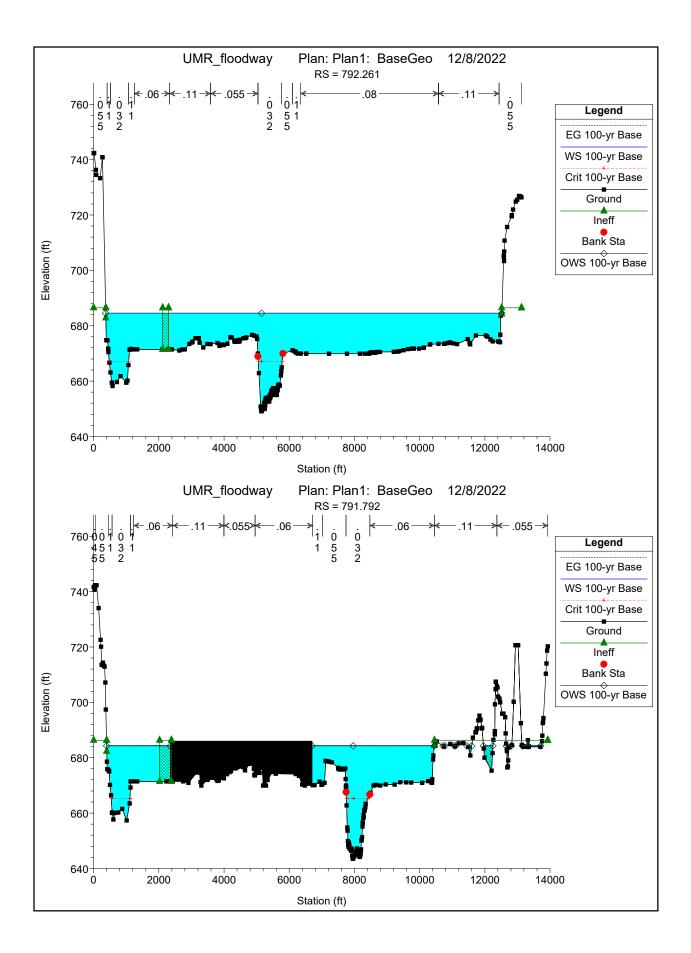

River	n: Plan1 Locations: U: Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
				(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
Mississippi	PrisiToLaCrosse	772.560	WI Fldwy	199232.00	636.29	681.27	642.39	681.27	0.000001	0.58	356025.40	10849.35	0.02
		770.000	100 5	100000.00				004.07					
Mississippi Mississippi	PrisiToLaCrosse PrisiToLaCrosse	772.339 772.339	100-yr Base IA/MN Max	199232.00 199232.00	636.29 636.29	681.26 681.75	642.02 642.02	681.27 681.75	0.000001	0.50	412704.50 403139.30	11546.76 9915.38	0.01
Mississippi	PrisiToLaCrosse	772.339	WI Fldwy	199232.00	636.29	681.26	642.02	681.27	0.000001	0.50	403139.30	11404.84	0.01
Mississippi	PrIsIToLaCrosse	772.092	100-yr Base	199232.00	637.67	681.26	642.09	681.26	0.000001	0.46	452880.60	11919.31	0.01
Mississippi	PrIsIToLaCrosse	772.092	IA/MN Max	199232.00	637.67	681.75	642.09	681.75	0.000001	0.46	443069.80	11001.16	0.01
Mississippi	PrIsIToLaCrosse	772.092	WI Fldwy	199232.00	637.67	681.26	642.09	681.27	0.000001	0.45	452916.20	11918.09	0.01
Mississippi	PrisiToLaCrosse	771.809	100-yr Base	199232.00	638.07	681.26	642.33	681.26	0.000001	0.44	476863.60	13982.99	0.01
Mississippi	PrisiToLaCrosse	771.809	IA/MN Max	199232.00	638.07	681.75	642.33	681.75	0.000001	0.44	463854.20	11797.73	0.01
Mississippi	PrisiToLaCrosse	771.809	WI Fldwy	199232.00	638.07	681.26	642.33	681.27	0.000001	0.44	476870.60	13968.64	0.01
Mississippi	PrisiToLaCrosse PrisiToLaCrosse	771.313 771.313	100-yr Base IA/MN Max	199232.00 199232.00	638.26 638.26	681.26 681.75	642.68	681.26 681.75	0.000001	0.42	496085.70 484403.30	13716.15 12607.02	0.01
Mississippi Mississippi	PrisiToLaCrosse	771.313	WI Fldwy	199232.00	638.26	681.75	642.68	681.75	0.000001	0.43	484403.30 496126.70	12607.02	0.01
Mississippi	PrIsIToLaCrosse	770.876	100-yr Base	199232.00	637.87	681.26	642.56	681.26	0.000001	0.45	476189.50	14553.49	0.01
Mississippi	PrIsIToLaCrosse	770.876	IA/MN Max	199232.00	637.87	681.74	642.56	681.75	0.000001	0.46	448273.30	11393.25	0.01
Mississippi	PrIsIToLaCrosse	770.876	WI Fldwy	199232.00	637.87	681.26	642.56	681.26	0.000001	0.45	476044.70	14511.52	0.01
Mississippi	PrIsIToLaCrosse	770.530	100-yr Base	199232.00	636.69	681.26	642.40	681.26	0.000001	0.45	472145.60	13811.54	0.01
Mississippi	PrisiToLaCrosse	770.530	IA/MN Max	199232.00	636.69	681.74	642.40	681.75	0.000001	0.46	454841.30	11647.54	0.01
Mississippi	PrIsIToLaCrosse	770.530	WI Fldwy	199232.00	636.69	681.26	642.40	681.26	0.000001	0.45	472186.90	13803.99	0.01
Mississippi	PrisiToLaCrosse	769.696	100-yr Base	199232.00	636.69	681.25	642.80	681.26	0.000001	0.45	482406.60	14292.23	0.01
Mississippi Mississippi	PrisiToLaCrosse PrisiToLaCrosse	769.696 769.696	IA/MN Max WI Fldwy	199232.00 199232.00	636.69 636.69	681.74 681.26	642.80 642.80	681.74 681.26	0.000001	0.45	458496.90 482224.80	11613.89 14235.88	0.01
				.33232.00	000.09	001.20	042.00	001.20	0.000001	0.40	.02224.00	17200.00	0.01
Mississippi	PrisiToLaCrosse	768.717	100-yr Base	199232.00	635.50	681.25	642.85	681.25	0.000001	0.49	434893.80	11581.23	0.01
Mississippi	PrIsIToLaCrosse	768.717	IA/MN Max	199232.00	635.50	681.74	642.85	681.74	0.000001	0.49	424027.40	10773.37	0.01
Mississippi	PrIsIToLaCrosse	768.717	WI Fldwy	199232.00	635.50	681.25	642.85	681.25	0.000001	0.49	434928.40	11572.79	0.01
Mississippi	PrisiToLaCrosse	767.605	100-yr Base	199232.00	634.91	681.24	642.08	681.25	0.000001	0.51	409876.40	10764.57	0.01
Mississippi	PrisiToLaCrosse	767.605	IA/MN Max	199232.00	634.91	681.73	642.06	681.73	0.000001	0.51	398986.80	9908.92	0.01
Mississippi	PrisiToLaCrosse	767.605	WI Fldwy	199232.00	634.91	681.25	642.07	681.25	0.000001	0.51	409903.50	10756.58	0.01
Mississippi	PrisiToLaCrosse	766.672	100-yr Base	199232.00	630.97	681.24	640.45	681.24	0.000001	0.60	358500.20	9429.39	0.02
Mississippi Mississippi	PrisiToLaCrosse PrisiToLaCrosse	766.672 766.672	IA/MN Max WI Fldwy	199232.00 199232.00	630.97 630.97	681.72 681.24	640.45 640.45	681.73 681.25	0.000001	0.60	349098.80 358528.30	8716.27 9427.60	0.02
wississippi	PHSHOLACIOSSE	/00.0/2	WIFIGWy	199232.00	030.97	001.24	040.45	001.20	0.000001	0.60	330320.30	9427.00	0.02
Mississippi	PrisiToLaCrosse	765.995	100-yr Base	199232.00	629.32	681.23	638.79	681.24	0.000001	0.74	313765.10	8697.49	0.02
Mississippi	PrIsIToLaCrosse	765.995	IA/MN Max	199232.00	629.32	681.72	638.79	681.72	0.000001	0.75	305568.70	8030.31	0.02
Mississippi	PrIsIToLaCrosse	765.995	WI Fldwy	199232.00	629.32	681.23	638.79	681.24	0.000001	0.74	313785.90	8690.08	0.02
Minulaul	Delattal a Oscara	705 500	400	400000.00	000.00	004.00	007.50	004.00	0.000000	0.01	070700.00	0700.04	0.00
Mississippi Mississippi	PrisiToLaCrosse PrisiToLaCrosse	765.528 765.528	100-yr Base IA/MN Max	199232.00 199232.00	626.80 626.80	681.22 681.71	637.59 637.59	681.23 681.72	0.000002	0.91	273769.60 263654.80	8769.91 7674.01	0.02
Mississippi	PrisiToLaCrosse	765.528	WI Fldwy	199232.00	626.80	681.23	637.59	681.24	0.000002	0.91	273795.80	8759.29	0.02
Mississippi	PrIsIToLaCrosse	765.103	100-yr Base	199232.00	622.56	681.19	634.06	681.22	0.000006	1.68	215139.20	9096.80	0.04
Mississippi	PrisiToLaCrosse PrisiToLaCrosse	765.103 765.103	IA/MN Max WI Fldwy	199232.00 199232.00	622.56 622.56	681.67 681.19	634.06 634.06	681.71 681.23	0.000006	1.69 1.68	206390.30 215165.40	7752.42 8755.97	0.04
Mississippi	PHSHOLACIOSSE	705.105	WIFIGWy	199232.00	022.30	001.19	034.00	001.23	0.000006	1.00	213105.40	0/00.9/	0.04
Mississippi	PrisiToLaCrosse	764.552	100-yr Base	199232.00	639.50	681.06	660.87	681.18	0.000078	3.34	113343.90	8825.10	0.11
Mississippi	PrisiToLaCrosse	764.552	IA/MN Max	199232.00	639.50	681.54	660.87	681.67	0.000079	3.35	106645.90	7082.32	0.11
Mississippi	PrIsIToLaCrosse	764.552	WI Fldwy	199232.00	639.50	681.06	660.87	681.19	0.000078	3.34	113369.10	8079.17	0.11
Mississinni	PrisiToLaCrosse	764.091	100 ur Bass	199232.00	626 52	680.86	659.34	680.99	0.000079	3.25	123821.50	10520.38	0.11
Mississippi Mississippi	PrisiToLaCrosse	764.091	100-yr Base IA/MN Max	199232.00	636.52 636.52	681.34	659.34	681.47	0.000079	3.25	117418.40	7149.97	0.11
Mississippi	PrisiToLaCrosse	764.091	WI Fldwy	199232.00	636.52	680.87	659.34	680.99	0.000079	3.25	123847.60	8066.23	0.11
Mississippi	PrisiToLaCrosse	763.659	100-yr Base	199232.00	638.70	680.53	661.86	680.76	0.000124	4.43	104038.50	11188.56	0.15
Mississippi Mississippi	PrisiToLaCrosse PrisiToLaCrosse	763.659 763.659	IA/MN Max WI Fldwy	199232.00 199232.00	638.70 638.70	681.00 680.54	661.86 661.86	681.24 680.76	0.000125	4.46 4.43	96774.06 104067.00	7316.29 8357.31	0.15
mississippi	I IISH ULACIUSSE	103.039	withdwy	153232.00	030.70	000.04	08.100	000.70	0.000124	4.43	104007.00	0307.31	0.15
Mississippi	PrisiToLaCrosse	763.082	100-yr Base	229611.00	640.57	680.17	663.96	680.38	0.000124	4.73	106218.20	11723.27	0.16
Mississippi	PrIsIToLaCrosse	763.082	IA/MN Max	229611.00	640.57	680.64	663.96	680.85	0.000125	4.76	98845.95	8008.56	0.16
Mississippi	PrisiToLaCrosse	763.082	WI Fldwy	229611.00	640.57	680.17	663.96	680.38	0.000123	4.72	106252.60	9249.15	0.16
Mississippi	PrisiToLaCrosse	762.578	100-yr Base	229611.00	653.24	679.86	665.76	680.06	0.000142	4.51	129288.20	13485.32	0.16
Mississippi	PrisiToLaCrosse	762.578	IA/MN Max	229611.00	653.24	680.32	665.77	680.06	0.000142	4.51	129288.20	9460.39	0.16
Mississippi	PrisiToLaCrosse	762.578	WI Fldwy	229611.00	653.24	679.86	665.77	680.07	0.000142	4.51	129328.00	10804.65	0.16
Mississippi	PrisiToLaCrosse	762.273	100-yr Base	229611.00	650.04	679.60	666.97	679.76	0.000236	4.39	127226.10	14424.04	0.16
Mississippi Mississippi	PrisiToLaCrosse PrisiToLaCrosse	762.273 762.273	IA/MN Max WI Fldwy	229611.00 229611.00	650.04 650.04	680.05 679.60	666.97	680.23 679.77	0.000236	4.45 4.39	117730.20 127272.70	9727.76 11576.30	0.16
maaraarippi	. HarroLaGiusse	102.210		223011.00	030.04	079.00	000.97	019.11	0.000235	4.39	121212.10	11370.30	0.10
Mississippi	PrisiToLaCrosse	762.062	100-yr Base	229611.00	638.79	679.26	664.97	679.52	0.000168	5.41	123067.10	14804.18	0.18
Mississippi	PrIsIToLaCrosse	762.062	IA/MN Max	229611.00	638.79	679.71	664.97	679.99	0.000169	5.48	113931.10	9501.80	0.18
Mississippi	PrisiToLaCrosse	762.062	WI Fldwy	229611.00	638.79	679.26	664.97	679.53	0.000168	5.41	123114.30	11774.09	0.18
Mississippi	PrIsIToLaCrosse	761.826	100-yr Base	229611.00	647.34	679.05	665.46	679.31	0.000170	5.44	136286.10	15237.57	0.18
Mississippi	PrisiToLaCrosse	761.826	IA/MN Max	229611.00	647.34	679.05	665.47	679.31	0.000170	5.44	125335.40	9686.78	0.18
Mississippi	PrisiToLaCrosse	761.826	WI Fldwy	229611.00	647.34	679.06	665.47	679.31	0.000170	5.44	136338.40	12012.16	0.18
Mississippi	PrIsIToLaCrosse	761.327	100-yr Base	229611.00	644.03	678.66	664.10	678.89	0.000157	4.80	134838.80	16334.71	0.17
Mississippi	PrisiToLaCrosse PrisiToLaCrosse	761.327 761.327	IA/MN Max WI Fldwy	229611.00 229611.00	644.03 644.03	679.11 678.66	664.06 664.10	679.35 678.89	0.000158	4.87 4.80	127235.80 134898.00	11167.42 12774.44	0.17
Mississippi	. HarroLaGiosse	101.021		223011.00	044.03	0/0.00	004.10	070.09	0.000157	4.00	104090.00	12114.44	0.17
Mississippi	PrisiToLaCrosse	760.994	100-yr Base	229611.00	644.64	678.29	664.27	678.57	0.000177	5.22	133539.20	17359.24	0.19
Mississippi			IA/MN Max	229611.00	644.64	678.74	664.26	679.03	0.000178	5.29	124673.90	11754.29	0.19

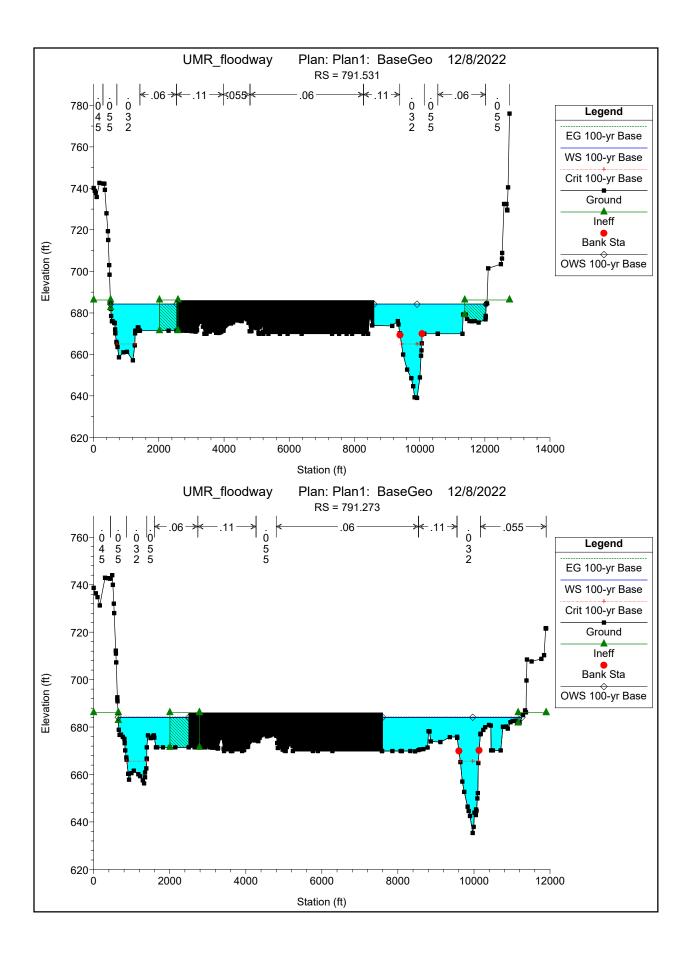

Mississippi PristT Mississ	Reach rtsIToLaCrosse	River Sta 760.994 760.759 760.759 760.759 760.495 760.495 760.495 760.495 760.400 760.400 760.400 760.216 760.216 760.216 760.2 760.181 760.181 760.181	Profile WI Fldwy 100-yr Base IA/MN Max WI Fldwy 100-yr Base IA/MN Max WI Fldwy 100-yr Base IA/MN Max WI Fldwy 100-yr Base IA/MN Max	Q Total (dfs) (dfs) 229611.00 229611.00 229611.00 229611.00 229611.00 229611.00 229611.00 229611.00 229611.00 229611.00 229611.00	Min Ch El (ft) 644.64 642.41 642.41 642.41 644.41 644.41 644.41 644.41 643.73 643.73 643.73 643.73	W.S. Elev (ft) 678.30 678.05 678.50 678.50 677.82 677.82 677.82 677.82 677.77 678.23 677.78	Crit W.S. (ft) 664.27 663.34 663.34 663.34 662.94 662.92 662.94 662.94 665.31	E.G. Elev (ft) 678.58 678.34 678.34 678.30 678.34 678.10 678.56 678.11	E.G. Slope (ft/ft) 0.000177 0.000178 0.000179 0.000178 0.000170 0.000173 0.000173	Vel Chnl (ft/s) 5.21 5.47 5.54 5.47 5.54 5.50 5.50 5.54 5.49	Flow Area (sq ft) 133607.20 142371.60 131785.30 142447.90 141621.90 134811.50	Top Width (ft) 13263.59 15918.74 11953.28 14602.07 15728.67	Froude # Chl 0.19 0.19 0.19 0.19 0.19 0.19 0.18
Mississippi PrisIT.	rIsITOLaCrosse rIsITOLaCrosse rIsITOLaCrosse rIsITOLaCrosse rIsITOLaCrosse rIsITOLaCrosse rIsITOLaCrosse rIsITOLaCrosse rIsITOLaCrosse rIsITOLaCrosse rIsITOLaCrosse rIsITOLaCrosse rIsITOLaCrosse rIsITOLaCrosse rIsITOLaCrosse rIsITOLaCrosse rIsITOLaCrosse rIsITOLaCrosse rIsITOLaCrosse rIsITOLaCrosse	760.759 760.759 760.759 760.495 760.495 760.495 760.400 760.400 760.400 760.216 760.216 760.216 760.216 760.218 760.181 760.181 760.181 759.926	100-yr Base IA/MN Max WI Fidwy 100-yr Base IA/MN Max WI Fidwy 100-yr Base IA/MN Max WI Fidwy I00-yr Base IA/MN Max	229611.00 229611.00 229611.00 229611.00 229611.00 229611.00 229611.00 229611.00 229611.00 229611.00 229611.00	644.64 642.41 642.41 642.41 644.41 644.41 644.41 643.73 643.73 643.73	678.30 678.05 678.50 678.50 677.82 677.82 677.82 677.77 678.23	664.27 663.34 663.34 663.34 663.34 662.94 662.92 662.94	678.58 678.34 678.80 678.34 678.10 678.10 678.56	0.000177 0.000178 0.000179 0.000179 0.000178 0.000170 0.000173	5.21 5.47 5.54 5.47 5.50 5.50 5.54	133607.20 142371.60 131785.30 142447.90 141621.90	13263.59 15918.74 11953.28 14602.07 15728.67	0.19 0.19 0.19
Mississippi PrisIT Mississ	risiToLaCrosse risiToLaCrosse risiToLaCrosse risiToLaCrosse risiToLaCrosse risiToLaCrosse risiToLaCrosse risiToLaCrosse risiToLaCrosse risiToLaCrosse risiToLaCrosse risiToLaCrosse risiToLaCrosse risiToLaCrosse risiToLaCrosse risiToLaCrosse risiToLaCrosse risiToLaCrosse risiToLaCrosse	760.759 760.759 760.495 760.495 760.495 760.400 760.400 760.400 760.216 760.216 760.216 760.216 760.2 760.181 760.181 760.181 759.926	IA/MN Max WI Fidwy 100-yr Base IA/MN Max WI Fidwy 100-yr Base IA/MN Max WI Fidwy 100-yr Base IA/MN Max WI Fidwy 100-yr Base IA/MN Max	229611.00 229611.00 229611.00 229611.00 229611.00 229611.00 229611.00 229611.00 229611.00 229611.00	642.41 642.41 644.41 644.41 644.41 644.73 643.73 643.73	678.50 678.06 677.82 678.26 677.82 677.77 678.23	663.34 663.34 662.94 662.92 662.94	678.80 678.34 678.10 678.56	0.000179 0.000178 0.000170 0.000170	5.54 5.47 5.50 5.54	131785.30 142447.90 141621.90	11953.28 14602.07 15728.67	0.19 0.19
Mississippi PrisIT Mississ	risiToLaCrosse risiToLaCrosse risiToLaCrosse risiToLaCrosse risiToLaCrosse risiToLaCrosse risiToLaCrosse risiToLaCrosse risiToLaCrosse risiToLaCrosse risiToLaCrosse risiToLaCrosse risiToLaCrosse risiToLaCrosse risiToLaCrosse risiToLaCrosse risiToLaCrosse risiToLaCrosse risiToLaCrosse	760.759 760.759 760.495 760.495 760.495 760.400 760.400 760.400 760.216 760.216 760.216 760.216 760.2 760.181 760.181 760.181 759.926	IA/MN Max WI Fidwy 100-yr Base IA/MN Max WI Fidwy 100-yr Base IA/MN Max WI Fidwy 100-yr Base IA/MN Max WI Fidwy 100-yr Base IA/MN Max	229611.00 229611.00 229611.00 229611.00 229611.00 229611.00 229611.00 229611.00 229611.00 229611.00	642.41 642.41 644.41 644.41 644.41 644.73 643.73 643.73	678.50 678.06 677.82 678.26 677.82 677.77 678.23	663.34 663.34 662.94 662.92 662.94	678.80 678.34 678.10 678.56	0.000179 0.000178 0.000170 0.000170	5.54 5.47 5.50 5.54	131785.30 142447.90 141621.90	11953.28 14602.07 15728.67	0.19 0.19
Mississippi PristT Mississ	rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse	760.759 760.495 760.495 760.495 760.400 760.400 760.400 760.216 760.216 760.216 760.216 760.216 760.181 760.181 760.181 759.926	WI Fldwy 100-yr Base IA/MN Max WI Fldwy 100-yr Base IA/MN Max WI Fldwy I00-yr Base IA/MN Max WI Fldwy 100-yr Base IA/MN Max	229611.00 229611.00 229611.00 229611.00 229611.00 229611.00 229611.00 229611.00 229611.00	642.41 644.41 644.41 644.41 643.73 643.73 643.73	678.06 677.82 678.26 677.82 677.77 678.23	663.34 662.94 662.92 662.94	678.34 678.10 678.56	0.000178 0.000170 0.000173	5.47 5.50 5.54	142447.90 141621.90	14602.07 15728.67	0.19
Mississippi PristT Mississippi PristT	rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse	760.495 760.495 760.495 760.400 760.400 760.400 760.216 760.216 760.2 760.2 760.181 760.181 760.181 759.926 759.926	100-yr Base IAMN Max WI Fldwy 100-yr Base IA/MN Max WI Fldwy 100-yr Base IA/MN Max WI Fldwy 100-yr Base IA/MN Max	229611.00 229611.00 229611.00 229611.00 229611.00 229611.00 229611.00 229611.00	644.41 644.41 644.41 643.73 643.73 643.73	677.82 678.26 677.82 677.77 678.23	662.94 662.92 662.94	678.10 678.56	0.000170 0.000173	5.50 5.54	141621.90	15728.67	
Mississippi PristT.	risIToLaCrosse risIToLaCrosse risIToLaCrosse risIToLaCrosse risIToLaCrosse risIToLaCrosse risIToLaCrosse risIToLaCrosse risIToLaCrosse risIToLaCrosse risIToLaCrosse risIToLaCrosse risIToLaCrosse risIToLaCrosse	760.495 760.495 760.400 760.400 760.400 760.216 760.216 760.216 760.216 760.216 760.181 760.181 760.181 759.926 759.926	IA/MN Max WI Fidwy 100-yr Base IA/MN Max WI Fidwy 100-yr Base IA/MN Max 100-yr Base IA/MN Max	229611.00 229611.00 229611.00 229611.00 229611.00 229611.00 229611.00	644.41 644.41 643.73 643.73 643.73	678.26 677.82 677.77 678.23	662.92 662.94	678.56	0.000173	5.54			0.18
Mississippi PristT Mississippi PristT Missis	rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse	760.495 760.400 760.400 760.400 760.216 760.216 760.2 760.2 760.181 760.181 760.181 760.181 759.926 759.926	WI Fldwy 100-yr Base IA/MN Max WI Fldwy 100-yr Base IA/MN Max WI Fldwy 100-yr Base IA/MN Max	229611.00 229611.00 229611.00 229611.00 229611.00 229611.00	644.41 643.73 643.73 643.73	677.82 677.77 678.23	662.94				134811.501		
Mississippi PrlsIT Mississippi PrlsIT	risiToLaCrosse risiToLaCrosse risiToLaCrosse risiToLaCrosse risiToLaCrosse risiToLaCrosse risiToLaCrosse risiToLaCrosse risiToLaCrosse risiToLaCrosse risiToLaCrosse risiToLaCrosse	760.400 760.400 760.400 760.216 760.216 760.216 760.2 760.181 760.181 760.181 759.926 759.926	100-yr Base IA/MN Max WI Fidwy 100-yr Base IA/MN Max WI Fidwy 100-yr Base IA/MN Max	229611.00 229611.00 229611.00 229611.00 229611.00 229611.00	643.73 643.73 643.73	677.77 678.23		678.11	0.000169			12174.27	0.18
Mississippi PrisIT: Mississippi PrisIT: Mississip	rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse	760.400 760.400 760.216 760.216 760.216 760.216 760.216 760.181 760.181 760.181 759.926 759.926	IA/MN Max WI Fldwy 100-yr Base IA/MN Max WI Fldwy 100-yr Base IA/MN Max	229611.00 229611.00 229611.00 229611.00 229611.00	643.73 643.73	678.23	665.31			5.49	141698.80	15063.63	0.18
Mississippi PristT Mississippi PristT Missis	rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse	760.400 760.400 760.216 760.216 760.216 760.216 760.216 760.181 760.181 760.181 759.926 759.926	IA/MN Max WI Fldwy 100-yr Base IA/MN Max WI Fldwy 100-yr Base IA/MN Max	229611.00 229611.00 229611.00 229611.00 229611.00	643.73 643.73	678.23	005.51	678.00	0.000173	5.25	122586.30	15000.14	0.18
Mississippi PristT Mississippi PristT Missis	rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse	760.400 760.216 760.216 760.216 760.2 760.181 760.181 760.181 759.926 759.926	WI Fidwy 100-yr Base IA/MN Max WI Fidwy 100-yr Base IA/MN Max	229611.00 229611.00 229611.00	643.73		665.31	678.46	0.000173	5.25	119933.70	15909.14 12235.25	0.18
Mississippi PristT Mississippi PristT	rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse	760.216 760.216 760.216 760.2 760.181 760.181 760.181 759.926 759.926	100-yr Base IA/MN Max WI Fidwy 100-yr Base IA/MN Max	229611.00 229611.00			665.31	678.01	0.000173	5.25	122654.40	14994.04	0.18
Mississippi PristT Mississippi PristT	rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse	760.216 760.216 760.2 760.181 760.181 760.181 759.926 759.926	IA/MN Max WI Fldwy 100-yr Base IA/MN Max	229611.00	642.43								
Mississippi PristT Mississippi PristT Missis	rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse	760.216 760.2 760.181 760.181 760.181 760.181 759.926 759.926	WI Fldwy 100-yr Base IA/MN Max			677.69	664.11	677.87	0.000079	4.02	70217.59	15434.44	0.14
Mississippi PrlsIT Mississippi PrlsIT Missis	rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse	760.2 760.181 760.181 760.181 760.181 759.926 759.926	100-yr Base IA/MN Max	229611.00	642.43	678.15	664.09	678.33	0.000074	3.93	71520.89	12325.44	0.14
Mississippi PristT Mississippi PristT	rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse	760.181 760.181 760.181 759.926 759.926	IA/MN Max		642.43	677.69	664.11	677.87	0.000079	4.02	70240.44	13915.57	0.14
Mississippi PristT Mississippi PristT	rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse	760.181 760.181 760.181 759.926 759.926	IA/MN Max	Defetere									
Mississippi PristT Mississippi PristT	rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse	760.181 760.181 759.926 759.926	IA/MN Max	Bridge		ł							
Mississippi PristT Mississippi PristT	rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse	760.181 760.181 759.926 759.926	IA/MN Max	229611.00	642.30	677.42	666.65	677.82	0.000185	6.20	54347.52	15557.62	0.22
Mississippi PristT Mississippi PristT Mississipi PristT Mississippi PristT Mississippi PristT Mississ	rlsiToLaCrosse rlsiToLaCrosse rlsiToLaCrosse	759.926 759.926		229611.00	642.30	677.91	666.66	678.29	0.000171	5.98	55927.42	12308.07	0.21
Mississippi PristT Mississippi PristT	rlsIToLaCrosse rlsIToLaCrosse	759.926	WI Fldwy	229611.00	642.30	677.42	666.65	677.83	0.000185	6.20	54367.45	14023.73	0.22
Mississippi PristT Mississippi PristT	rlsIToLaCrosse rlsIToLaCrosse	759.926											
Mississippi PristT Mississippi PristT	rlslToLaCrosse		100-yr Base	229611.00	645.99	677.37	667.35	677.53	0.000113	4.66	140750.90	15098.92	0.17
Mississippi PrisIT Mississippi PrisIT			IA/MN Max	229611.00	645.99	677.84	667.35	678.01	0.000114	4.69	133505.30	11552.81	0.17
Mississippi PristT Mississ		759.926	WI Fldwy	229611.00	645.99	677.37	667.35	677.53	0.000113	4.65	140792.20	15032.40	0.17
Mississippi PristT Mississ	rlslToLaCrosse	759.684	100-yr Base	229611.00	647.38	677.31	667.75	677.39	0.000066	3.61	147763.40	15160.14	0.13
Mississippi PristT Mississippi PristT Mississipi PristT Mississippi PristT Mississippi PristT Mississ	risiToLaCrosse	759.684	IA/MN Max	229611.00	647.38	677.78	667.70	677.87	0.000067	3.63	140359.90	11529.75	0.13
Mississippi PrlsIT. Mississippi PrlsIT.	rlslToLaCrosse	759.684	WI Fldwy	229611.00	647.38	677.31	667.75	677.40	0.000066	3.60	147791.80	14971.20	0.13
Mississippi PristT Mississippi PristT Mississipi PristT Mississippi PristT Mississippi PristT Mississ													
Mississippi PrisIT Mississippi PrisIT Mississipi PrisIT Mississippi PrisIT Mississippi PrisIT Mississ	rlslToLaCrosse	759.458	100-yr Base	229611.00	650.43	677.26	663.72	677.31	0.000041	2.67	148451.40	14237.99	0.10
Mississippi PrlsIT Mississippi PrlsIT	risiToLaCrosse	759.458	IA/MN Max	229611.00	650.43	677.74	663.72	677.79	0.000041	2.69	142074.30	10964.86	0.10
Mississippi PristT: Mississippi PristT: Mississip	rlslToLaCrosse	759.458	WI Fldwy	229611.00	650.43	677.27	663.72	677.32	0.000041	2.67	148308.00	14109.08	0.10
Mississippi PristT: Mississippi PristT: Mississip	rlslToLaCrosse	759.170	100-yr Base	229611.00	655.22	677.15	668.29	677.23	0.000090	3.51	147218.40	14647.94	0.14
Mississippi PrisIT Mississippi PrisIT	risiToLaCrosse	759.170	IA/MN Max	229611.00	655.22	677.62	668.17	677.71	0.000090	3.57	143966.30	11956.86	0.14
Mississippi PrlsIT. Mississippi PrlsIT.	risiToLaCrosse	759.170	WI Fldwy	229611.00	655.22	677.15	668.29	677.24	0.000090	3.51	147247.60	14627.17	0.14
Mississippi PristT: Mississippi PristT:										-			
Mississippi PristT Mississippi PristT	rlslToLaCrosse	758.833	100-yr Base	229611.00	652.49	677.03	667.37	677.09	0.000060	3.13	155104.20	15160.93	0.12
Mississippi PrlsIT. Mississippi PrlsIT.	rlslToLaCrosse	758.833	IA/MN Max	229611.00	652.49	677.50	667.41	677.57	0.000060	3.17	148992.20	11971.29	0.12
Mississippi PristT: Mississippi PristT: Missippi PristT: Missipi PristT: Missippi PristT:	rlslToLaCrosse	758.833	WI Fldwy	229611.00	652.49	677.03	667.37	677.09	0.000060	3.13	155070.50	15129.55	0.12
Mississippi PristT: Mississippi PristT: Missippi PristT: Missipi PristT: Missippi PristT:		758.299	100 ur Bass	229611.00	643.54	676.85	666.70	676.91	0.000057	3.01	150060.00	14301.85	0.11
Mississippi PristT. Mississippi PristT.	rlslToLaCrosse rlslToLaCrosse	758.299	100-yr Base IA/MN Max	229611.00	643.54	677.33	666.68	677.39	0.000057	3.06	152263.80 141023.30	11170.66	0.11
Mississippi PrlsIT. Mississippi PrlsIT.	rlslToLaCrosse	758.299	WI Fldwy	229611.00	643.54	676.86	666.70	676.92	0.000056	3.01	152351.40	14289.49	0.11
Mississippi PristT Mississippi PristT			, í										
Mississippi PrlsIT. Mississippi PrlsIT.	rlslToLaCrosse	758.010	100-yr Base	229611.00	649.15	676.72	666.84	676.80	0.000068	3.39	133920.50	14848.46	0.13
Mississippi PrlsIT. Mississippi PrlsIT.	rlsIToLaCrosse	758.010	IA/MN Max	229611.00	649.15	677.20	666.76	677.28	0.000068	3.44	127634.90	9851.17	0.13
Mississippi PrisIT. Mississippi PrisIT.	rlslToLaCrosse	758.010	WI Fldwy	229611.00	649.15	676.73	666.84	676.81	0.000068	3.39	133999.40	14700.91	0.13
Mississippi PrisIT. Mississippi PrisIT.		757 669	100 ur Bass	220611.00	652.51	676 50	666.07	676.69	0.000072	2.26	110407.60	15 400 71	0.12
Mississippi PristT Mississippi PristT	rlslToLaCrosse rlslToLaCrosse	757.668 757.668	100-yr Base IA/MN Max	229611.00 229611.00	653.51 653.51	676.59 677.07	666.97 667.01	676.68 677.16	0.000073	3.26 3.31	119497.60 116479.50	15488.71 8669.63	0.13
Mississippi PrtsIT. Mississippi PrtsIT.	rlslToLaCrosse	757.668	WI Fldwy	229611.00	653.51	676.60	666.97	676.68	0.000073	3.26	119565.70	15487.39	0.13
Mississippi PristT: Mississippi PristT: Mississippi PristT: Mississippi PristT: Mississippi PristT: Mississippi PristT: Mississippi PristT: Mississippi PristT: Mississippi PristT:													
Mississippi PrIsIT. Mississippi PrIsIT. Mississippi PrIsIT. Mississippi PrIsIT. Mississippi PrIsIT. Mississippi PrIsIT. Mississippi PrIsIT. Mississippi PrIsIT. Mississippi PrIsIT.	rlslToLaCrosse	757.381	100-yr Base	229611.00	653.12	676.47	665.14	676.57	0.000080	3.53	107455.30	16049.33	0.14
Mississippi PrlsIT Mississippi PrlsIT Mississippi PrlsIT Mississippi PrlsIT Mississippi PrlsIT Mississippi PrlsIT Mississippi PrlsIT Mississippi PrlsIT	rlslToLaCrosse	757.381	IA/MN Max	229611.00	653.12	676.95	665.14	677.05	0.000080	3.59	105899.30	7427.78	0.14
Mississippi PrIsIT Mississippi PrIsIT Mississippi PrIsIT Mississippi PrIsIT Mississippi PrIsIT Mississippi PrIsIT Mississippi PrIsIT Mississippi PrIsIT	rlslToLaCrosse	757.381	WI Fldwy	229611.00	653.12	676.48	665.14	676.58	0.000080	3.53	107513.80	16049.88	0.14
Mississippi PrIsIT Mississippi PrIsIT Mississippi PrIsIT Mississippi PrIsIT Mississippi PrIsIT Mississippi PrIsIT Mississippi PrIsIT Mississippi PrIsIT		757 405	100 D-	0000110-	0	070.0-	001 =-	070.15	0.000007		04404.01	44700.01	
Mississippi PrIsIT Mississippi PrIsIT Mississippi PrIsIT Mississippi PrIsIT Mississippi PrIsIT Mississippi PrIsIT Mississippi PrIsIT	rlslToLaCrosse rlslToLaCrosse	757.105	100-yr Base	229611.00	641.29	676.35 676.83	661.79	676.47	0.000067	3.43 3.47	94481.04	14793.31 6287.12	0.13
Mississippi PrIsIT Mississippi PrIsIT Mississippi PrIsIT Mississippi PrIsIT Mississippi PrIsIT	risiToLaCrosse	757.105 757.105	IA/MN Max WI Fldwy	229611.00 229611.00	641.29 641.29	676.83	661.75 661.79	676.95 676.48	0.000067	3.47	93916.81 94531.42	6287.12 14790.63	0.13
Mississippi PrIsIT Mississippi PrIsIT Mississippi PrIsIT Mississippi PrIsIT				223011.00	041.23	070.30	001.78	070.40	0.00007	0.40	0.001.42		0.13
Mississippi PrIsIT Mississippi PrIsIT Mississippi PrIsIT Mississippi PrIsIT	rlslToLaCrosse	756.765	100-yr Base	229611.00	653.40	676.20	663.00	676.34	0.000098	3.67	86410.75	14366.27	0.15
Mississippi PrIsIT Mississippi PrIsIT	rlslToLaCrosse	756.765	IA/MN Max	229611.00	653.40	676.67	663.35	676.82	0.000098	3.73	84744.23	5816.77	0.15
Mississippi PrIsIT	rlslToLaCrosse	756.765	WI Fldwy	229611.00	653.40	676.21	663.00	676.34	0.000098	3.67	86344.86	14346.50	0.15
Mississippi PrIsIT		750.057	100 5										
		756.373	100-yr Base	229611.00	653.66	675.97	664.47	676.13	0.000104	3.70	75525.72	12656.26	0.15
	risiToLaCrosse	756.373 756.373	IA/MN Max WI Fldwy	229611.00 229611.00	653.66 653.66	676.44 675.98	664.59 664.47	676.61 676.13	0.000104	3.76 3.70	73858.54 75519.13	4900.56 12643.04	0.15
maaraarppi P1ISIT	rlslToLaCrosse	100.010	241 LIGWY	223011.00	000.00	010.96	004.47	070.13	0.000104	3.10	10018.13	12043.04	0.15
Mississippi PrIsIT		755.996	100-yr Base	229611.00	653.73	675.79	662.73	675.92	0.000099	3.68	84299.00	13938.42	0.15
Mississippi PrIsIT	rlslToLaCrosse	755.996	IA/MN Max	229611.00	653.73	676.26	662.81	676.40	0.000099	3.75	81967.23	5258.53	0.15
	rlslToLaCrosse rlslToLaCrosse	755.996	WI Fldwy	229611.00	653.73	675.80	662.73	675.93	0.000099	3.68	84348.21	13938.88	0.15
	rlsiToLaCrosse rlsiToLaCrosse rlsiToLaCrosse					T]				7		
	rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse		100-yr Base	229611.00	643.03	675.60	657.27	675.68	0.000045	2.55	104051.30	13327.38	0.10
	risiToLaCrosse risiToLaCrosse risiToLaCrosse risiToLaCrosse risiToLaCrosse risiToLaCrosse	755.463	IA/MN Max	229611.00	643.03	676.08	657.27	676.16	0.000045	2.58	99527.84	5827.44	0.10
Mississippi PrIsIT	rlsIToLaCrosse rlsIToLaCrosse rlsIToLaCrosse rlsIToLaCrosse rlsIToLaCrosse rlsIToLaCrosse rlsIToLaCrosse rlsIToLaCrosse	755.463	WI Fldwy	229611.00	643.03	675.61	657.27	675.69	0.000045	2.55	104104.80	13320.97	0.10
Mississippi PrIsIT	risiToLaCrosse risiToLaCrosse risiToLaCrosse risiToLaCrosse risiToLaCrosse risiToLaCrosse		100-yr Base	229611.00	648.65	675.47	662.62	675.59	0.000077	3.61	97485.73	13844.89	0.14
	rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse	755.463 755.463	IA/MN Max	229611.00	648.65	675.94	662.65	676.07	0.000077	3.66	97465.73	6498.93	0.14
	rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse	755.463 755.463 755.186		229611.00	648.65	675.48	662.62	675.60	0.000077	3.61	97549.19	13847.77	0.14
	rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse	755.463 755.463	WI Fldwy										
	rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse rIsIToLaCrosse	755.463 755.463 755.186 755.186	WI Fldwy	229611.00	648.31	675.40	662.26	675.50	0.000065	3.15	108445.30	14745.09	0.12
	risIToLaCrosse risIToLaCrosse risIToLaCrosse risIToLaCrosse risIToLaCrosse risIToLaCrosse risIToLaCrosse risIToLaCrosse risIToLaCrosse risIToLaCrosse	755.463 755.463 755.186 755.186 755.186 755.186 755.186 755.200	100-yr Base				662.21	675.98	0.000065	3.19	104159.00	6979.75	0.12
Mississippi PrIsIT	risiToLaCrosse risiToLaCrosse risiToLaCrosse risiToLaCrosse risiToLaCrosse risiToLaCrosse risiToLaCrosse risiToLaCrosse risiToLaCrosse risiToLaCrosse risiToLaCrosse risiToLaCrosse	755.463 755.463 755.186 755.186 755.186 755.186 755.186 754.955 754.955	100-yr Base IA/MN Max	229611.00	648.31	675.87					105-1-1	14369.67	0.12
Mindealant	risIToLaCrosse risIToLaCrosse risIToLaCrosse risIToLaCrosse risIToLaCrosse risIToLaCrosse risIToLaCrosse risIToLaCrosse risIToLaCrosse risIToLaCrosse	755.463 755.463 755.186 755.186 755.186 755.186 755.186 755.200	100-yr Base		648.31 648.31	675.87 675.41	662.21	675.51	0.000065	3.14	108516.70		
	risiToLaCrosse risiToLaCrosse risiToLaCrosse risiToLaCrosse risiToLaCrosse risiToLaCrosse risiToLaCrosse risiToLaCrosse risiToLaCrosse risiToLaCrosse risiToLaCrosse risiToLaCrosse risiToLaCrosse risiToLaCrosse	755.463 755.463 755.186 755.186 755.186 755.186 754.955 754.955 754.955	100-yr Base IA/MN Max WI Fldwy	229611.00 229611.00	648.31	675.41	662.26	675.51	0.000065				
	risiToLaCrosse risiToLaCrosse risiToLaCrosse risiToLaCrosse risiToLaCrosse risiToLaCrosse risiToLaCrosse risiToLaCrosse risiToLaCrosse risiToLaCrosse risiToLaCrosse risiToLaCrosse risiToLaCrosse risiToLaCrosse	755.463 755.463 755.186 755.186 755.186 755.186 754.955 754.955 754.955 754.592	100-yr Base IA/MN Max WI Fldwy 100-yr Base	229611.00 229611.00 229611.00	648.31 652.36	675.41 675.30	662.26 664.44	675.51 675.38	0.000065	2.77	108146.10	16529.92	0.12
	risiToLaCrosse risiToLaCrosse risiToLaCrosse risiToLaCrosse risiToLaCrosse risiToLaCrosse risiToLaCrosse risiToLaCrosse risiToLaCrosse risiToLaCrosse risiToLaCrosse risiToLaCrosse risiToLaCrosse risiToLaCrosse	755.463 755.463 755.186 755.186 755.186 755.186 754.955 754.955 754.955	100-yr Base IA/MN Max WI Fldwy	229611.00 229611.00	648.31	675.41	662.26	675.51	0.000065				0.12 0.12 0.11

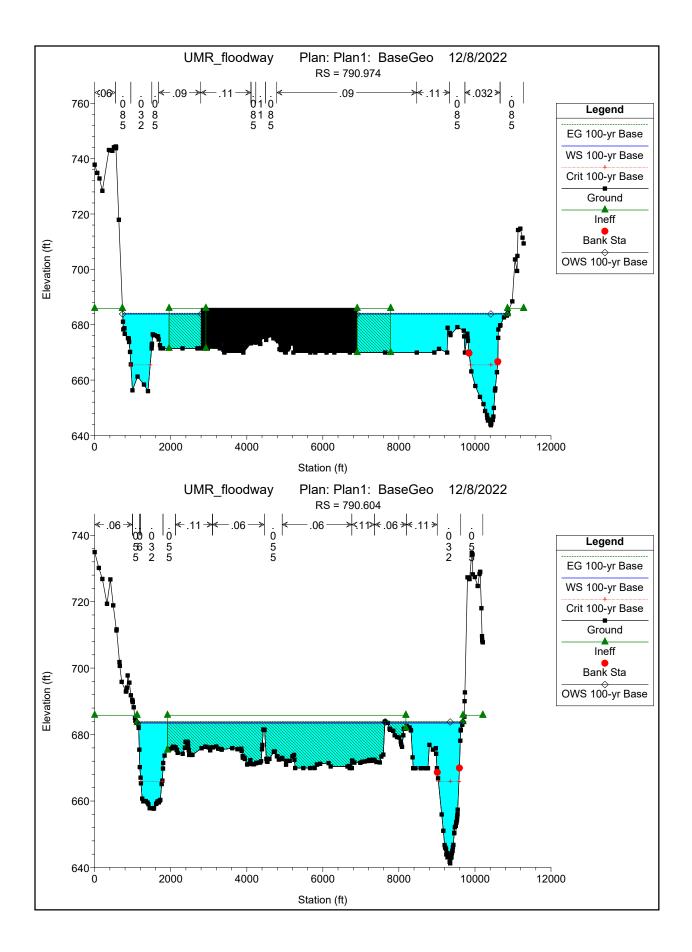

River	Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
				(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
Mississippi	PrisiToLaCrosse	754.204	100-yr Base	231280.00	651.87	675.21	662.92	675.27	0.000042	2.31	120203.60	17923.70	0.10
Mississippi	PrisiToLaCrosse	754.204	IA/MN Max	231280.00	651.87	675.68	663.03	675.75	0.000042	2.35	118520.00	8413.40	0.10
Mississippi	PrisiToLaCrosse	754.204	WI Fldwy	231280.00	651.87	675.22	662.92	675.28	0.000042	2.31	120290.30	17595.90	0.10
Mississippi	PrisiToLaCrosse	753.586	100-yr Base	231280.00	644.22	674.92	661.74	675.09	0.000072	3.50	71972.00	12640.25	0.15
Mississippi	PrIsIToLaCrosse	753.586	IA/MN Max	231280.00	644.22	675.38	661.78	675.57	0.000072	3.57	69207.11	4506.69	0.15
Mississippi	PrisiToLaCrosse	753.586	WI Fldwy	231280.00	644.22	674.93	661.73	675.10	0.000071	3.50	72023.44	12626.73	0.15
Mississippi	PrisiToLaCrosse	752.950	100-yr Base	231280.00	644.31	674.60	658.21	674.87	0.000059	4.21	55018.50	11437.57	0.15
Mississippi	PrisiToLaCrosse	752.950	IA/MN Max	231280.00	644.31	675.08	658.18	675.35	0.000058	4.17	55420.85	2347.97	0.15
Mississippi	PrisiToLaCrosse	752.950	WI Fldwy	231280.00	644.31	674.61	658.20	674.88	0.000059	4.21	55043.86	11287.12	0.15
Mississippi	PrisiToLaCrosse	752.823	100-yr Base	231280.00	638.50	674.34	654.22	674.80	0.000080	5.49	42262.00	10128.84	0.18
Mississippi	PrisiToLaCrosse	752.823	IA/MN Max	231280.00	638.50	674.82	654.19	675.29	0.000080	5.46	42391.96	1410.95	0.18
Mississippi	PrisiToLaCrosse	752.823	WI Fldwy	231280.00	638.50	674.35	654.22	674.81	0.000080	5.49	42277.44	9715.23	0.18
Mississippi	PrisiToLaCrosse	752.8		Inl Struct									
Mississippi	PrisiToLaCrosse	752.781	100-yr Base	231280.00	649.88	673.48	662.91	674.47	0.000286	8.03	28904.10	10012.96	0.32
Mississippi	PrisiToLaCrosse	752.781	IA/MN Max	231280.00	649.88	673.94	662.98	674.95	0.000288	8.06	28698.47	1407.39	0.31
Mississippi	PrisiToLaCrosse	752.781	WI Fldwy	231280.00	649.88	673.49	662.91	674.49	0.000288	8.06	28919.79	9705.64	0.32
Mississippi	PrisiToLaCrosse	752.600	100-yr Base	231280.00	633.59	673.81	651.22	674.06	0.000044	4.37	60690.73	11106.44	0.13
Mississippi	PrisiToLaCrosse	752.600	IA/MN Max	231280.00	633.59	674.28	651.22	674.54	0.000044	4.41	59832.17	2313.18	0.13
Mississippi	PrisiToLaCrosse	752.600	WI Fldwy	231280.00	633.59	673.82	651.20	674.07	0.000044	4.40	60719.56	10964.78	0.14
Mississippi	PrisiToLaCrosse	751.877	100-yr Base	231280.00	626.83	673.45	650.02	673.80	0.000274	5.56	94419.30	11983.71	0.16
Mississippi	PrisiToLaCrosse	751.877	IA/MN Max	231280.00	626.83	673.92	650.02	674.28	0.000280	5.59	90553.02	4702.19	0.16
Mississippi	PrIsIToLaCrosse	751.877	WI Fldwy	231280.00	626.83	673.46	650.02	673.81	0.000273	5.56	94445.61	11975.72	0.16

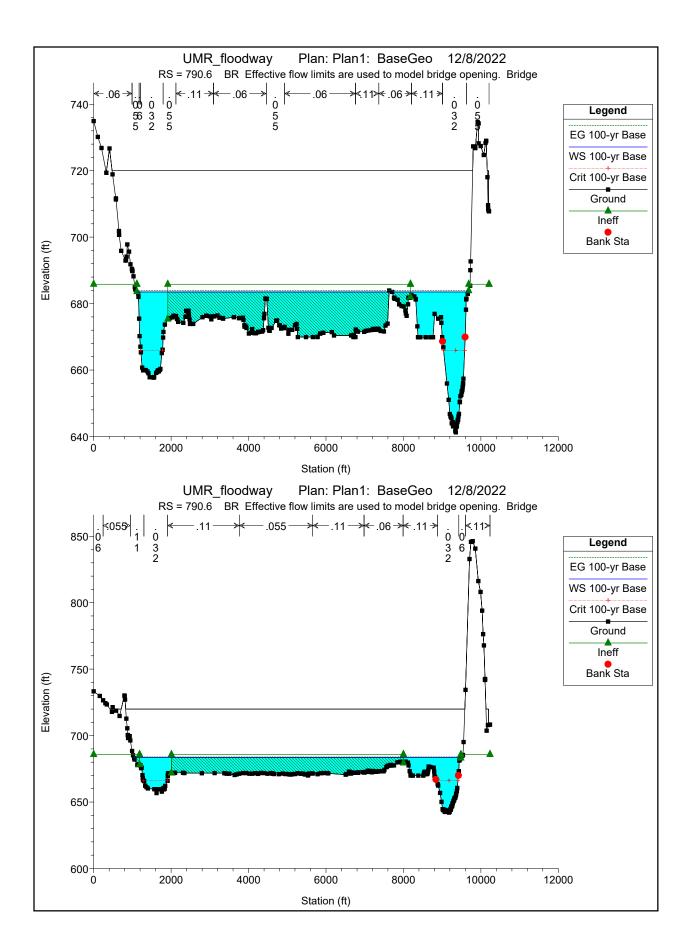


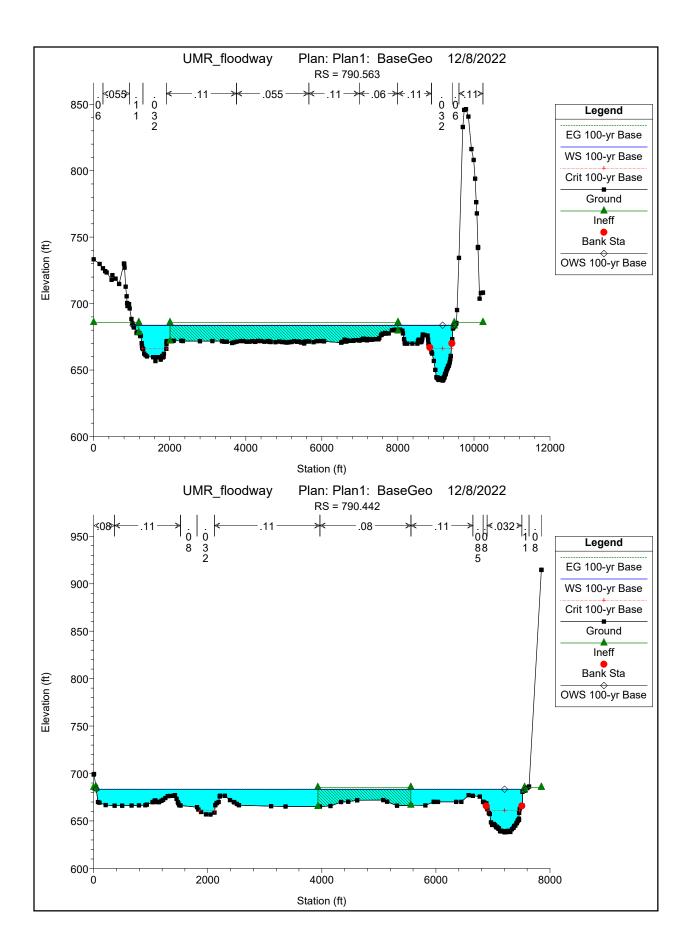


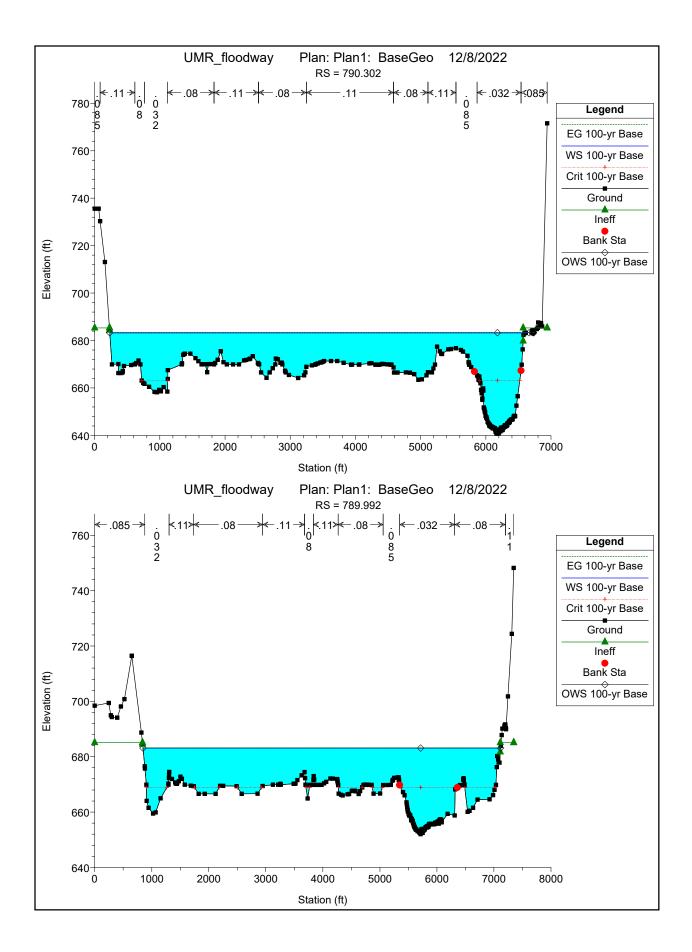


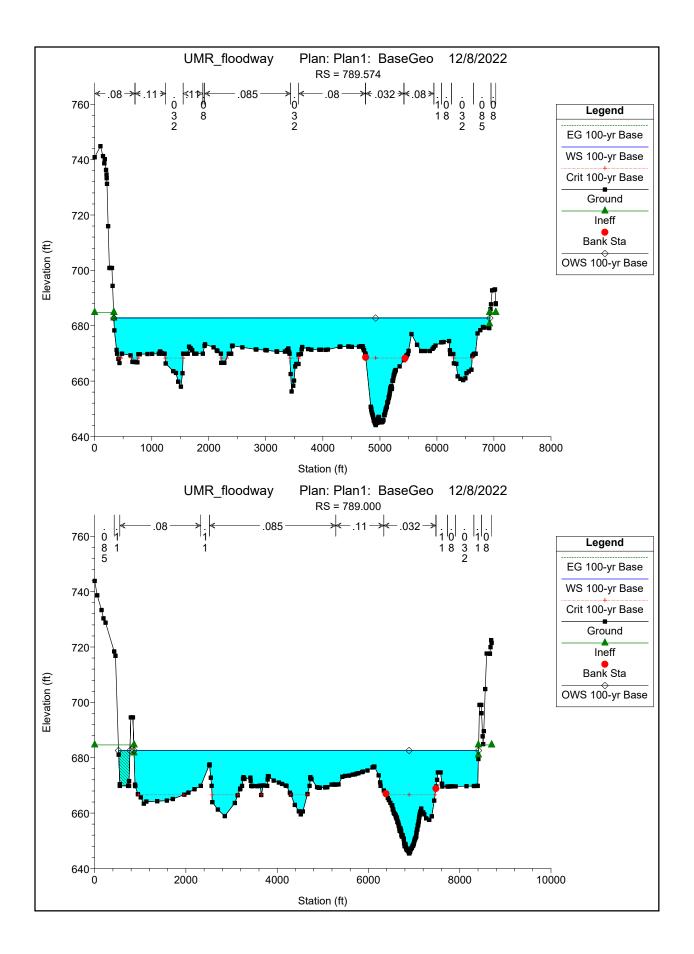


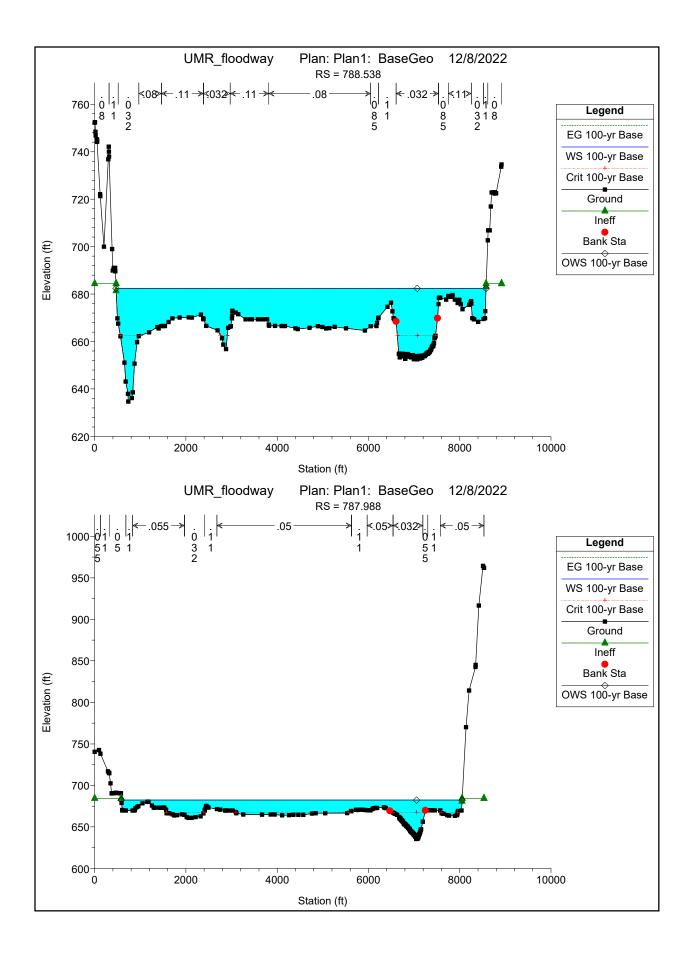


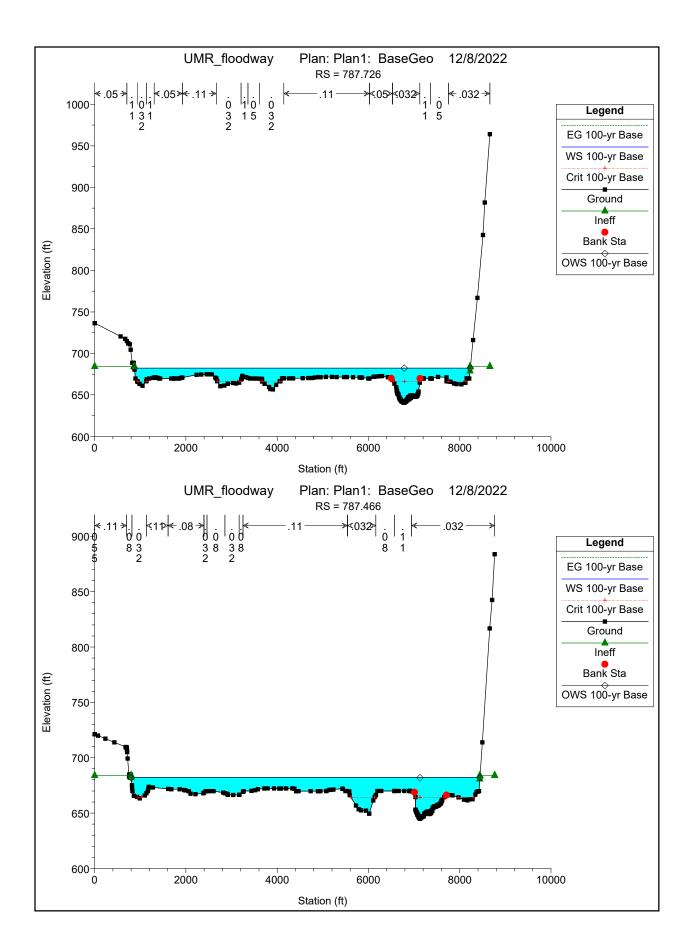


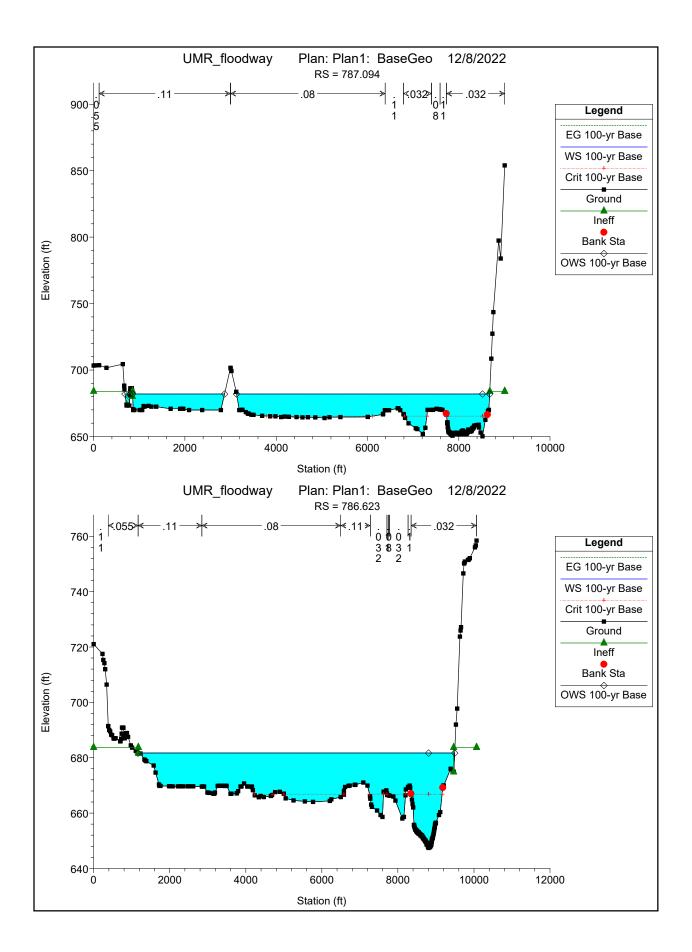


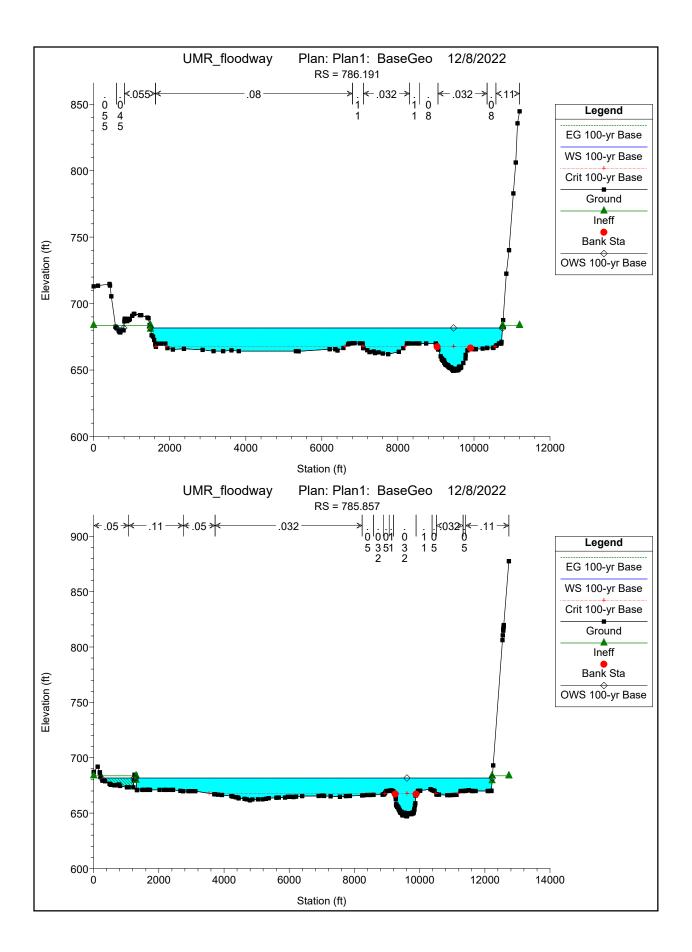


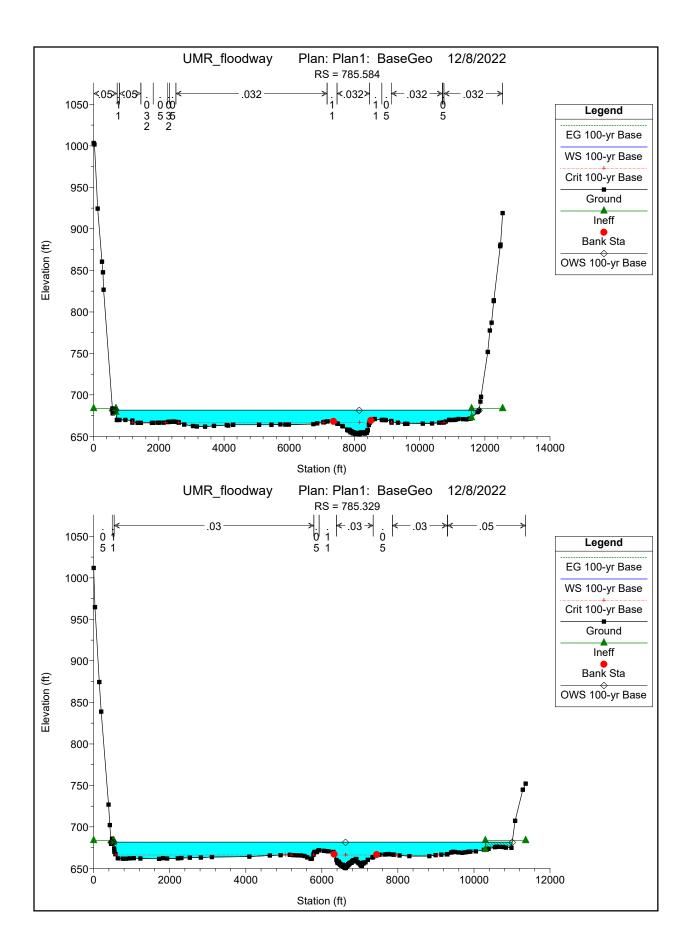


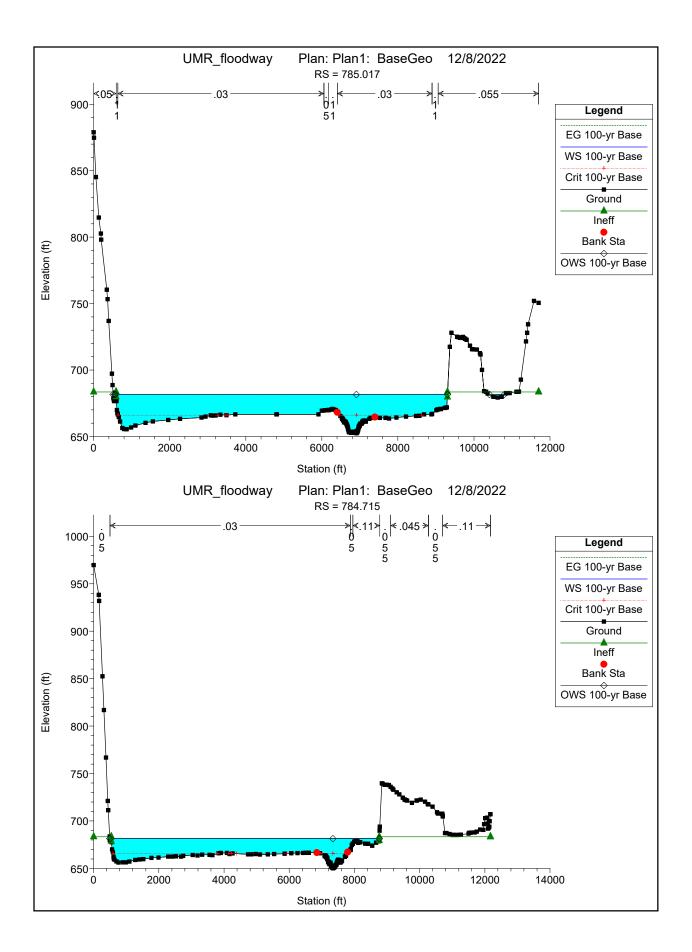


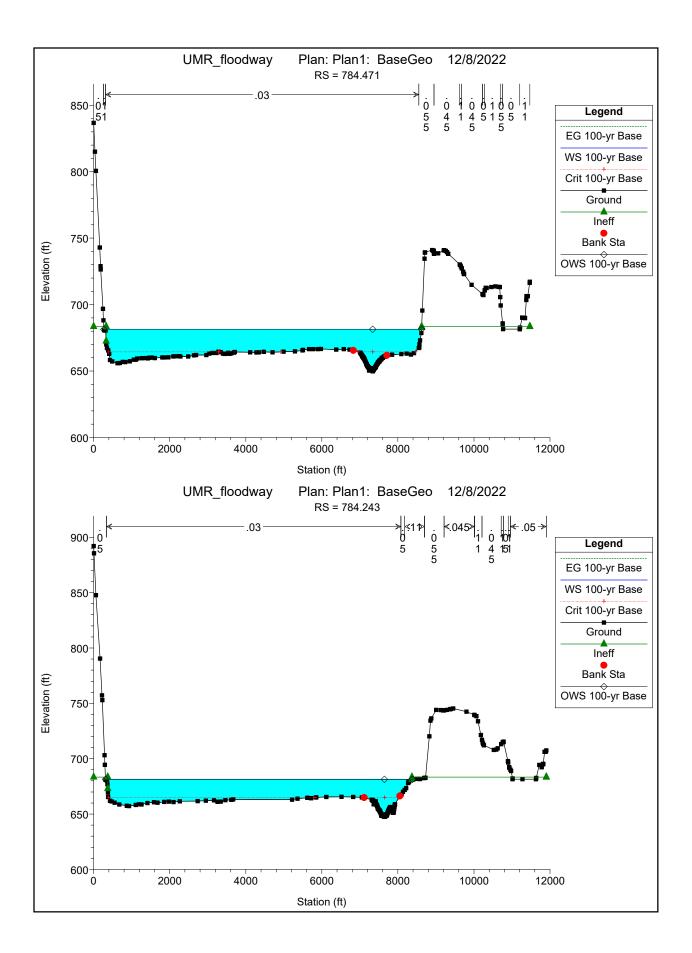


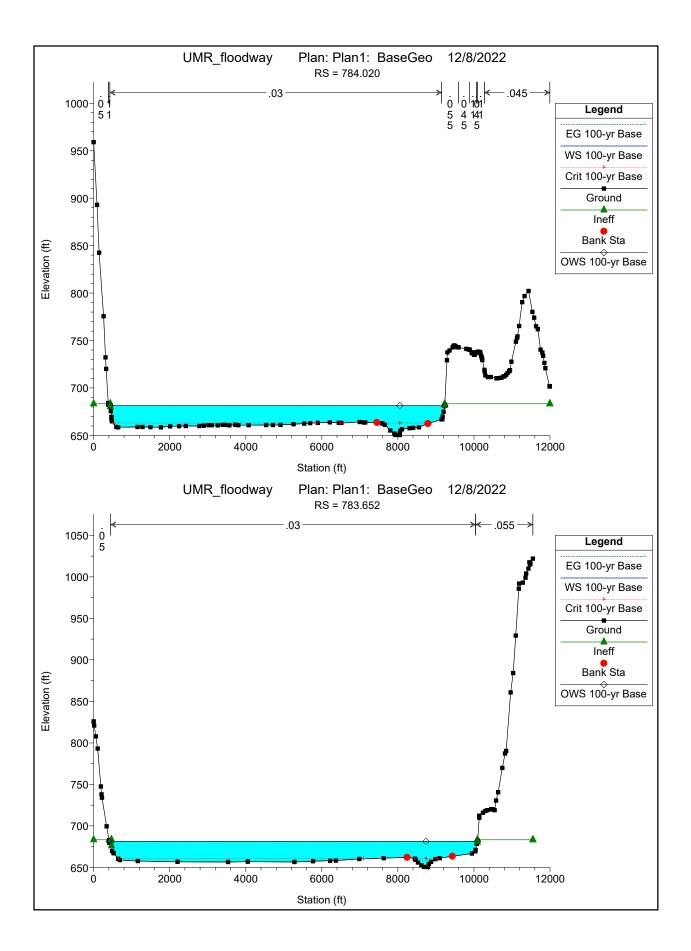


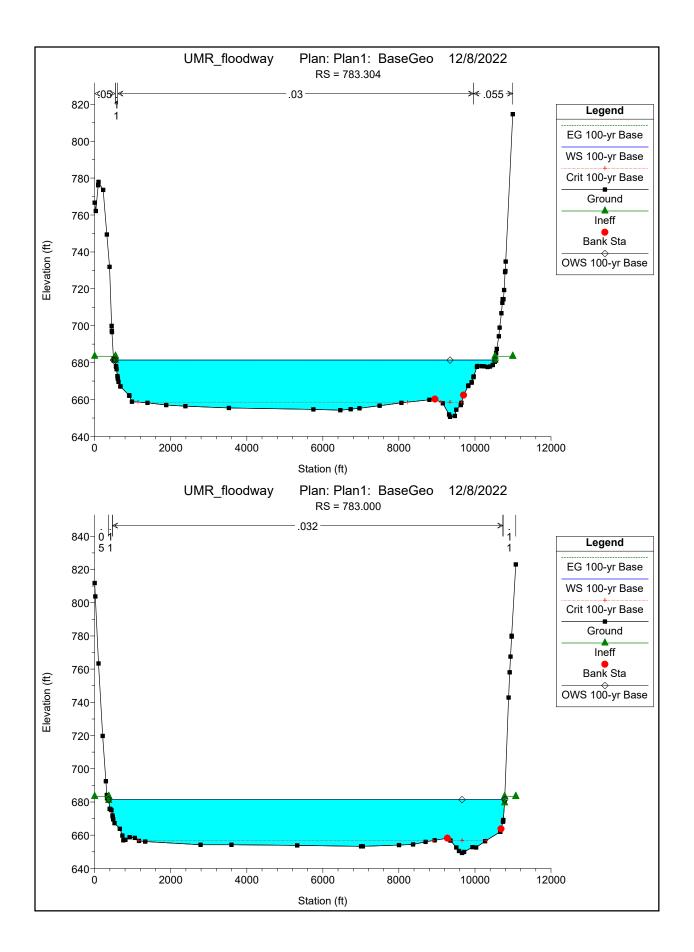


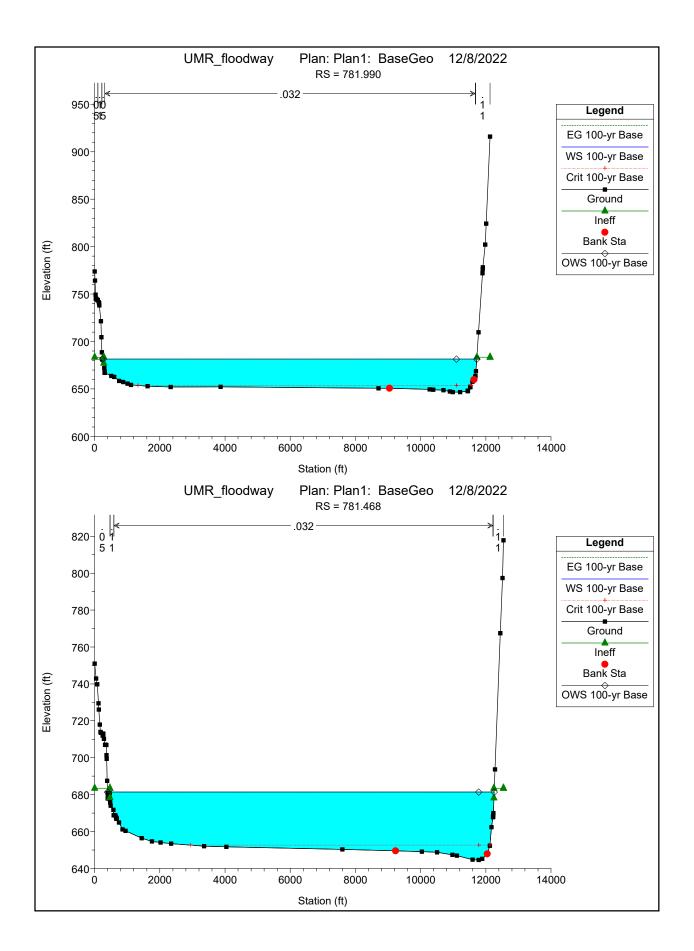


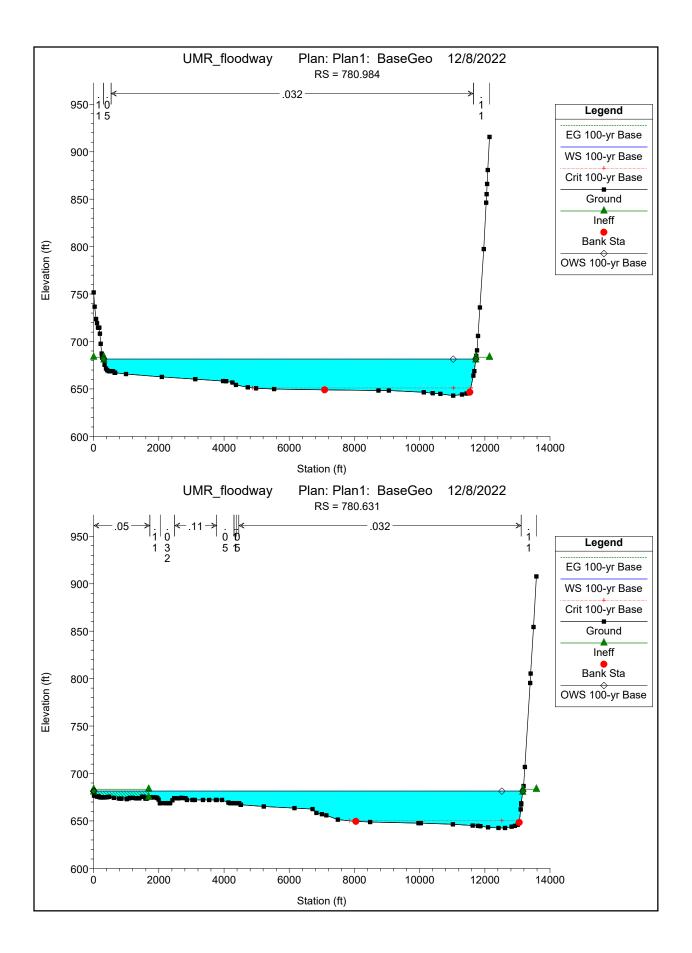


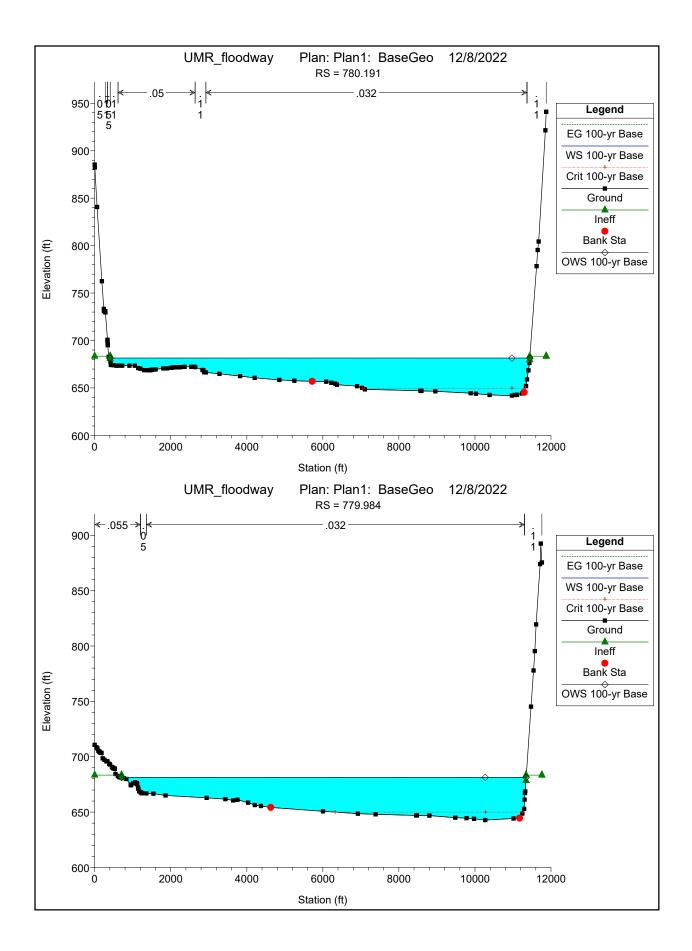


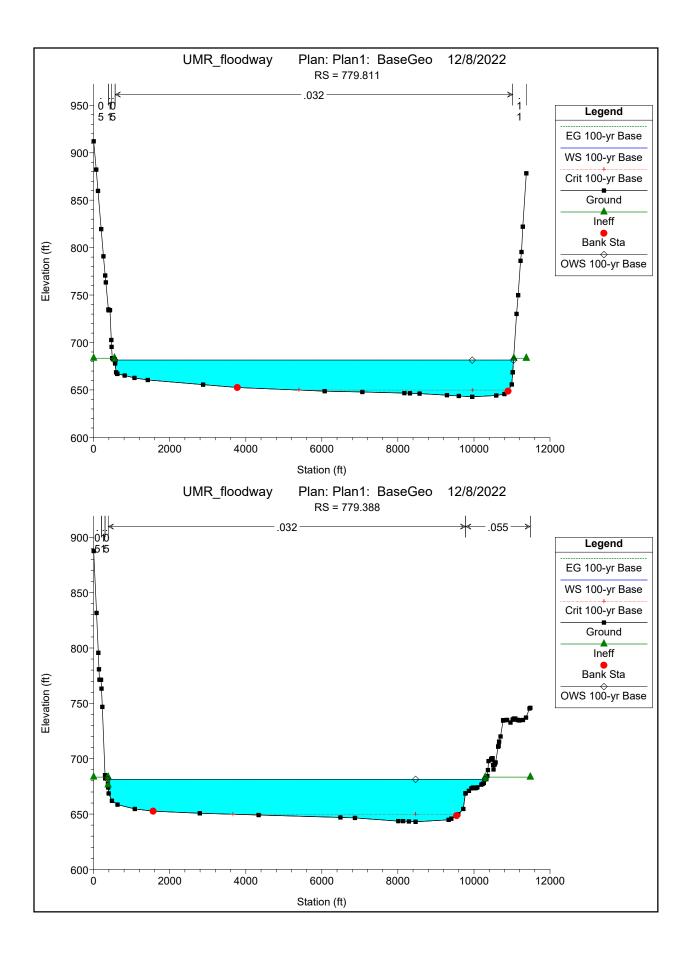


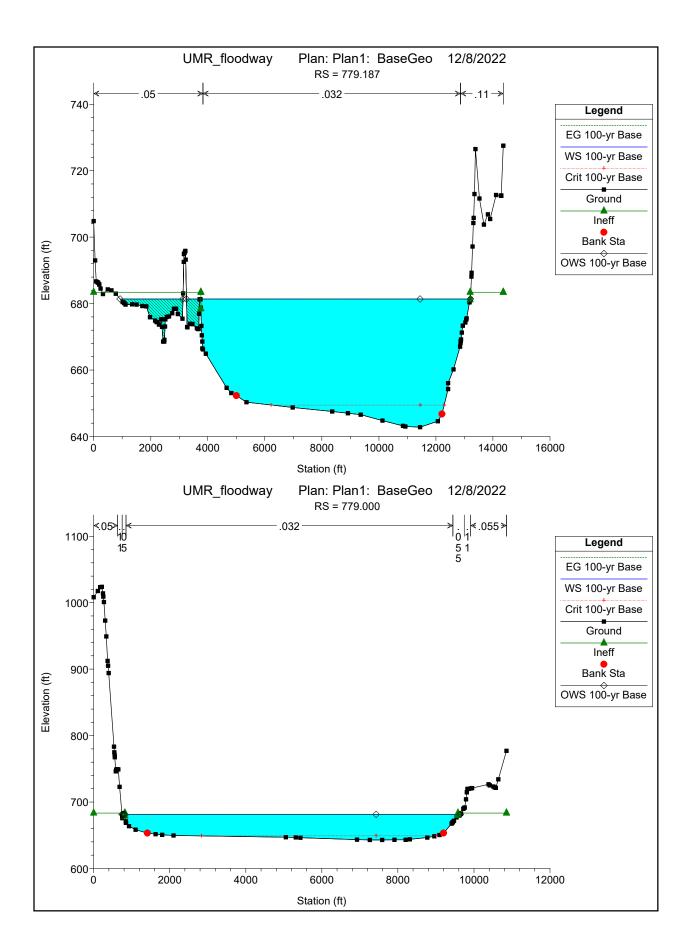


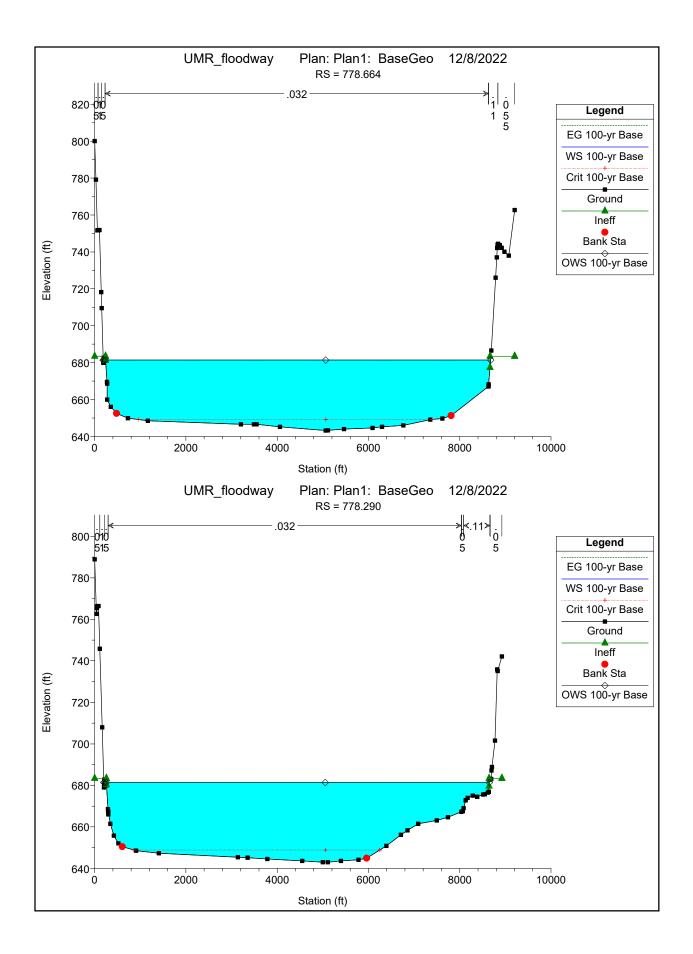


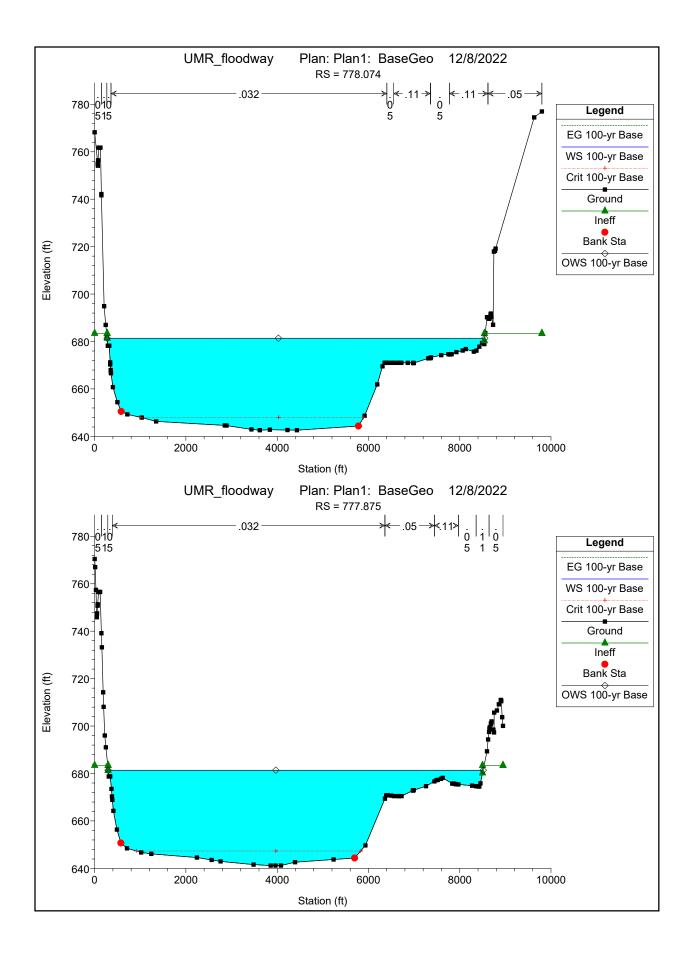


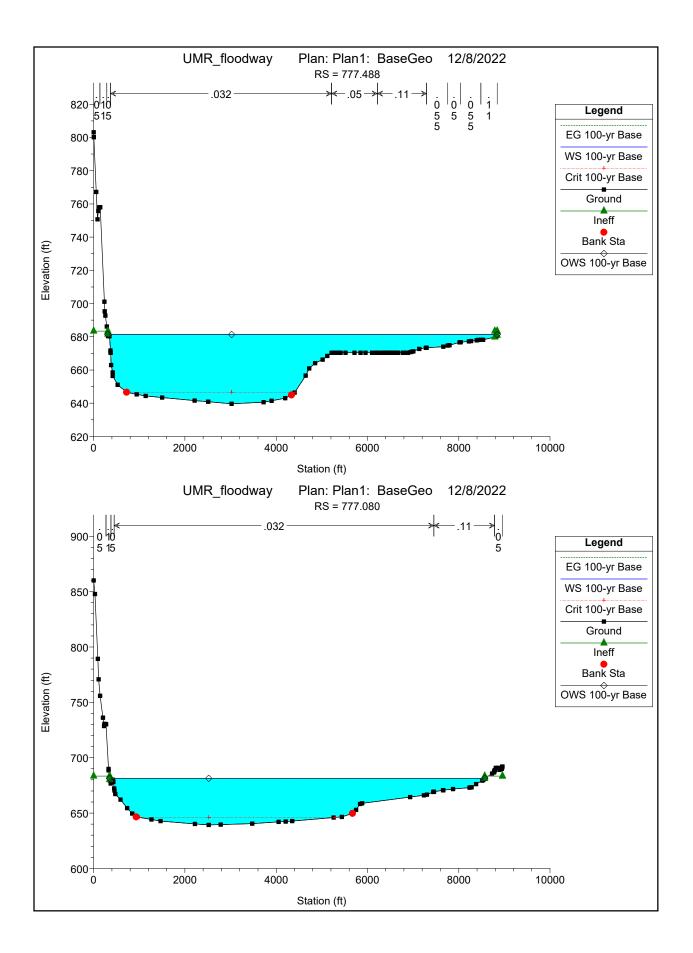


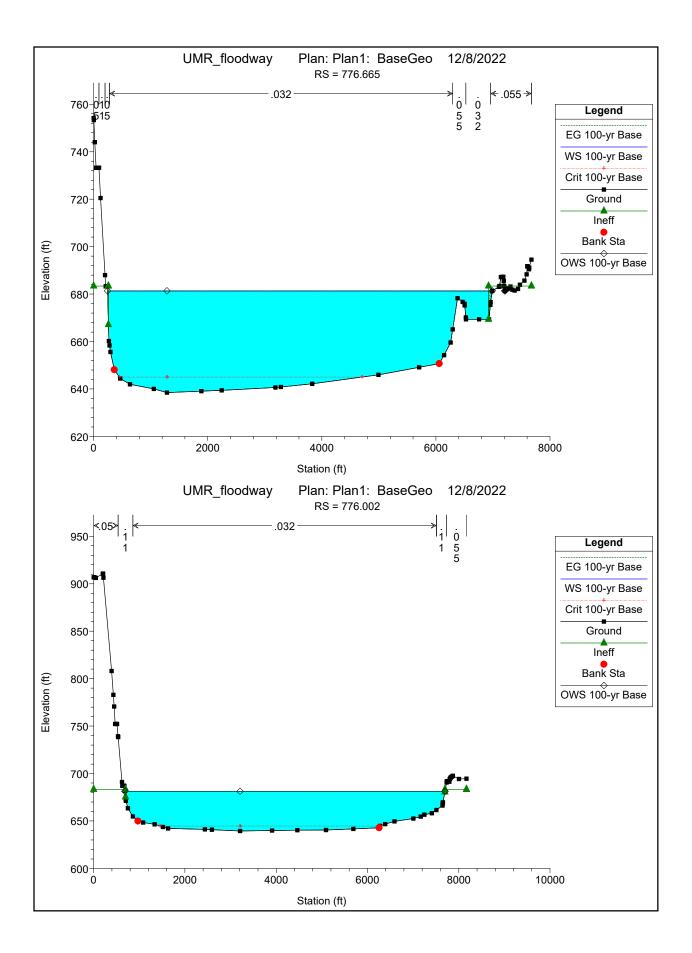


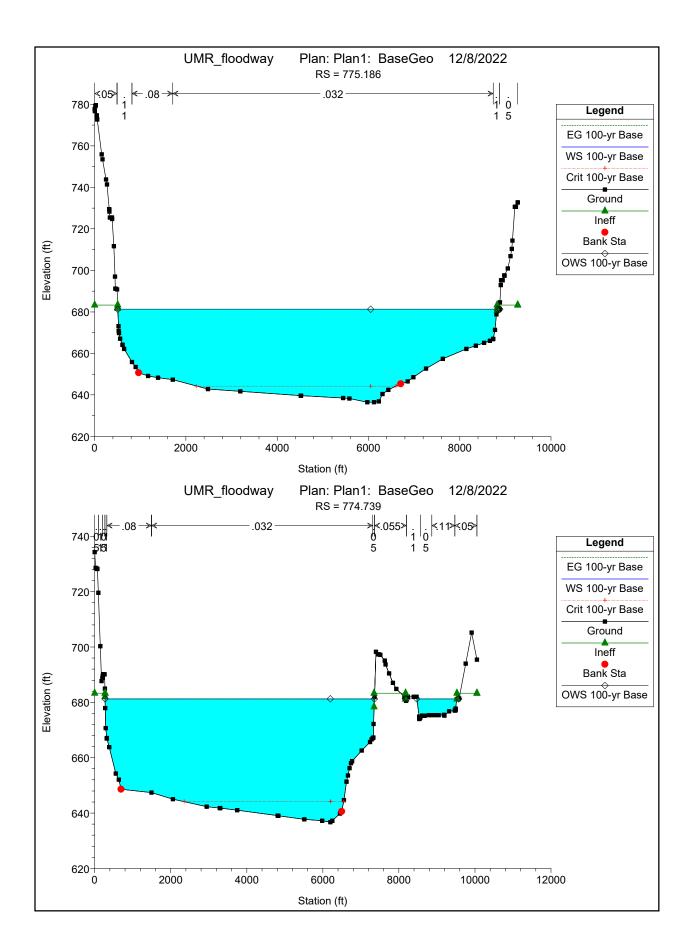


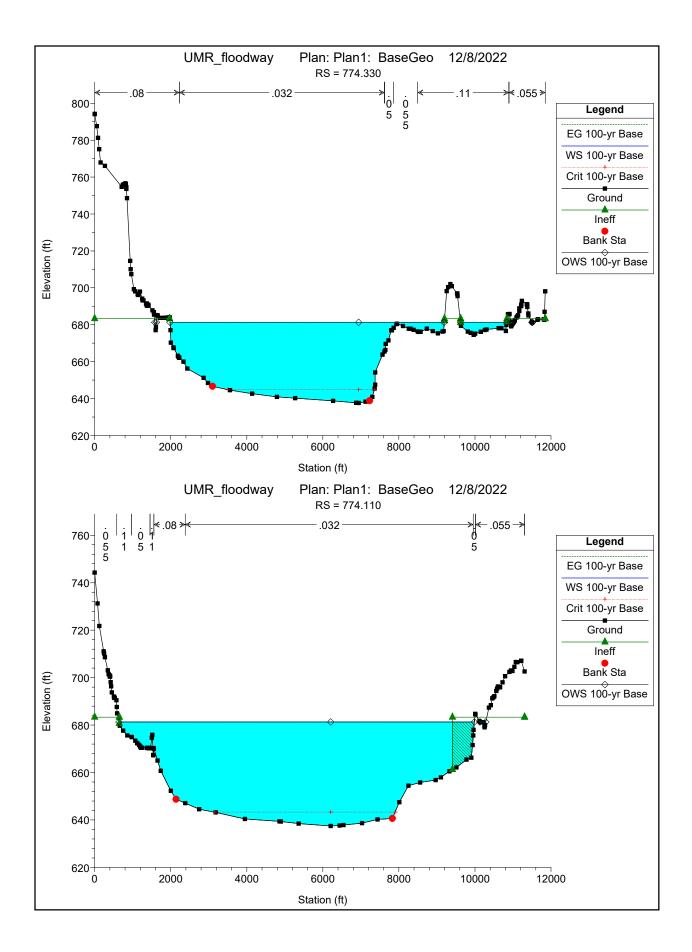


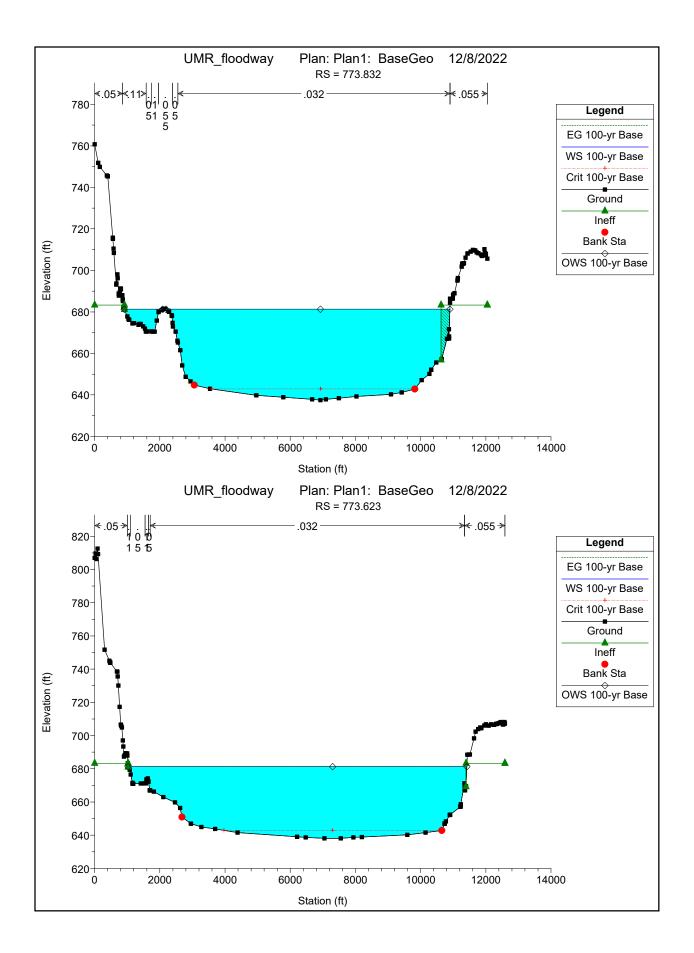


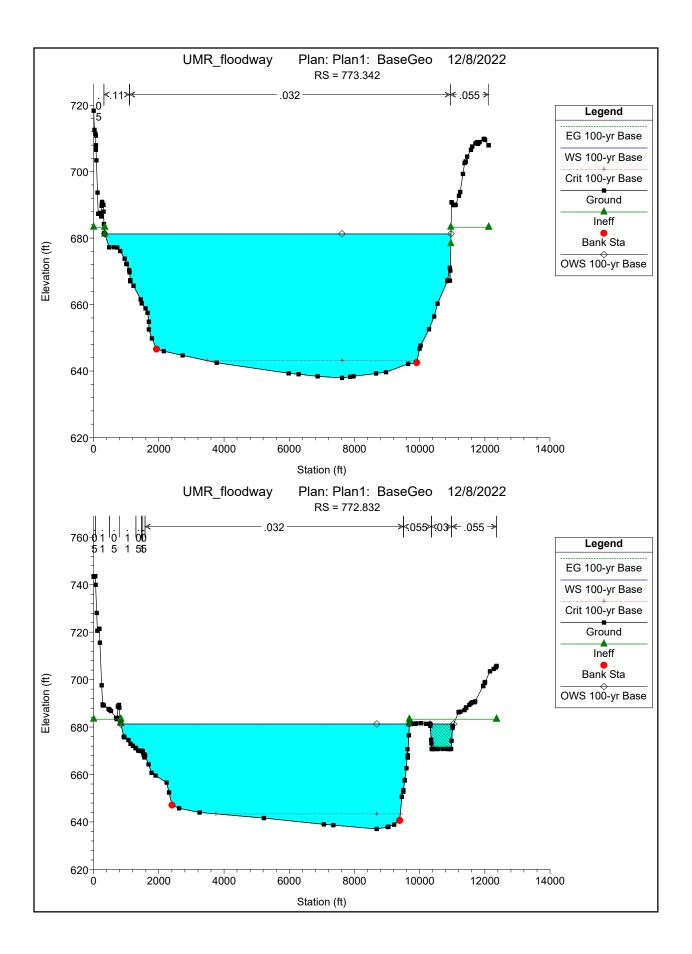


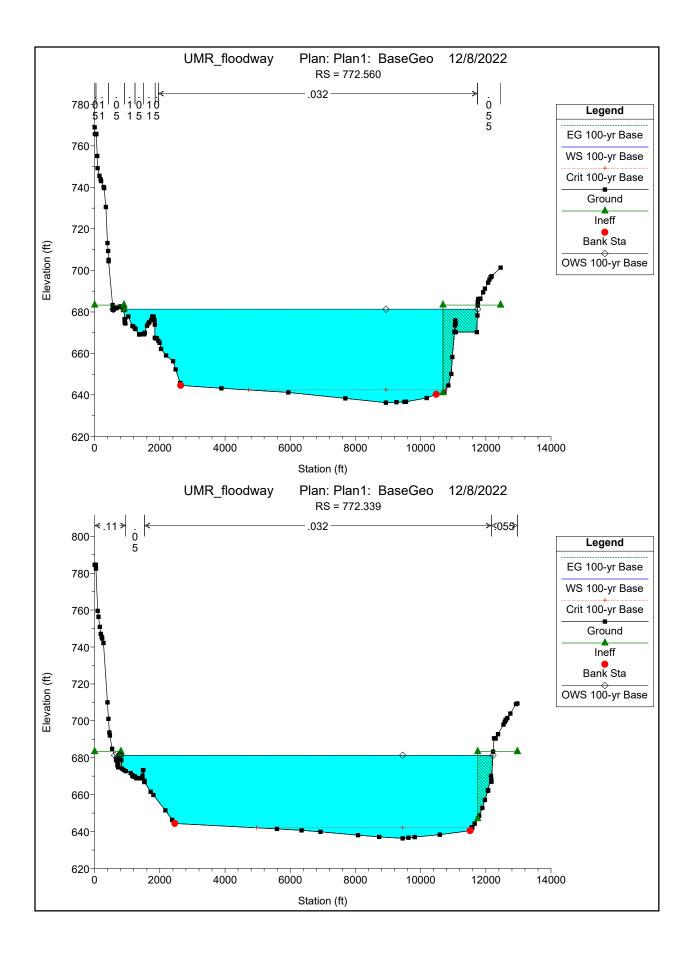


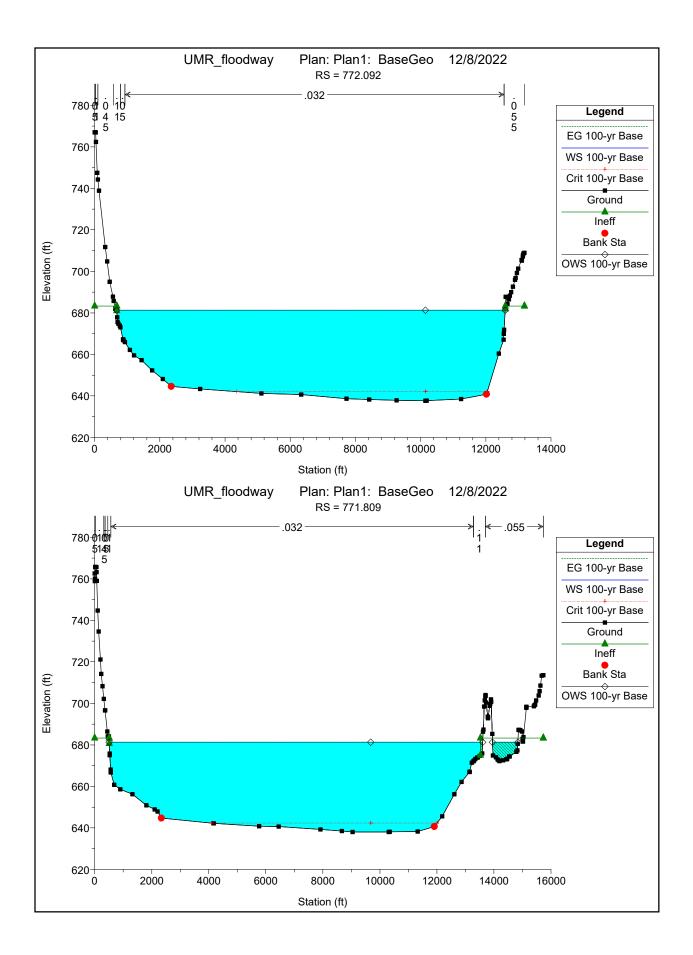


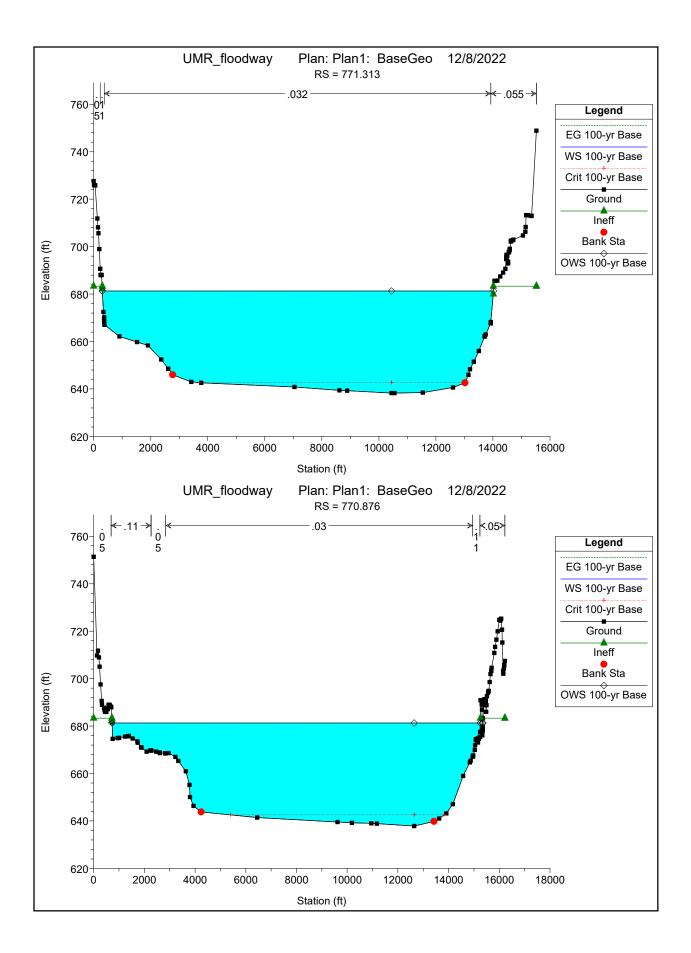


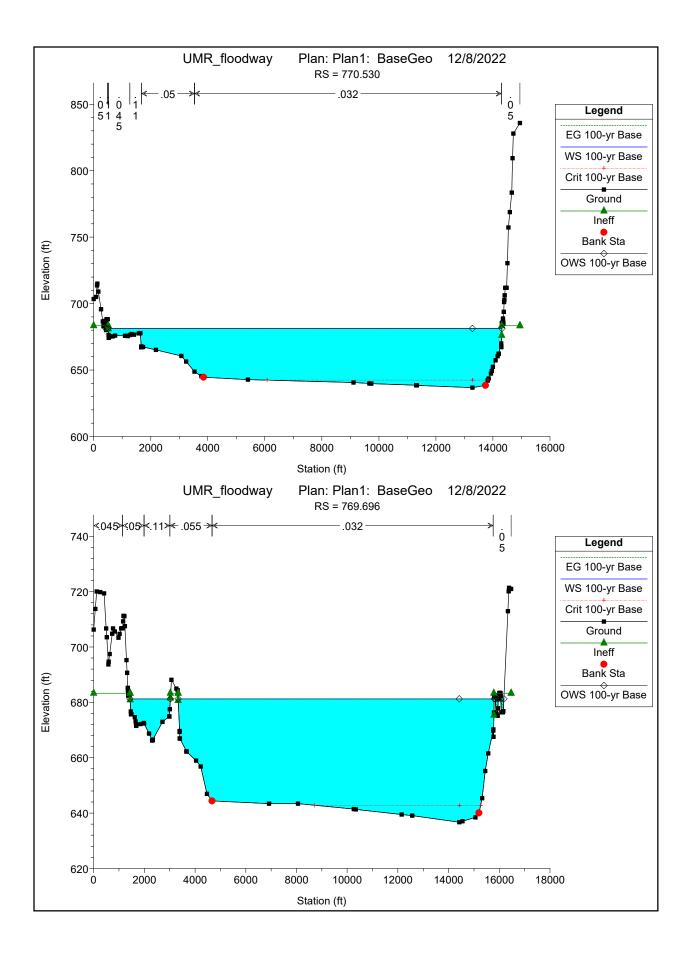


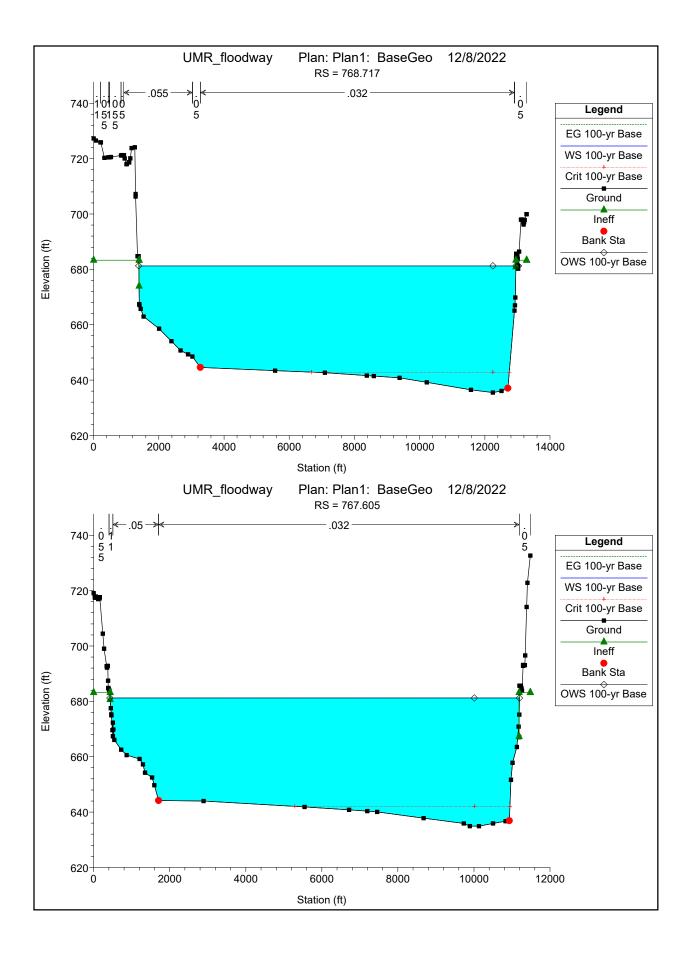


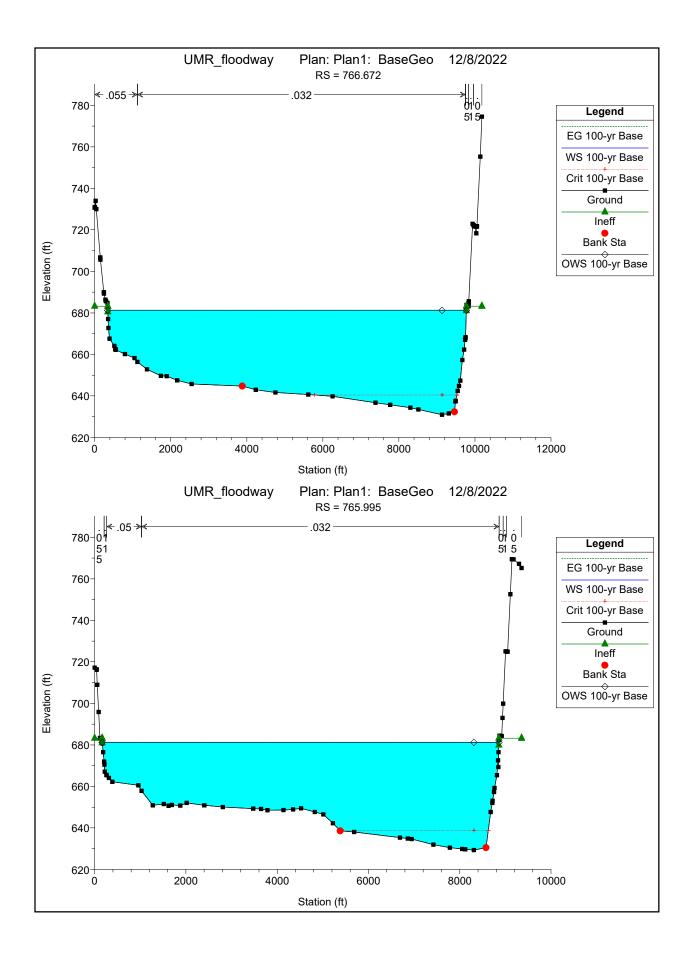


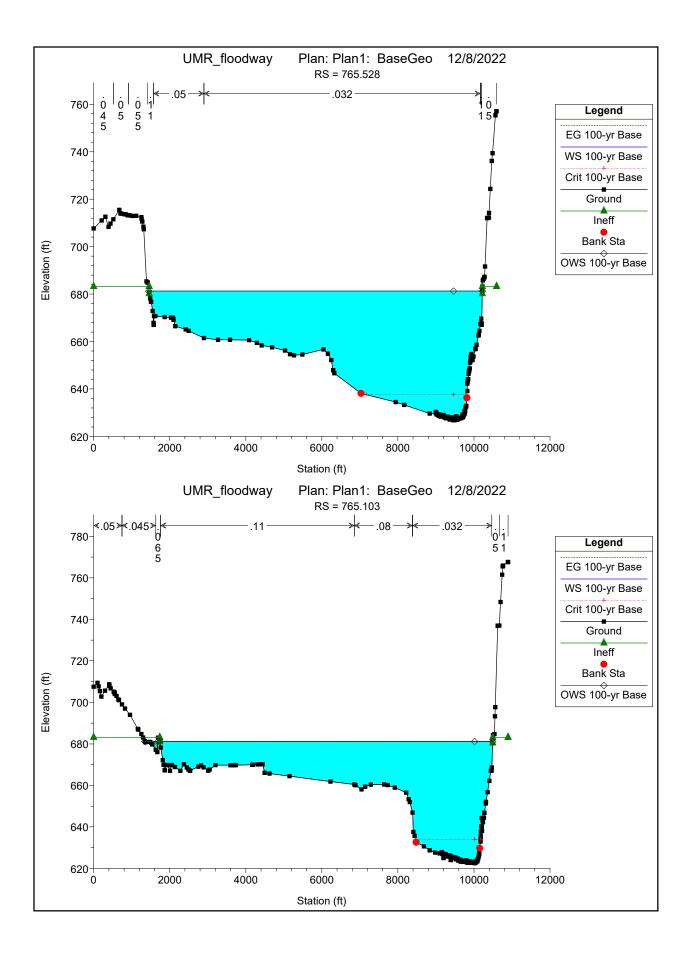


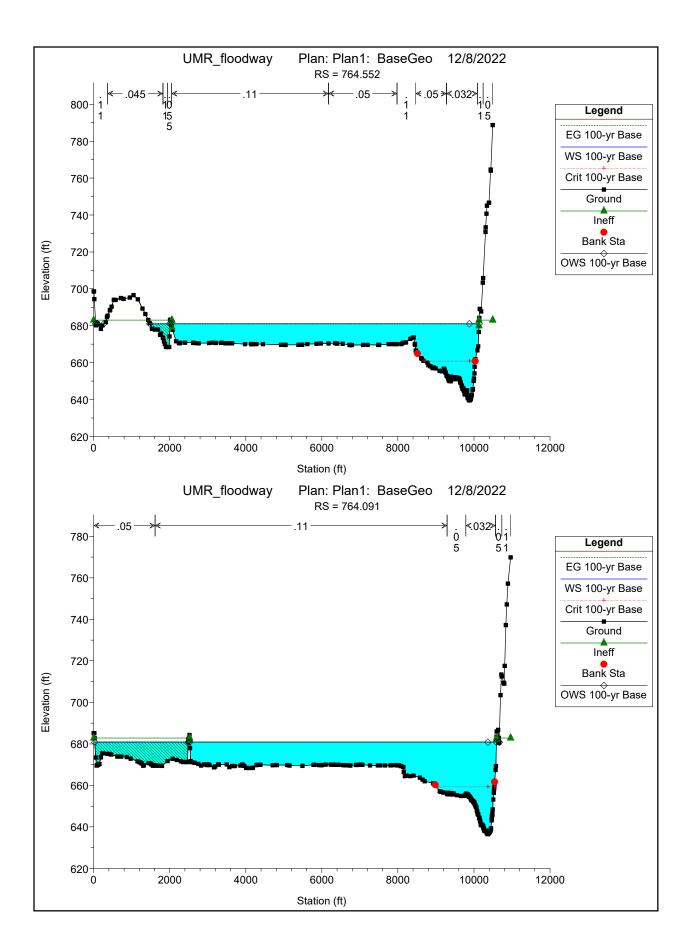


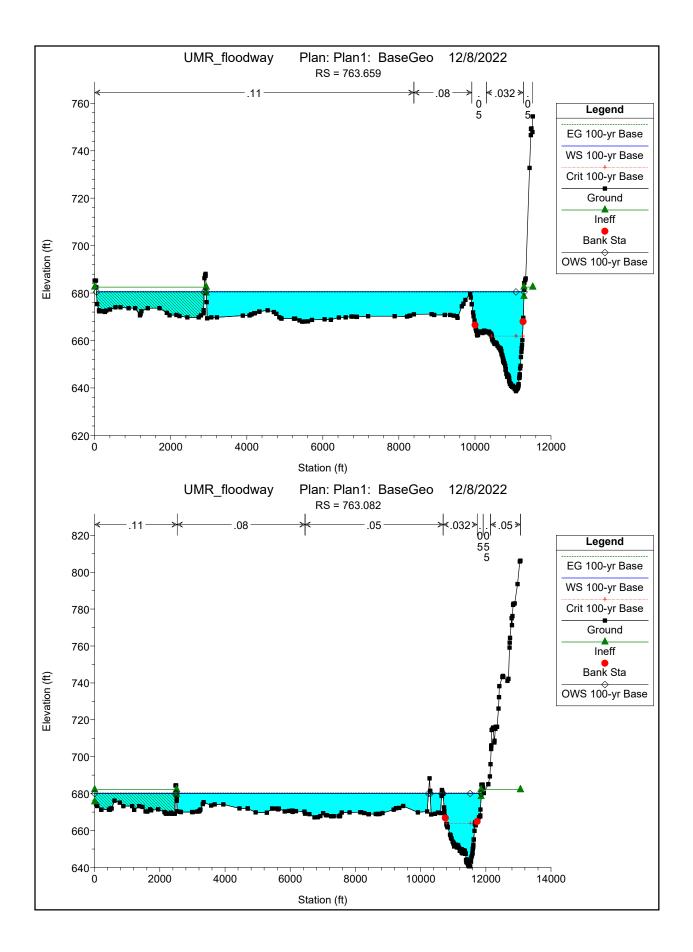


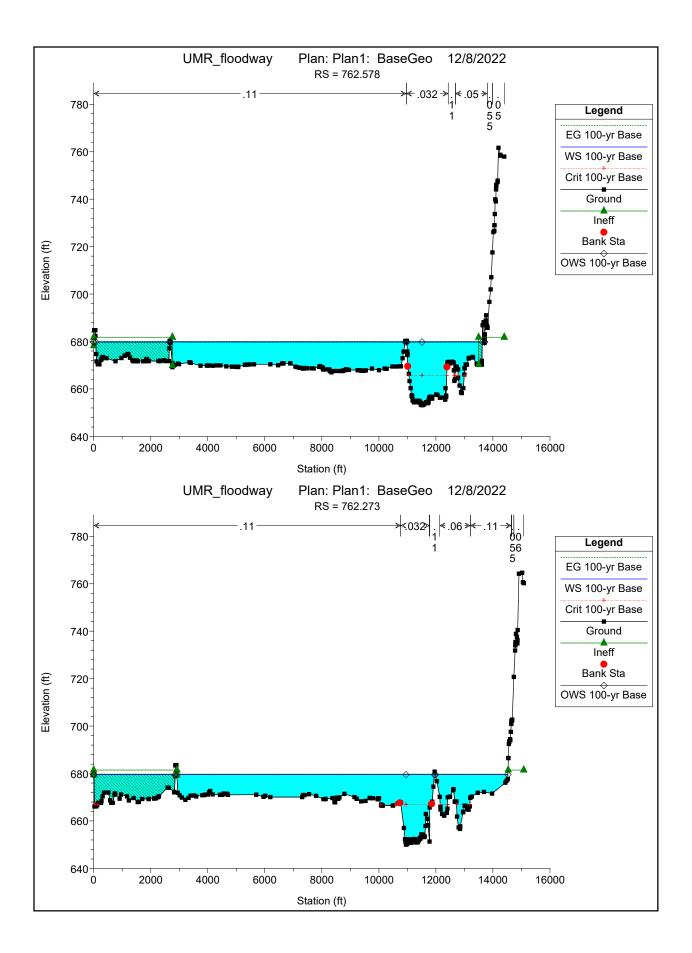


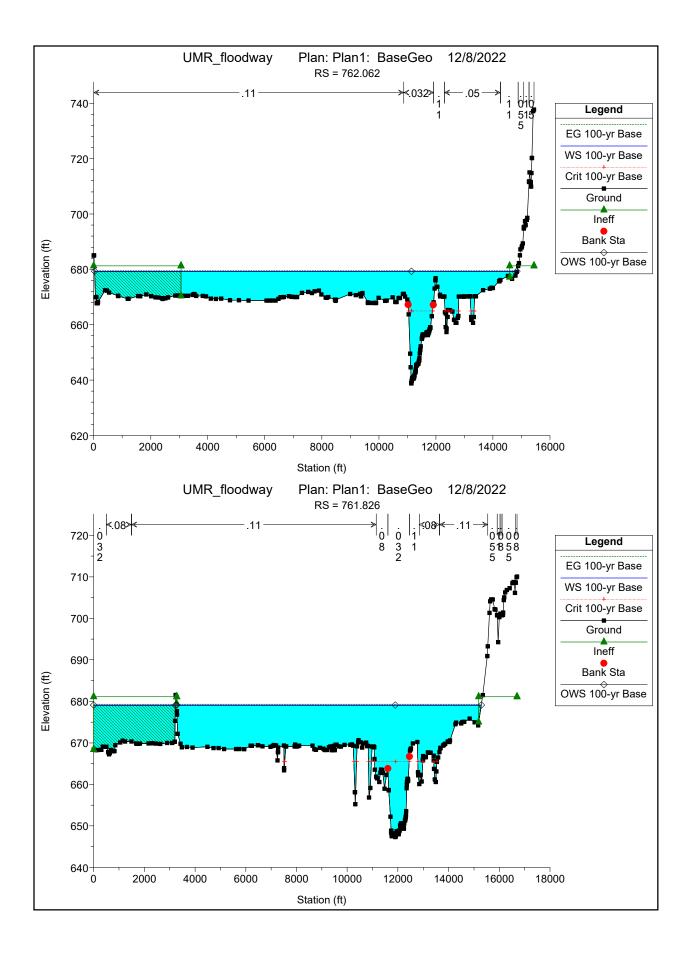


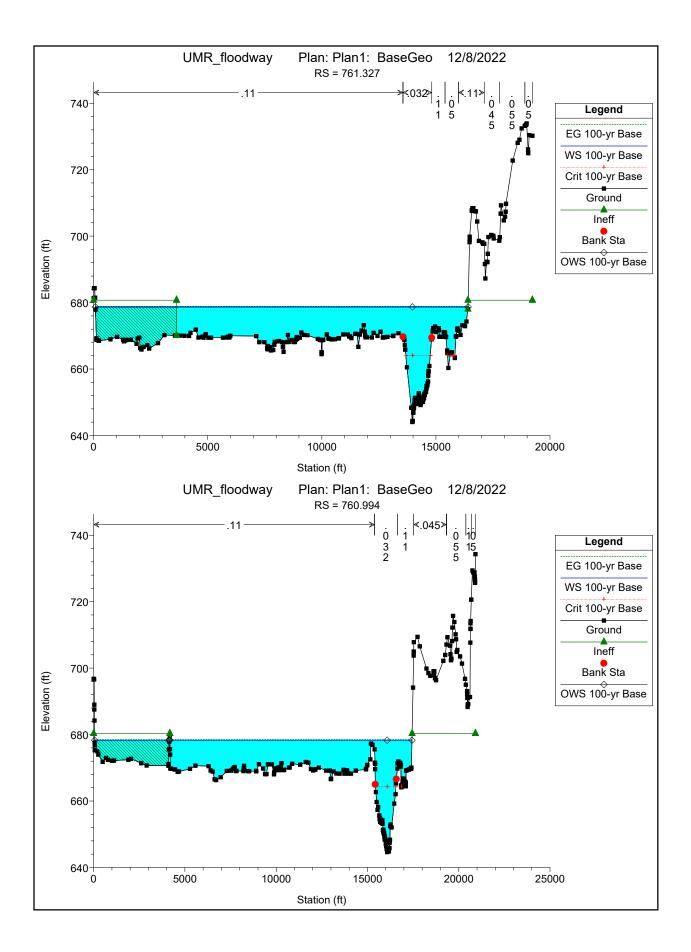


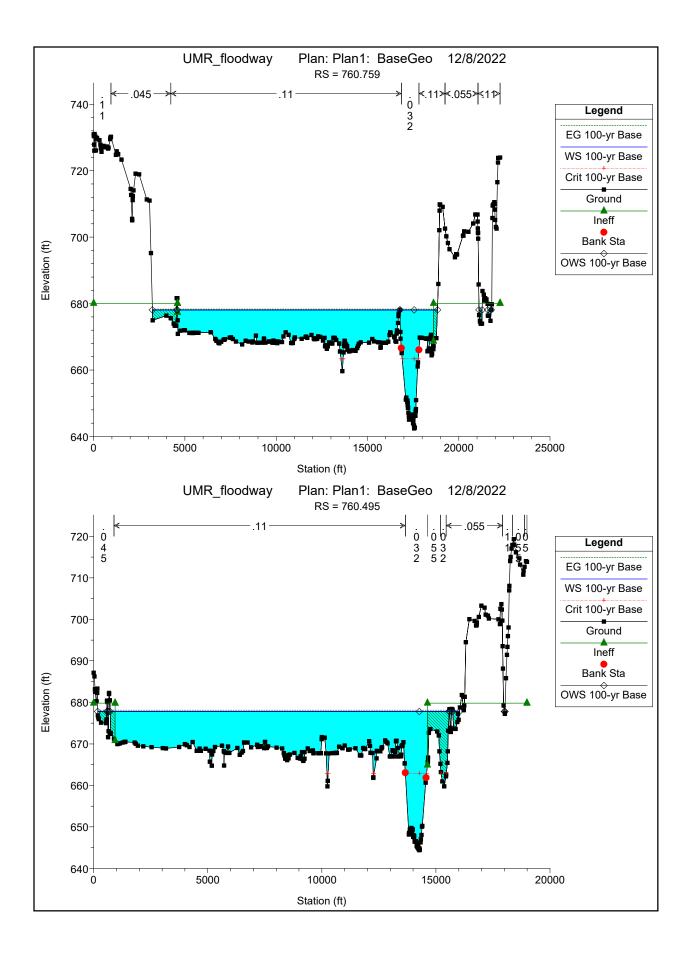


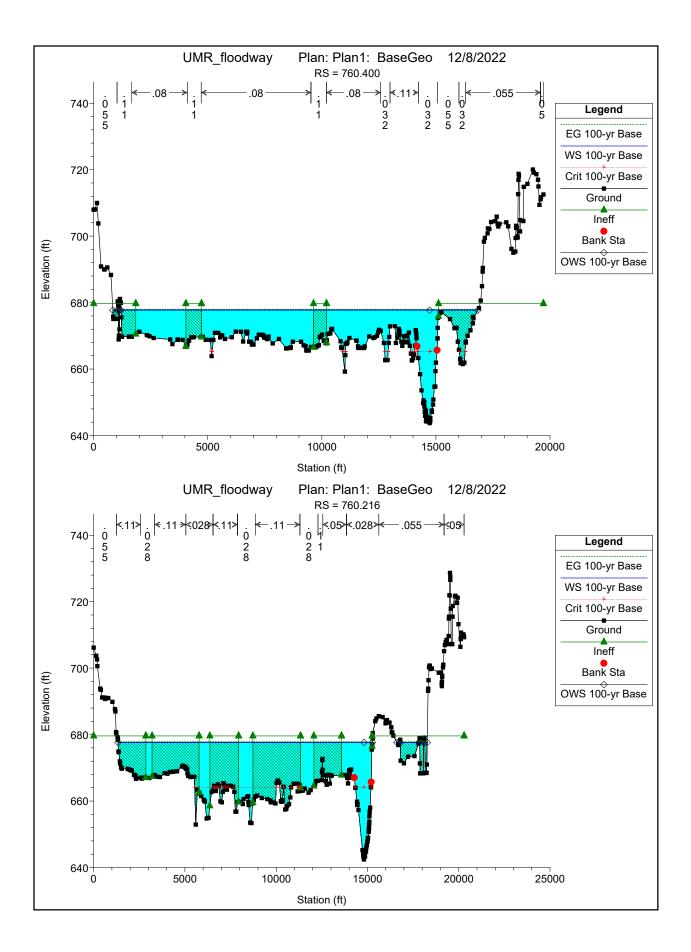


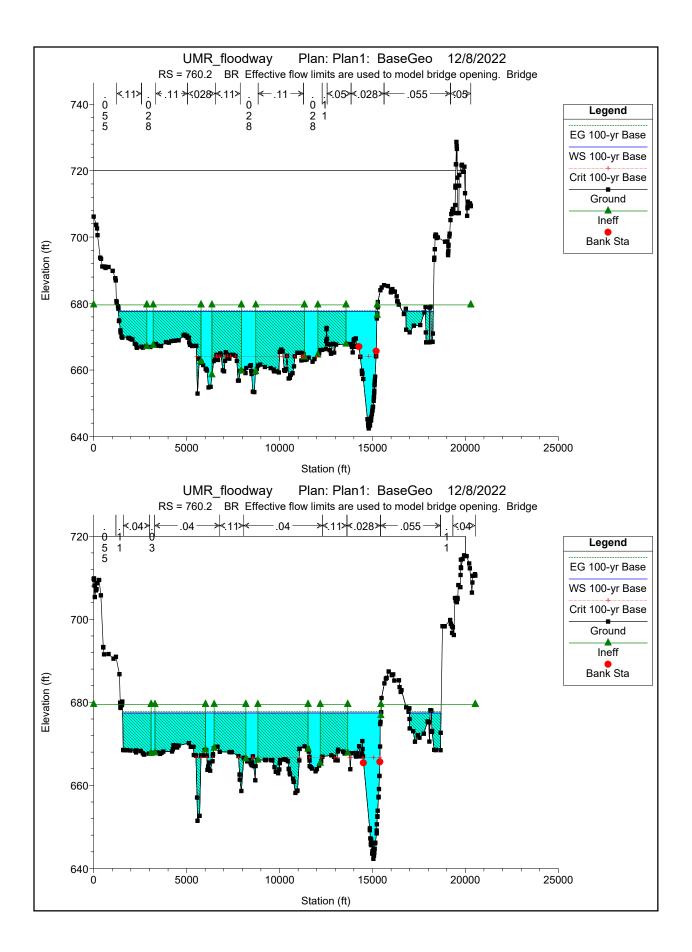


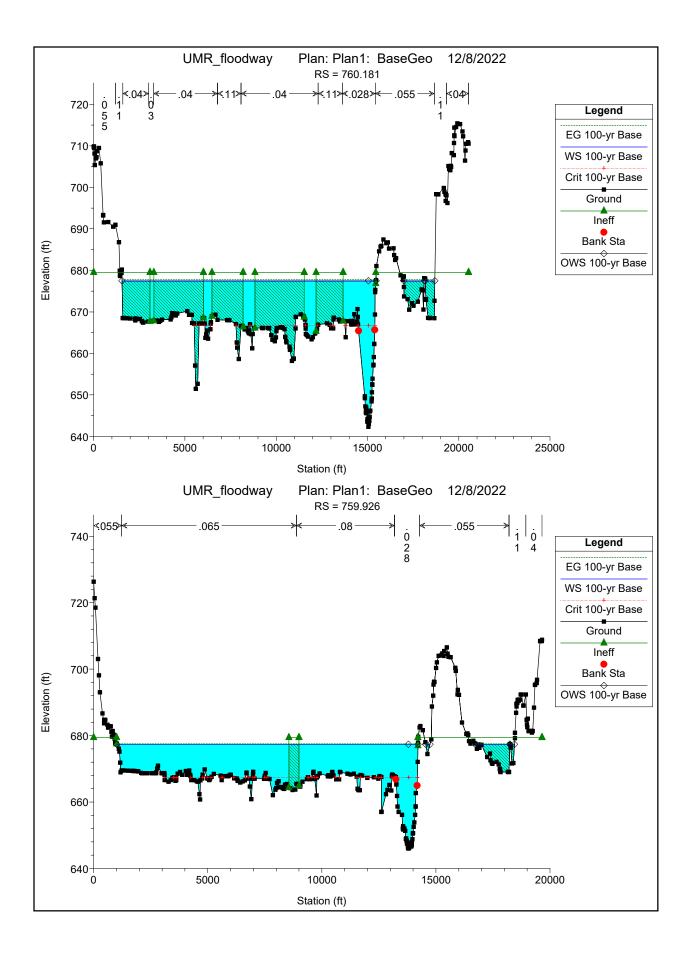


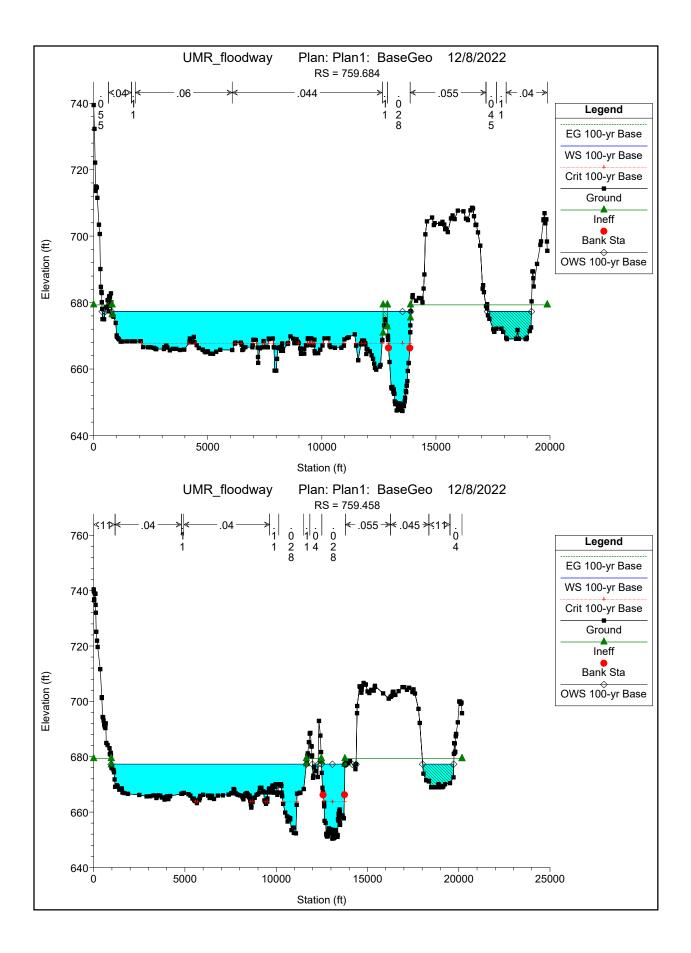


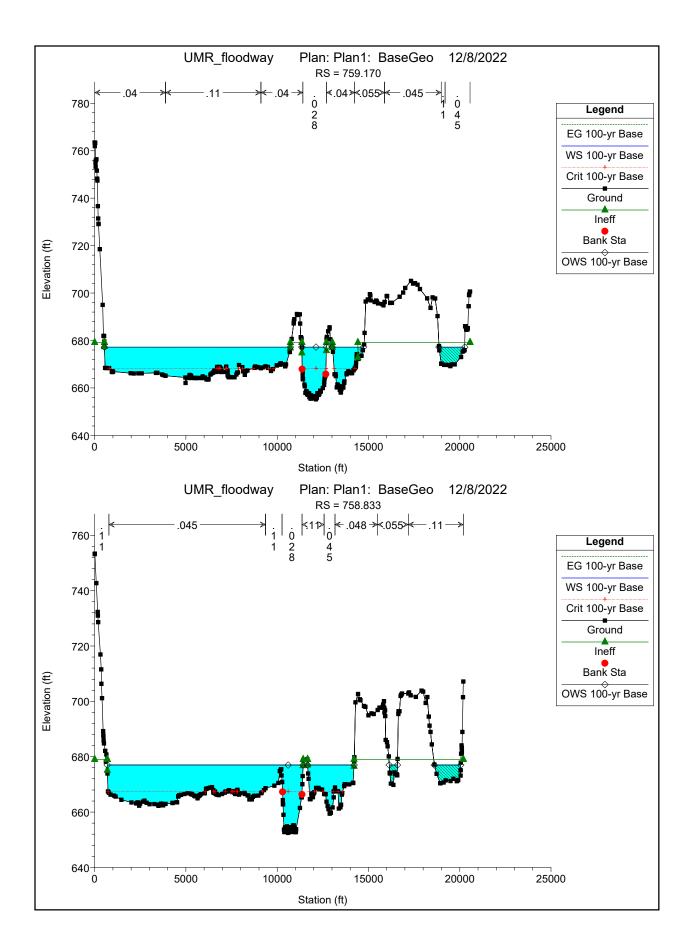


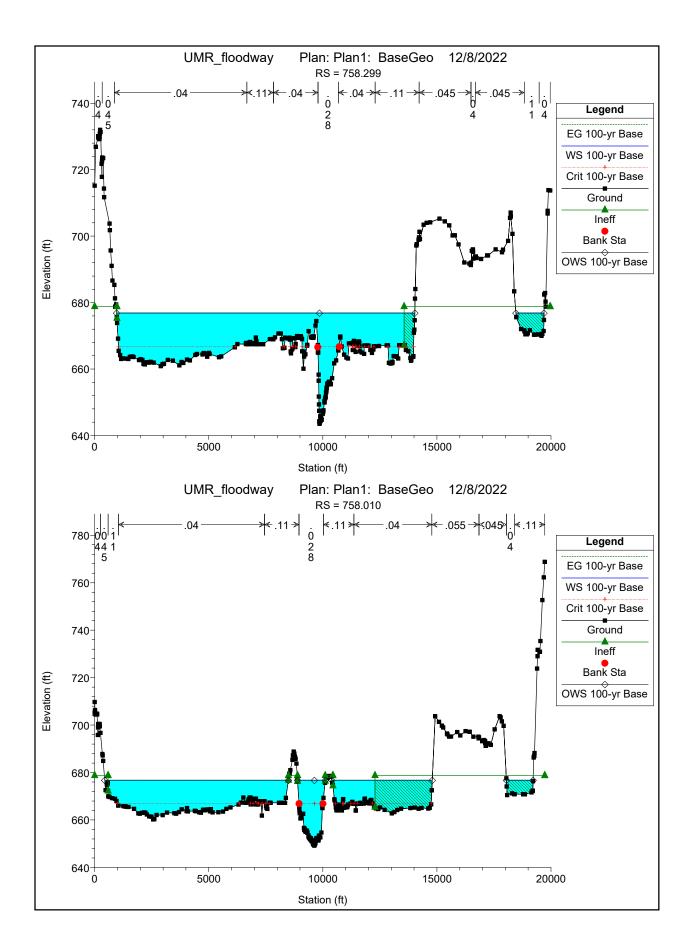


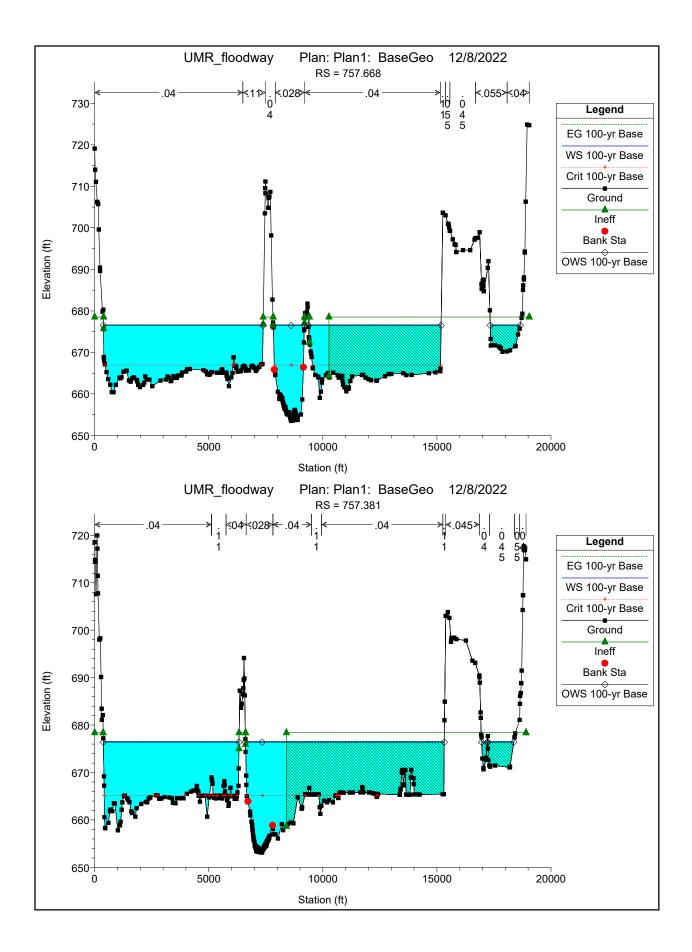


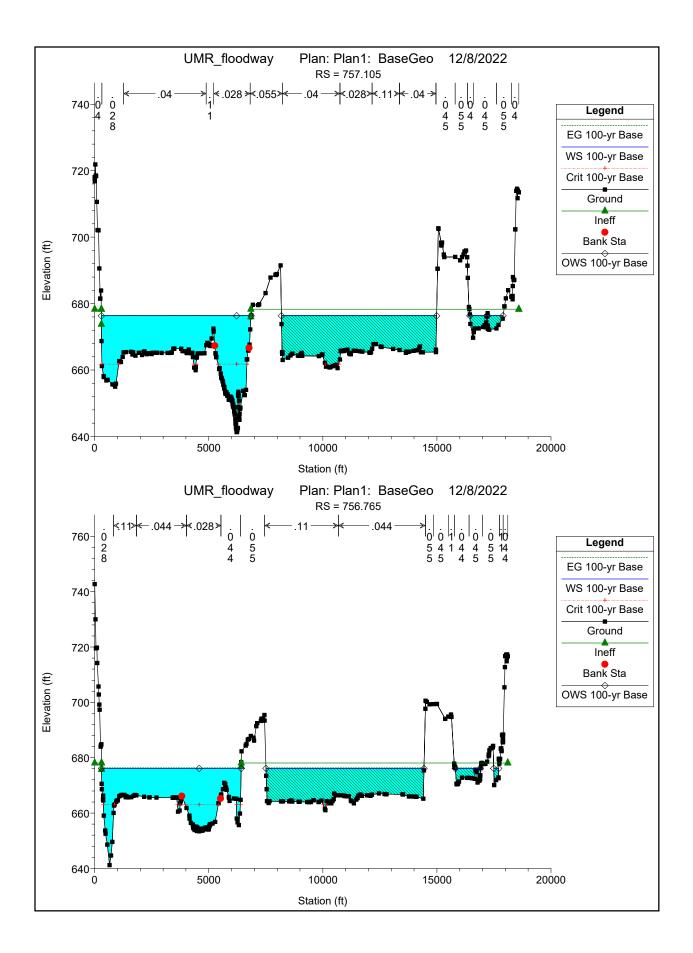


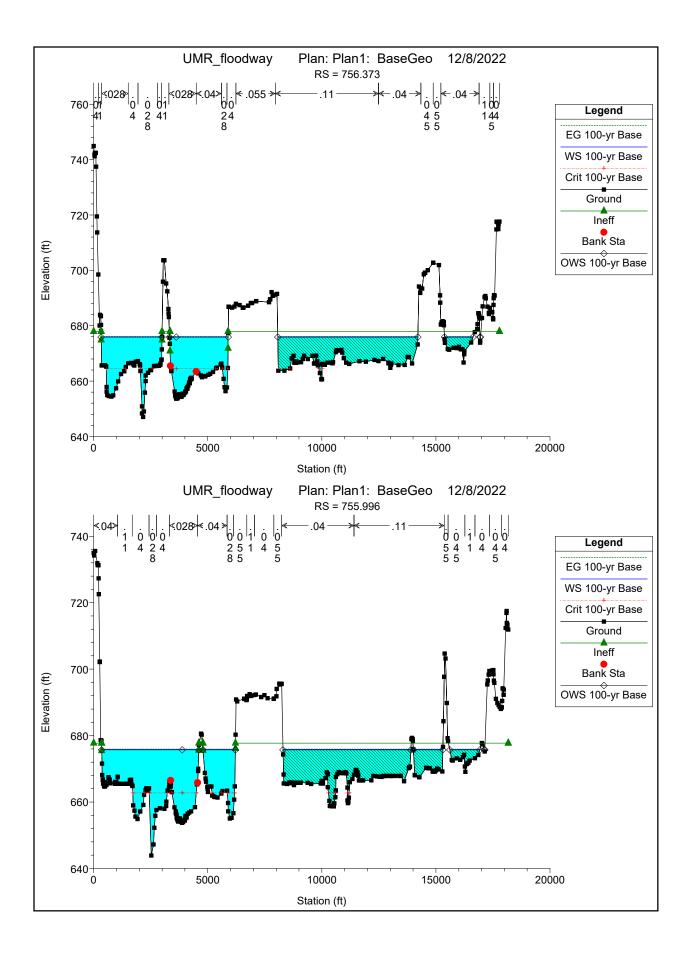


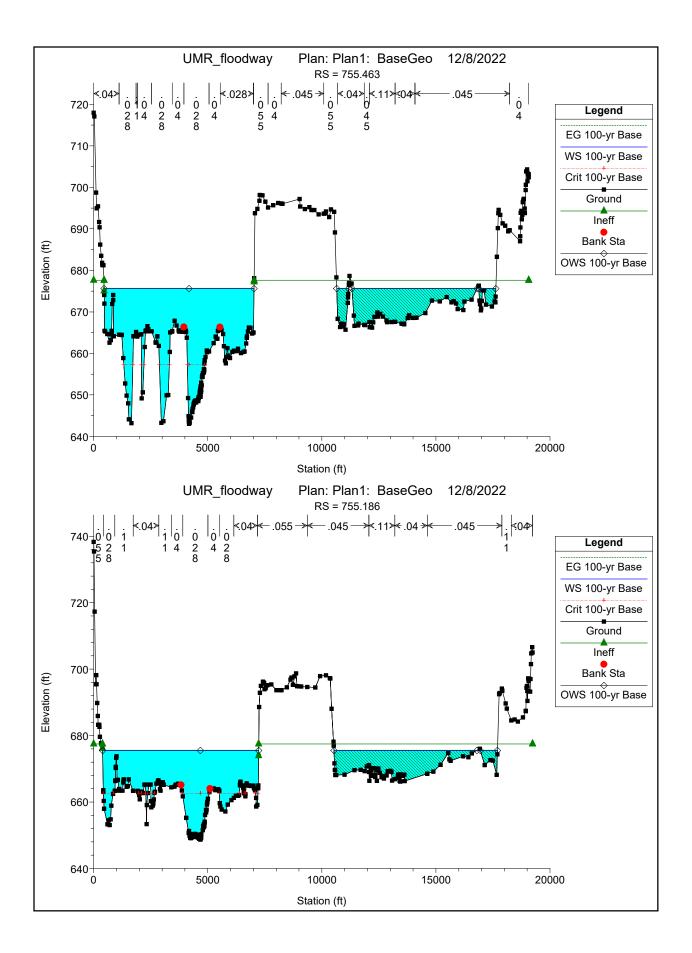


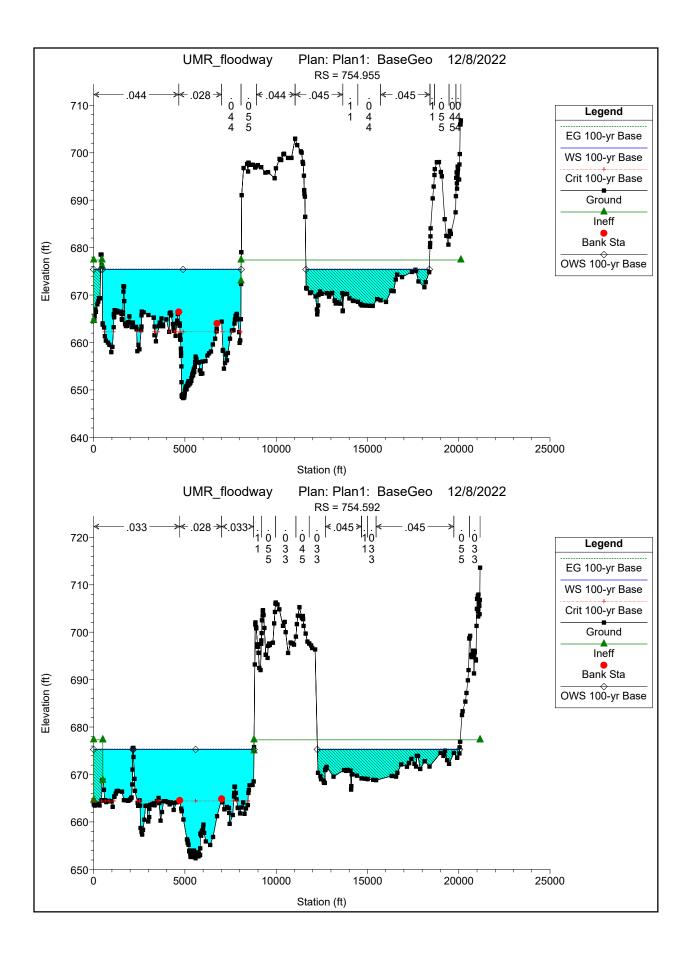


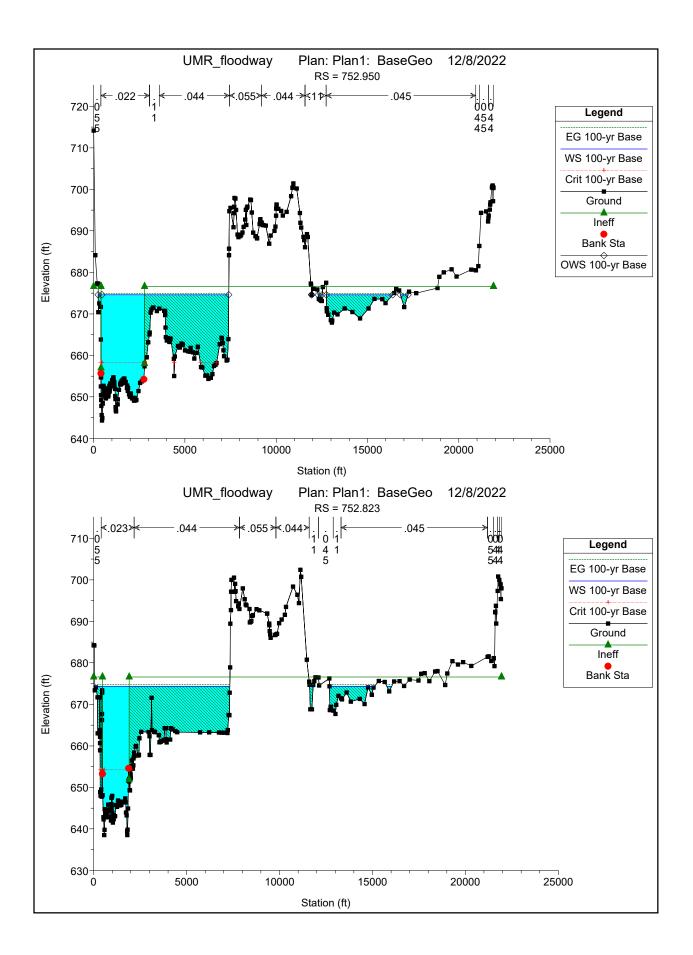


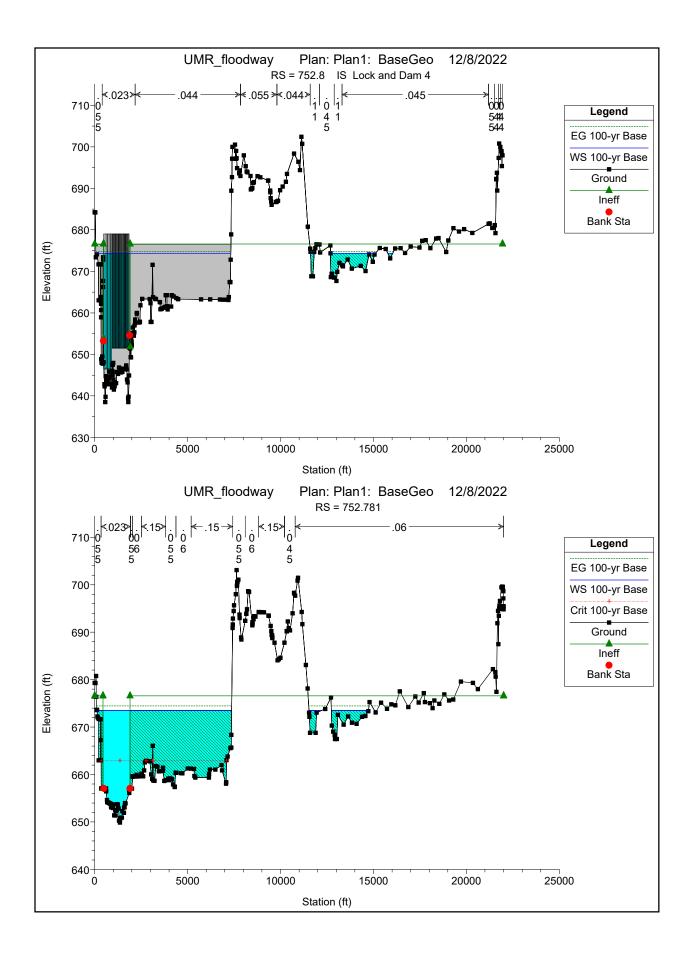


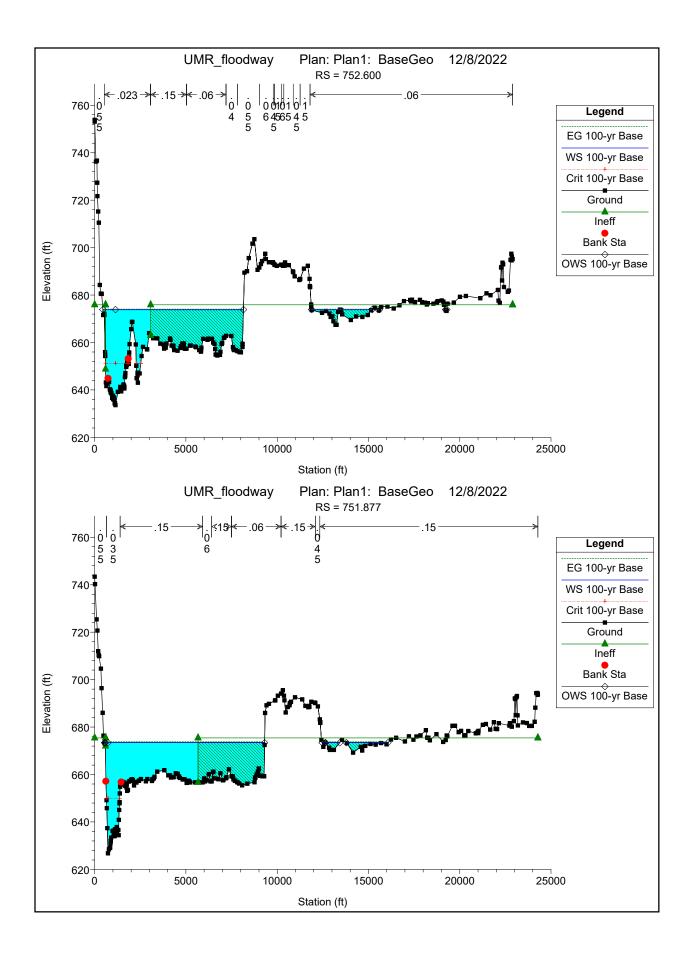


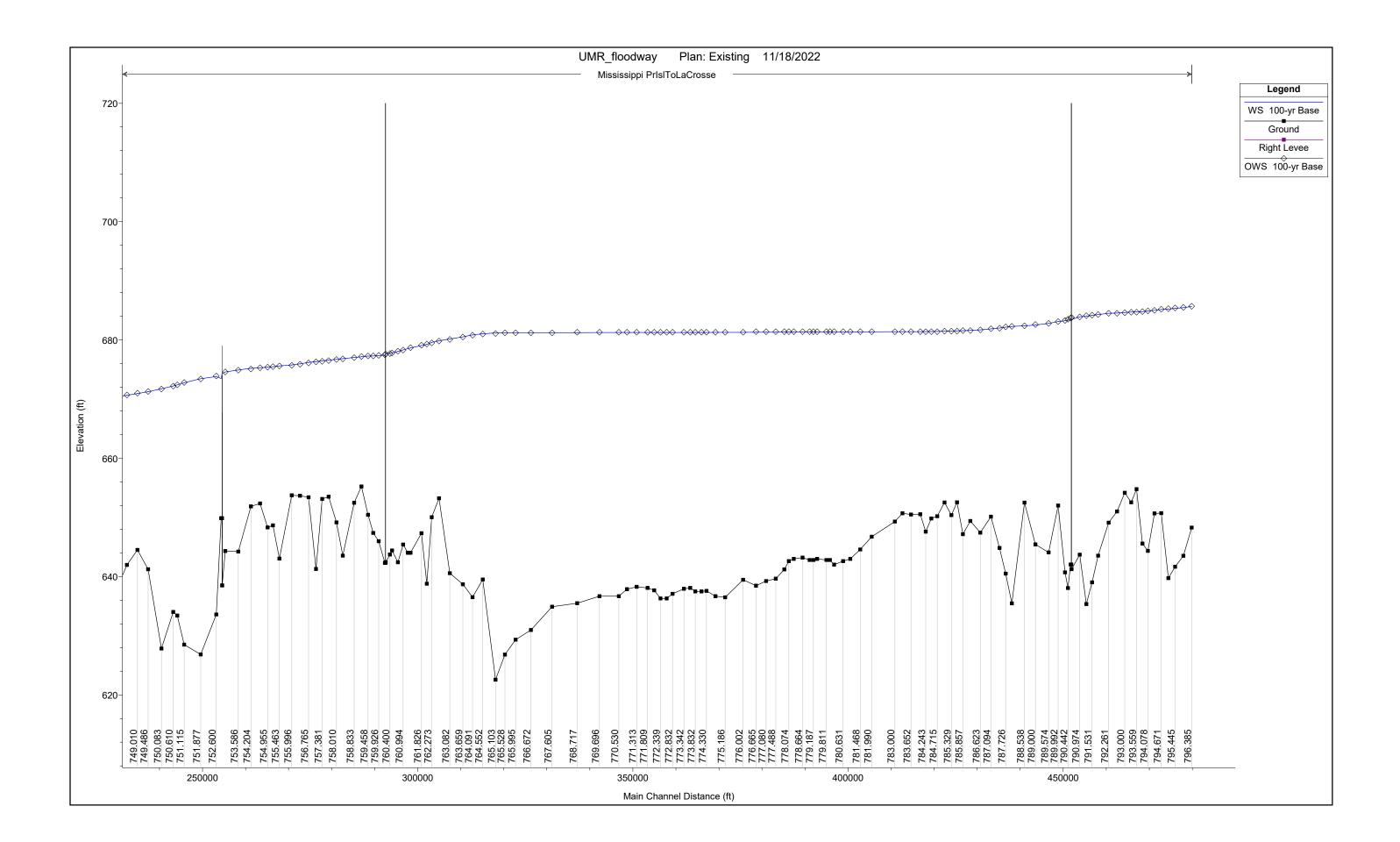


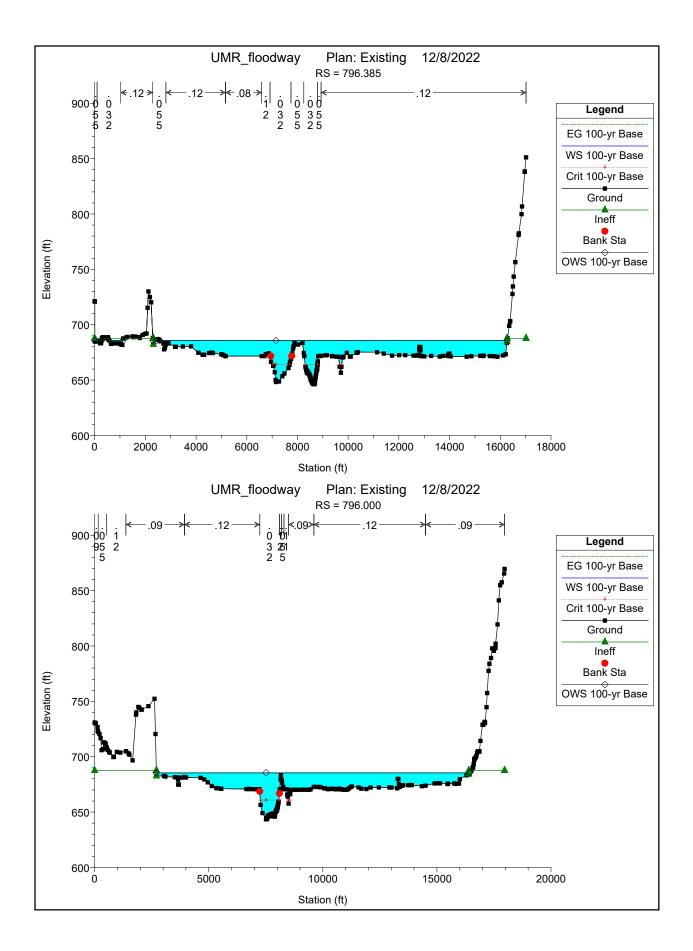


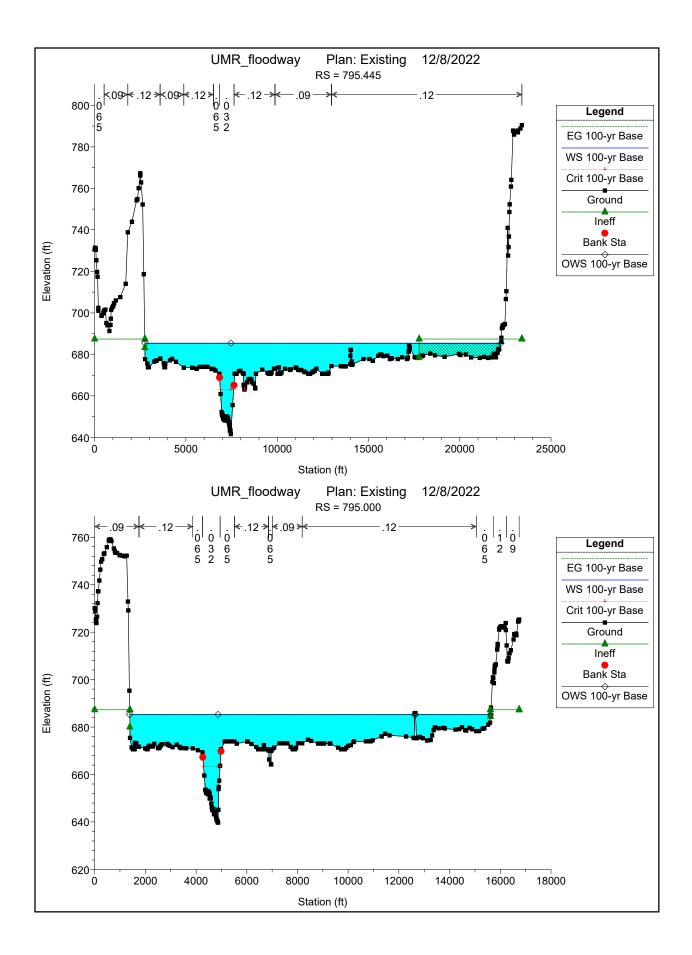


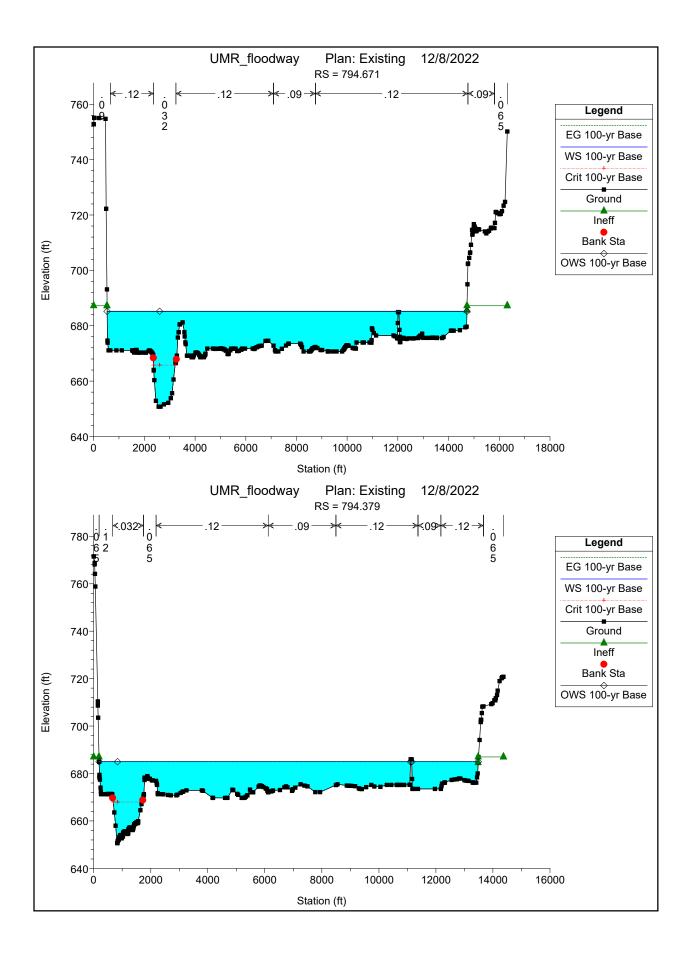


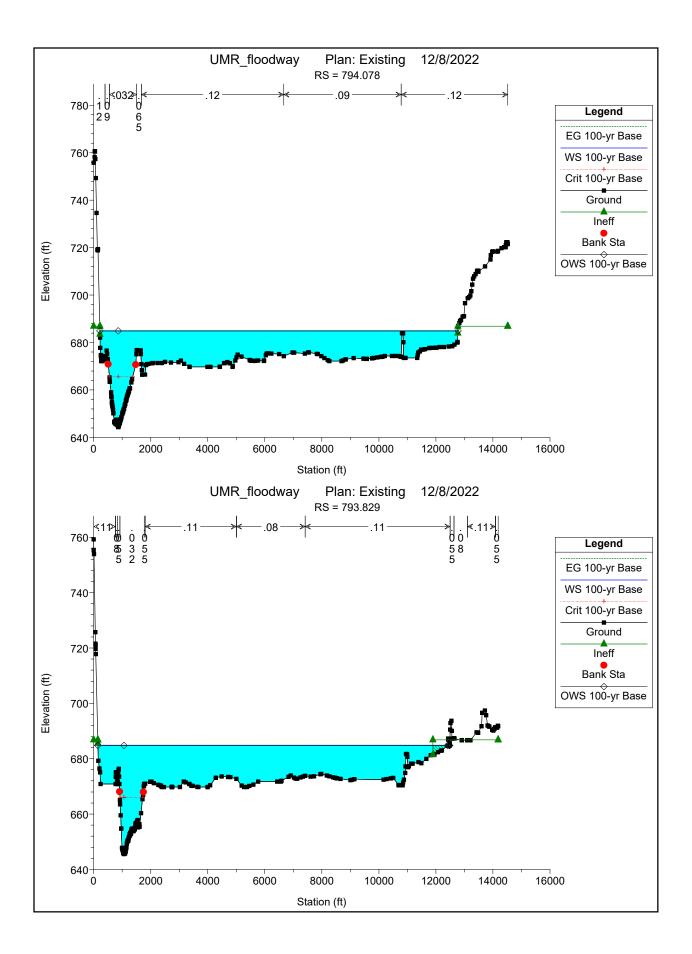


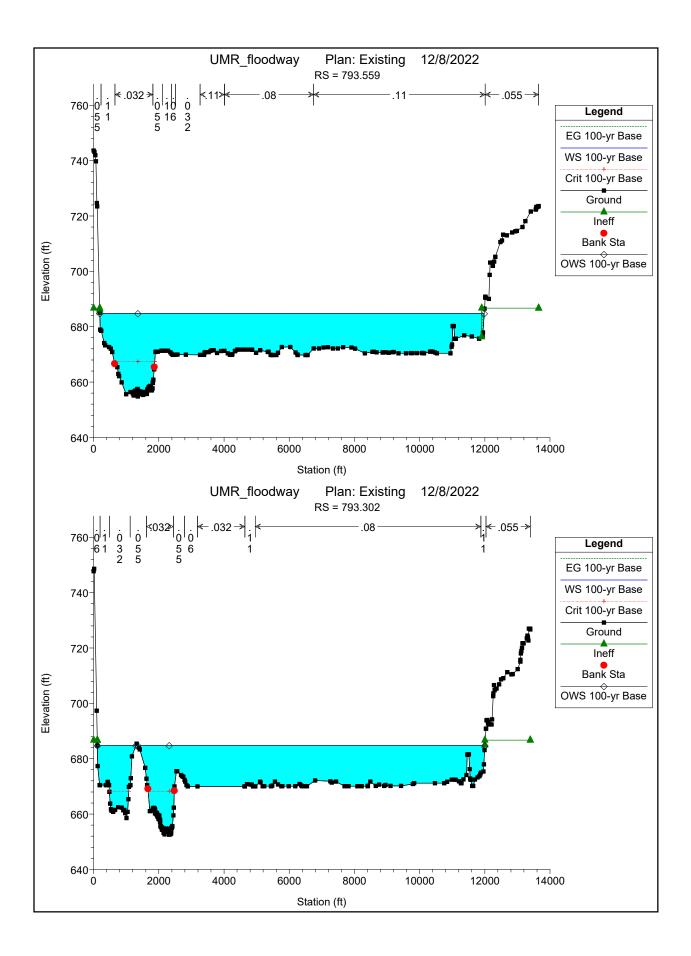


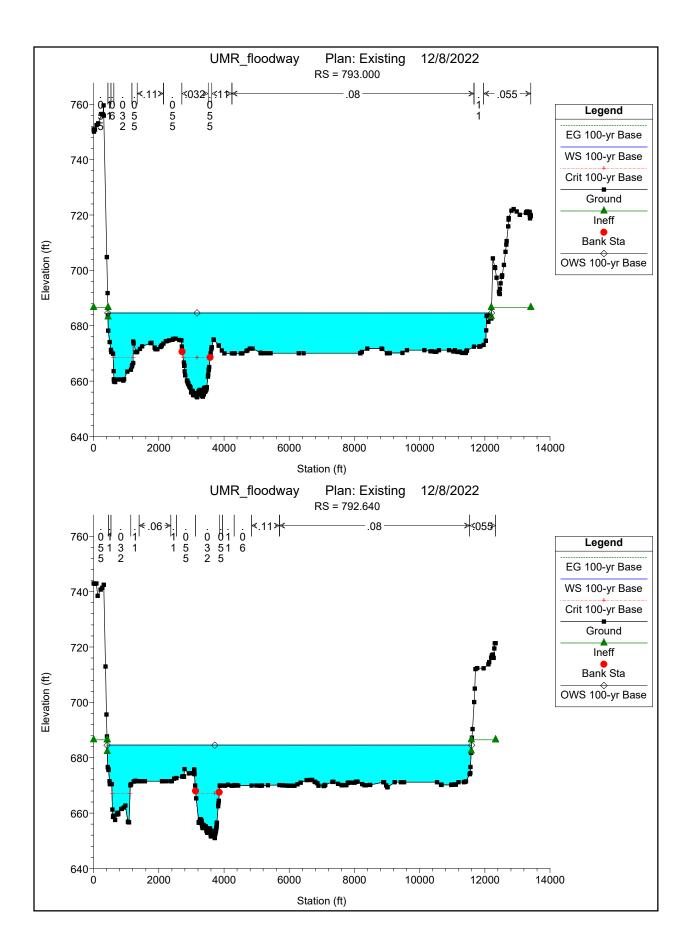


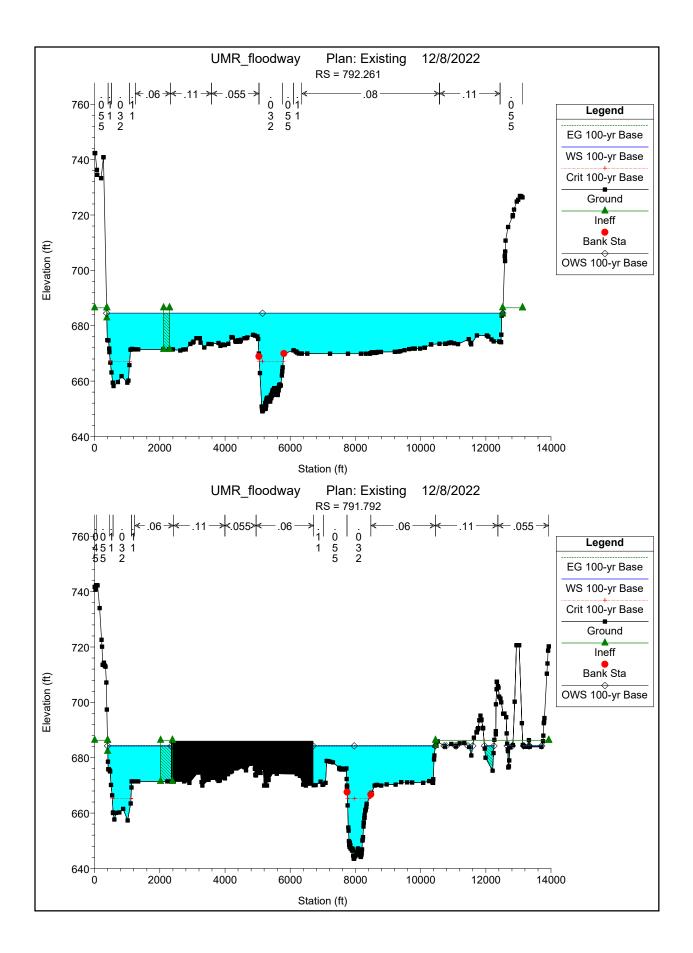

Appendix D: Existing Condition HEC-RAS

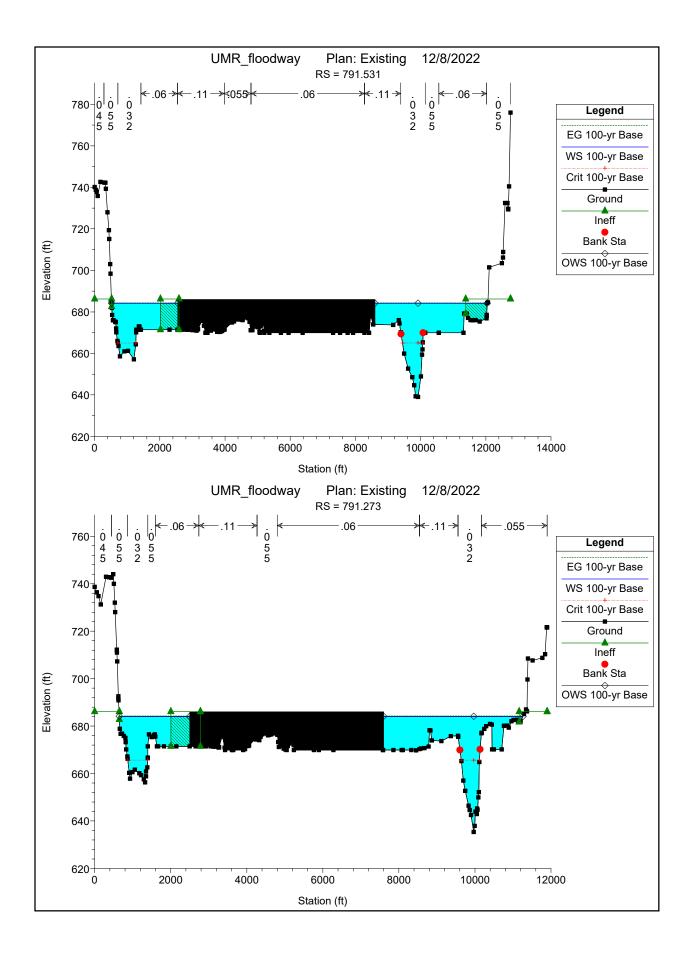

River	Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
				(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
Mississippi	PrisiToLaCrosse	796.385	100-yr Base	192930.00	648.28	685.67	663.85	685.73	0.000046	2.92	187512.80	14649.85	0.10
	PrIsIToLaCrosse	796.000	100-yr Base	192930.00	643.51	685.46	660.87	685.59	0.000056	3.75	175721.50	13735.36	0.11
Mississippi	PrIsIToLaCrosse	795.445	100-yr Base	192930.00	641.65	685.35	663.22	685.47	0.000062	3.82	183954.60	19506.62	0.12
	PrisiToLaCrosse	795.000	100-yr Base	192930.00	639.73	685.23	663.51	685.37	0.000071	4.09	174128.90	14198.10	0.12
Mississippi	PrisiToLaCrosse	794.671	100-yr Base	196287.00	650.73	685.15	665.78	685.25	0.000080	3.57	186379.30	14193.75	0.11
Mississippi	PrisiToLaCrosse	794.379	100-yr Base	196231.00	650.68	685.01	667.96	685.14	0.000082	3.79	166520.40	13249.94 12555.03	0.13
Mississippi Mississippi	PrisiToLaCrosse PrisiToLaCrosse	794.078 793.829	100-yr Base 100-yr Base	196276.00 196321.00	644.35 645.57	684.90 684.80	665.58 666.01	685.04 684.93	0.000082	3.95 3.98	159732.60 158481.50	12555.03	0.13
	PrisiToLaCrosse	793.559	100-yr Base	196366.00	654.79	684.75	667.42	684.82	0.000079	2.92	170989.90	11794.28	0.10
Mississippi	PrisiToLaCrosse	793.302	100-yr Base	196412.00	652.56	684.72	668.29	684.76	0.000037	2.43	173937.90	11833.16	0.08
Mississippi	PrisiToLaCrosse	793.000	100-yr Base	196355.00	654.16	684.65	668.44	684.70	0.000048	2.79	173326.00	11766.46	0.10
	PrIsIToLaCrosse	792.640	100-yr Base	196445.00	651.01	684.56	667.14	684.62	0.000046	2.93	168560.30	11179.77	0.10
Mississippi	PrIsIToLaCrosse	792.261	100-yr Base	196491.00	649.10	684.50	666.99	684.56	0.000051	3.04	165318.70	12153.91	0.10
Mississippi	PrIsIToLaCrosse	791.792	100-yr Base	196479.00	643.53	684.30	665.27	684.45	0.000077	4.08	87112.88	6932.10	0.13
Mississippi	PrIsIToLaCrosse	791.531	100-yr Base	196524.00	639.03	684.16	664.97	684.35	0.000092	4.54	73096.38	5474.90	0.14
Mississippi	PrisiToLaCrosse	791.273	100-yr Base	196570.00	635.36	684.01	665.67	684.25	0.000118	5.25	70295.23	5513.48	0.16
	PrisiToLaCrosse	790.974	100-yr Base	196615.00	643.70	683.91	665.49	684.14	0.000121	4.89	67782.63	6017.48	0.16
Mississippi	PrisiToLaCrosse	790.604	100-yr Base	196558.00	641.25	683.47	665.90	683.91	0.000183	6.26	42257.64	8472.94	0.20
	PrisiToLaCrosse	790.6	400 viz D	Bridge	640.00	000.45	665.98	c00.00	0.000470	6.14	44252.83	0450.04	0.19
Mississippi Mississippi	PrIsIToLaCrosse PrIsIToLaCrosse	790.563 790.442	100-yr Base 100-yr Base	196558.00 196604.00	642.03 638.05	683.45 683.35	660.85	683.86 683.55	0.000178	4.76	103666.30	8452.31 7528.14	0.14
	PrisiToLaCrosse	790.302	100-yr Base	196604.00	640.72	683.24	663.03	683.41	0.000087	4.44	102729.30	6408.90	0.14
Mississippi	PrisiToLaCrosse	789.992	100-yr Base	196649.00	652.00	683.11	668.86	683.23	0.000111	3.78	102125.00	6271.34	0.13
	PrisiToLaCrosse	789.574	100-yr Base	196739.00	644.09	682.80	668.35	682.96	0.000116	4.51	92365.86	6593.66	0.15
Mississippi	PrisiToLaCrosse	789.000	100-yr Base	196728.00	645.43	682.52	666.57	682.64	0.000084	3.72	117063.10	7798.16	0.13
Mississippi	PrIsIToLaCrosse	788.538	100-yr Base	196819.00	652.50	682.40	662.57	682.46	0.000045	2.76	133146.70	8108.44	0.09
Mississippi	PrIsIToLaCrosse	787.988	100-yr Base	196807.00	635.48	682.27	667.70	682.33	0.000059	2.99	117557.60	7465.79	0.10
Mississippi	PrisiToLaCrosse	787.726	100-yr Base	196852.00	640.50	682.15	666.21	682.24	0.000067	3.47	106920.10	7360.28	0.11
	PrIsIToLaCrosse	787.466	100-yr Base	196898.00	644.85	682.01	664.20	682.08	0.000058	3.21	114450.20	7641.68	0.11
Mississippi	PrIsIToLaCrosse	787.094	100-yr Base	196943.00	650.12	681.86	665.34	681.95	0.000069	3.42	122751.90	7668.48	0.12
Mississippi	PrisiToLaCrosse	786.623	100-yr Base	196932.00	647.42	681.71	666.85	681.80	0.000070	3.48	124728.40	8330.47	0.12
	PrisiToLaCrosse PrisiToLaCrosse	786.191	100-yr Base	197022.00	649.40	681.61	667.63	681.65	0.000045	2.69	153382.20	9456.08	0.09
Mississippi Mississippi	PrisiToLaCrosse	785.857 785.584	100-yr Base 100-yr Base	197068.00 197011.00	647.16 652.56	681.56 681.54	667.79 666.97	681.59 681.56	0.000022	2.05	166677.60 177578.50	11945.81 11191.62	0.07
Mississippi	PrisiToLaCrosse	785.329	100-yr Base	197011.00	650.40	681.54	666.22	681.54	0.000013	1.41	166693.60	10502.10	0.05
Mississippi	PrisiToLaCrosse	785.017	100-yr Base	197102.00	652.52	681.48	666.06	681.51	0.000017	1.59	148236.50	9162.83	0.06
	PrIsIToLaCrosse	784.715	100-yr Base	197147.00	650.20	681.45	665.65	681.48	0.000018	1.63	138918.60	8268.53	0.06
Mississippi	PrisiToLaCrosse	784.471	100-yr Base	197090.00	649.82	681.43	664.44	681.46	0.000013	1.42	157319.90	8355.13	0.05
	PrisiToLaCrosse	784.243	100-yr Base	197136.00	647.59	681.42	664.87	681.44	0.000013	1.49	152575.20	8071.91	0.05
Mississippi	PrIsIToLaCrosse	784.020	100-yr Base	197181.00	650.53	681.41	663.18	681.43	0.00009	1.20	179984.70	8796.41	0.04
Mississippi	PrisiToLaCrosse	783.652	100-yr Base	197226.00	650.49	681.40	660.33	681.41	0.000005	0.91	217800.50	9686.13	0.03
	PrIsIToLaCrosse	783.304	100-yr Base	197170.00	650.69	681.39	658.55	681.41	0.000004	0.88	232304.10	9984.62	0.03
Mississippi	PrIsIToLaCrosse	783.000	100-yr Base	197215.00	649.31	681.39	656.78	681.40	0.000003	0.73	271884.80	10415.20	0.02
	PrisiToLaCrosse	781.990	100-yr Base	197294.00	646.75	681.38	653.65	681.38	0.000002	0.62	335800.30	11492.00	0.02
Mississippi	PrisiToLaCrosse	781.468 780.984	100-yr Base	197385.00 197476.00	644.58 643.00	681.37 681.37	652.63 651.11	681.38 681.37	0.000002	0.61	350813.30 317119.40	11860.57	0.02
Mississippi Mississippi	PrIsIToLaCrosse PrIsIToLaCrosse	780.631	100-yr Base 100-yr Base	197419.00	643.00	681.36	650.23	681.37	0.000002	0.70	277049.30	11414.77 13165.86	0.02
Mississippi	PrisiToLaCrosse	780.191	100-yr Base	197419.00	642.00	681.35	649.67	681.36	0.000003	0.84	273253.40	11036.70	0.03
	PrisiToLaCrosse	779.984	100-yr Base	198626.00	642.80	681.35	649.94	681.36	0.000002	0.74	292670.10	10639.55	0.02
Mississippi	PrIsIToLaCrosse	779.811	100-yr Base	198615.00	642.80	681.35	649.88	681.36	0.000002	0.66	317437.60	10485.81	0.02
Mississippi	PrIsIToLaCrosse	779.388	100-yr Base	198832.00	643.00	681.35	649.80	681.35	0.000002	0.67	307774.70	9928.39	0.02
Mississippi	PrIsIToLaCrosse	779.187	100-yr Base	198866.00	642.80	681.34	649.46	681.35	0.000002	0.71	293484.80	12154.13	0.02
Mississippi	PrIsIToLaCrosse	779.000	100-yr Base	198900.00	642.80	681.34	649.02	681.35	0.000002	0.70	288101.60	8854.01	0.02
Mississippi	PrIsIToLaCrosse	778.664	100-yr Base	199026.00	643.20	681.34	649.19	681.35	0.000002	0.73	278740.20	8443.37	0.02
Mississippi	PrisiToLaCrosse	778.290	100-yr Base	199152.00	643.00	681.33	648.85	681.34	0.000003	0.85	252807.80	8401.98	0.02
Mississippi	PrisiToLaCrosse	778.074	100-yr Base	199186.00	642.60	681.32	648.04	681.34	0.000003	0.96	227552.10	8275.67	0.03
	PrisiToLaCrosse	777.875 777.488	100-yr Base	199232.00	641.22	681.32	647.37	681.33	0.000003	0.94	228905.80	8214.85	0.03
	PrisiToLaCrosse	777.080	100-yr Base	199232.00 199232.00	639.64	681.31 681.30	646.63 646.05	681.32 681.31	0.000005	1.18 0.93	200751.20	8529.87	0.03
Mississippi Mississippi	PrIsIToLaCrosse PrIsIToLaCrosse	776.665	100-yr Base 100-yr Base	199232.00	639.25 638.46	681.30	645.03	681.31	0.000003	0.93	239403.50 235152.40	8219.75 6741.74	0.03
	PrisiToLaCrosse	776.002	100-yr Base	199232.00	639.45	681.29	644.60	681.30	0.000002	0.82	256235.60	7015.01	0.02
	PrisiToLaCrosse	775.186	100-yr Base	199232.00	636.49	681.28	644.23	681.29	0.000002	0.75	285457.40	8317.79	0.02
Mississippi	PrIsIToLaCrosse	774.739	100-yr Base	199232.00	636.68	681.27	644.14	681.28	0.000003	0.81	261953.40	8224.20	0.02
	PrIsIToLaCrosse	774.330	100-yr Base	199232.00	637.58	681.26	644.78	681.28	0.000003	1.02	217234.50	8547.67	0.03
Mississippi	PrIsIToLaCrosse	774.110	100-yr Base	199232.00	637.48	681.26	643.30	681.27	0.000002	0.74	294421.40	9495.68	0.02
	PrIsIToLaCrosse	773.832	100-yr Base	199232.00	637.48	681.26	642.91	681.27	0.000001	0.64	328697.10	9883.54	0.02
	PrIsIToLaCrosse	773.623	100-yr Base	199232.00	638.07	681.26	642.94	681.27	0.000001	0.57	366709.50	10392.43	0.02
Mississippi	PrisiToLaCrosse	773.342	100-yr Base	199232.00	637.94	681.26	643.11	681.27	0.000001	0.56	370021.20	10624.26	0.02
	PrisiToLaCrosse	772.832	100-yr Base	199232.00	637.08	681.26	643.38	681.26	0.000001	0.66	313775.90	9562.56	0.02
	PrisiToLaCrosse	772.560	100-yr Base	199232.00	636.29	681.25	642.39	681.26	0.000001	0.58	355921.40	10877.79 11546.52	0.02
	PrisiToLaCrosse PrisiToLaCrosse	772.339 772.092	100-yr Base	199232.00 199232.00	636.29 637.67	681.25 681.25	642.02 642.09	681.26 681.26	0.000001	0.50	412621.00 452789.70	11546.52	0.01
Mississippi Mississippi	PrisiToLaCrosse	771.809	100-yr Base 100-yr Base	199232.00	637.67	681.25	642.09	681.26	0.000001	0.46	452789.70 476764.30	11919.25	0.01
	PrisiToLaCrosse	771.313	100-yr Base	199232.00	638.26	681.25	642.68	681.25	0.000001	0.44	495981.10	13982.90	0.01
Vississippi	PrisiToLaCrosse	770.876	100-yr Base	199232.00	637.87	681.25	642.56	681.25	0.000001	0.42	476078.70	14553.42	0.01
	PrisiToLaCrosse	770.530	100-yr Base	199232.00	636.69	681.25	642.40	681.25	0.000001	0.45	472040.40	13811.46	0.01
	PrisiToLaCrosse	769.696	100-yr Base	199232.00	636.69	681.25	642.80	681.25	0.000001	0.45	482299.50	14291.96	0.01
Mississippi	PrIsIToLaCrosse	768.717	100-yr Base	199232.00	635.50	681.24	642.85	681.24	0.000001	0.49	434805.70	11581.13	0.01
	PrIsIToLaCrosse	767.605	100-yr Base	199232.00	634.91	681.24	642.08	681.24	0.000001	0.51	409794.50	10764.52	0.0
Aississippi	PrIsIToLaCrosse	766.672	100-yr Base	199232.00	630.97	681.23	640.45	681.23	0.000001	0.60	358428.30	9429.36	0.02
	PrIsIToLaCrosse	765.995	100-yr Base	199232.00	629.32	681.22	638.79	681.23	0.000001	0.74	313698.80	8697.42	0.0
Aingiggingi	PrIsIToLaCrosse	765.528	100-yr Base	199232.00	626.80	681.22	637.59	681.22	0.000002	0.91	273702.70	8769.84	0.0
	PrisiToLaCrosse	765.103	100-yr Base	199232.00	622.56	681.18	634.06	681.22	0.000006	1.68	215072.50	9096.51	0.04
Vississippi													
Vississippi Vississippi	PrisiToLaCrosse	764.552	100-yr Base	199232.00	639.50	681.05	660.87	681.17	0.000078	3.34	113281.40	8823.91	0.11
Mississippi Mississippi Mississippi				199232.00 199232.00 199232.00	639.50 636.52 638.70	681.05 680.85 680.53	660.87 659.34 661.86	681.17 680.98 680.75	0.000078 0.000079 0.000124	3.34 3.26 4.43	113281.40 123758.00 103969.10	8823.91 10520.26 11188.49	0.1 ⁻ 0.1 ⁻ 0.15

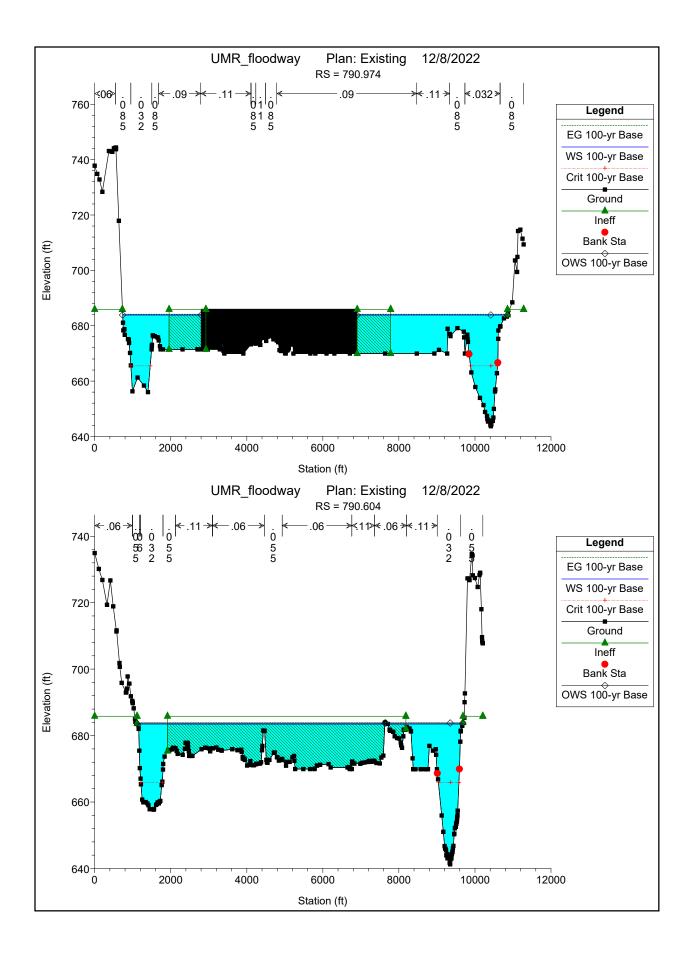

River	Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
				(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
Mississippi	PrisiToLaCrosse	762.578	100-yr Base	229611.00	653.24	679.85	665.76	680.05	0.000143	4.52	129186.00	13484.81	0.16
Mississippi	PrisiToLaCrosse	762.273	100-yr Base	229611.00	650.04	679.59	666.97	679.75	0.000236	4.40	127108.10	14423.34	0.16
Mississippi	PrisiToLaCrosse	762.062	100-yr Base	229611.00	638.79	679.25	664.97	679.51	0.000169	5.42	122939.80	14803.86	0.18
Mississippi	PrIsIToLaCrosse	761.826	100-yr Base	229611.00	647.34	679.04	665.46	679.30	0.000170	5.44	136150.20	15237.21	0.18
Mississippi	PrisiToLaCrosse	761.327	100-yr Base	229611.00	644.03	678.65	664.10	678.88	0.000157	4.81	134679.80	16334.60	0.17
Mississippi	PrisiToLaCrosse	760.994	100-yr Base	229611.00	645.42	678.30	664.70	678.57	0.000179	5.14	134245.60	17374.84	0.19
Mississippi	PrisiToLaCrosse	760.759	100-yr Base	229611.00	642.41	678.05	663.34	678.34	0.000178	5.47	142371.60	15918.74	0.19
Mississippi	PrisiToLaCrosse	760.495	100-yr Base	229611.00	644.41	677.82	662.94	678.10	0.000170	5.50	141621.90	15728.67	0.18
Mississippi	PrisiToLaCrosse	760.400	100-yr Base	229611.00	643.73	677.77	665.31	678.00	0.000173	5.25	122586.30	15909.14	0.18
Mississippi	PrIsIToLaCrosse	760.216	100-yr Base	229611.00	642.43	677.69	664.11	677.87	0.000079	4.02	70217.59	15434.44	0.14
Mississippi	PrisiToLaCrosse	760.2		Bridge									
Mississippi	PrisiToLaCrosse	760.181	100-yr Base	229611.00	642.30	677.42	666.65	677.82	0.000185	6.20	54347.52	15557.62	0.22
Mississippi	PrisiToLaCrosse	759.926	100-yr Base	229611.00	645.99	677.37	667.35	677.53	0.000113	4.66	140750.90	15098.92	0.17
Mississippi	PrIsIToLaCrosse	759.684	100-yr Base	229611.00	647.38	677.31	667.75	677.39	0.000066	3.61	147763.40	15160.14	0.13
Mississippi	PrisiToLaCrosse	759.458	100-yr Base	229611.00	650.43	677.26	663.72	677.31	0.000041	2.67	148451.40	14237.99	0.10
Mississippi	PrisiToLaCrosse	759.170	100-yr Base	229611.00	655.22	677.15	668.29	677.23	0.000090	3.51	147218.40	14647.94	0.14
Mississippi	PrIsIToLaCrosse	758.833	100-yr Base	229611.00	652.49	677.03	667.37	677.09	0.000060	3.13	155104.20	15160.93	0.12
Mississippi	PrIsIToLaCrosse	758.299	100-yr Base	229611.00	643.54	676.85	666.70	676.91	0.000057	3.01	152263.80	14301.85	0.11
Mississippi	PrIsIToLaCrosse	758.010	100-yr Base	229611.00	649.15	676.72	666.84	676.80	0.000068	3.39	133920.50	14848.46	0.13
Mississippi	PrisiToLaCrosse	757.668	100-yr Base	229611.00	653.51	676.59	666.97	676.68	0.000073	3.26	119497.60	15488.71	0.13
Mississippi	PrIsIToLaCrosse	757.381	100-yr Base	229611.00	653.12	676.47	665.14	676.57	0.000080	3.53	107455.30	16049.33	0.14
Mississippi	PrIsIToLaCrosse	757.105	100-yr Base	229611.00	641.29	676.35	661.79	676.47	0.000067	3.43	94481.04	14793.31	0.13
Mississippi	PrisiToLaCrosse	756.765	100-yr Base	229611.00	653.40	676.20	663.00	676.34	0.000098	3.67	86410.75	14366.27	0.15
Mississippi	PrIsIToLaCrosse	756.373	100-yr Base	229611.00	653.66	675.97	664.47	676.13	0.000104	3.70	75525.72	12656.26	0.15
Mississippi	PrIsIToLaCrosse	755.996	100-yr Base	229611.00	653.73	675.79	662.73	675.92	0.000099	3.68	84299.00	13938.42	0.15
Mississippi	PrIsIToLaCrosse	755.463	100-yr Base	229611.00	643.03	675.60	657.27	675.68	0.000045	2.55	104051.30	13327.38	0.10
Mississippi	PrIsIToLaCrosse	755.186	100-yr Base	229611.00	648.65	675.47	662.62	675.59	0.000077	3.61	97485.73	13844.89	0.14
Mississippi	PrisiToLaCrosse	754.955	100-yr Base	229611.00	648.31	675.40	662.26	675.50	0.000065	3.15	108445.30	14745.09	0.12
Mississippi	PrisiToLaCrosse	754.592	100-yr Base	229611.00	652.36	675.30	664.44	675.38	0.000058	2.77	108146.10	16529.92	0.12
Mississippi	PrIsIToLaCrosse	754.204	100-yr Base	231280.00	651.87	675.21	662.92	675.27	0.000042	2.31	120203.60	17923.70	0.10
Mississippi	PrisiToLaCrosse	753.586	100-yr Base	231280.00	644.22	674.92	661.74	675.09	0.000072	3.50	71972.00	12640.25	0.15
Mississippi	PrIsIToLaCrosse	752.950	100-yr Base	231280.00	644.31	674.60	658.21	674.87	0.000059	4.21	55018.50	11437.57	0.15
Mississippi	PrIsIToLaCrosse	752.823	100-yr Base	231280.00	638.50	674.34	654.22	674.80	0.000080	5.49	42262.00	10128.84	0.18
Mississippi	PrIsIToLaCrosse	752.8		Inl Struct									
Mississippi	PrisiToLaCrosse	752.781	100-yr Base	231280.00	649.88	673.48	662.91	674.47	0.000286	8.03	28904.10	10012.96	0.32
Mississippi	PrisiToLaCrosse	752.600	100-yr Base	231280.00	633.59	673.81	651.22	674.06	0.000044	4.37	60690.73	11106.44	0.13
Mississippi	PrisiToLaCrosse	751.877	100-yr Base	231280.00	626.83	673.45	650.02	673.80	0.000274	5.56	94419.30	11983.71	0.16

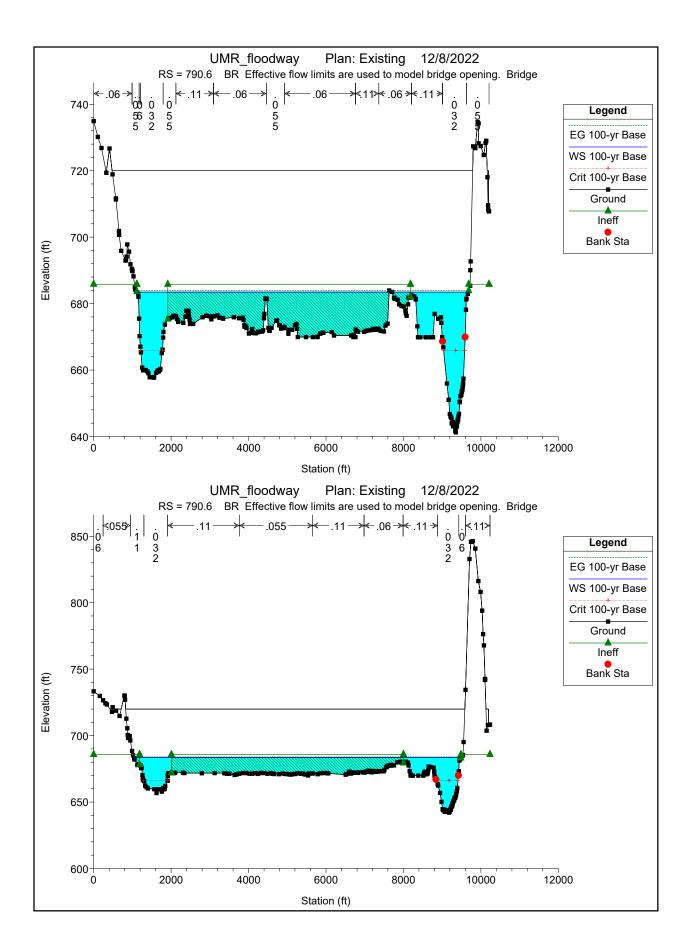


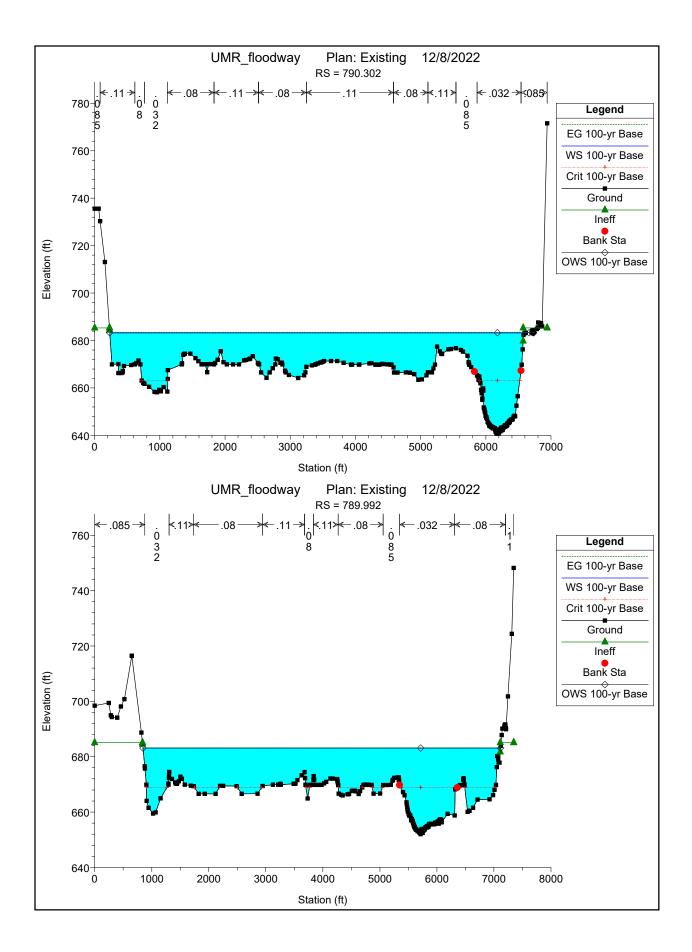


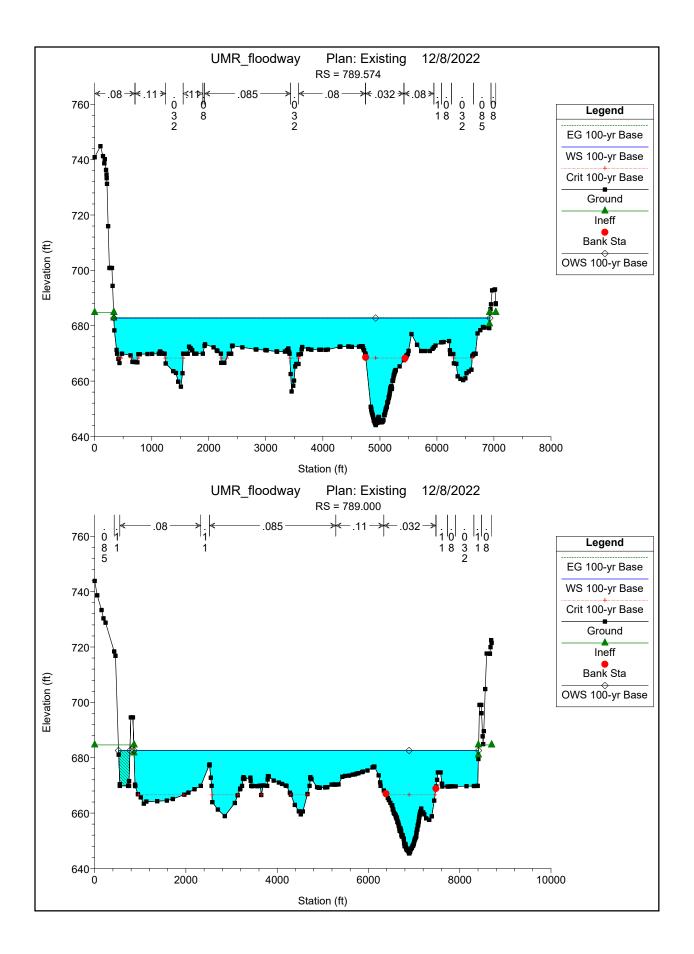


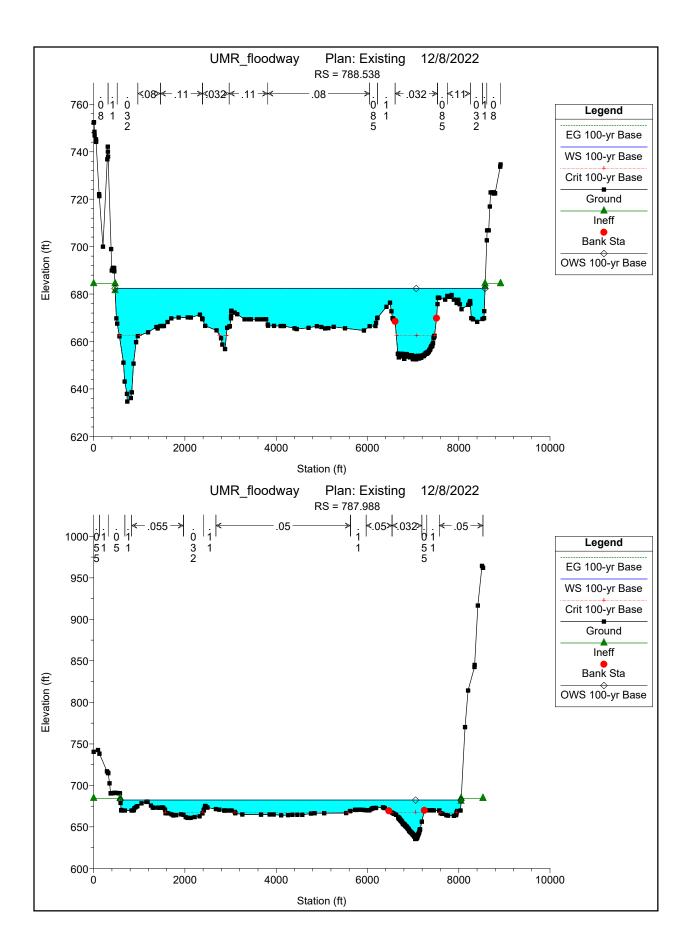


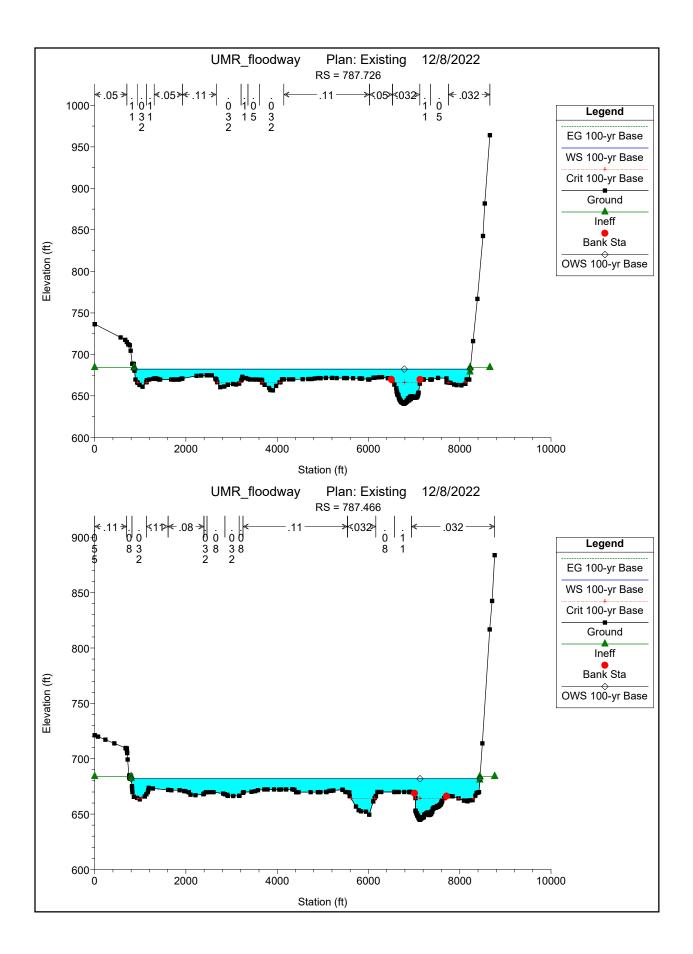


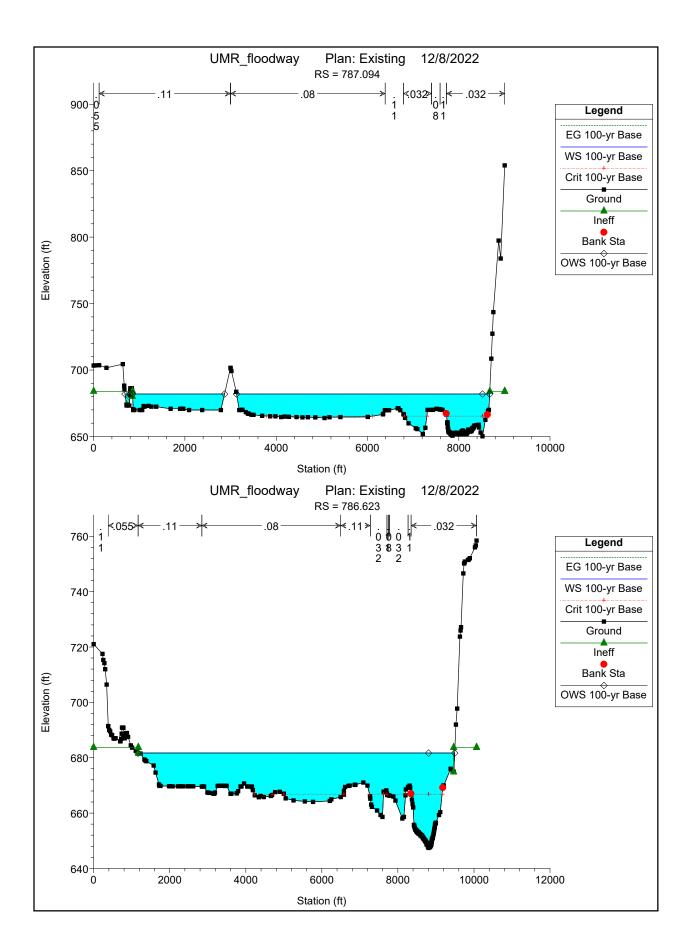


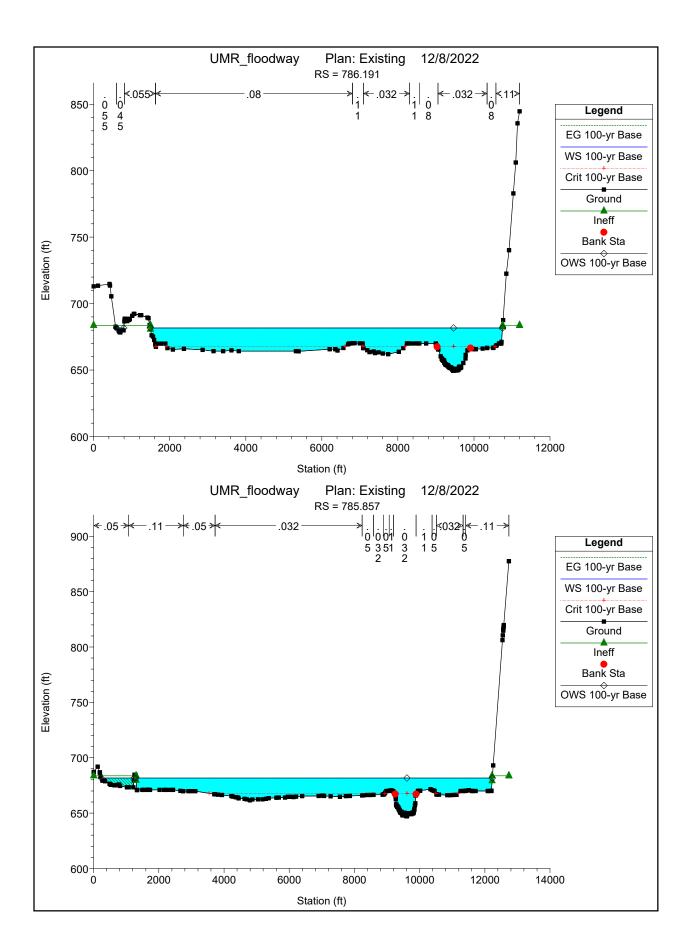


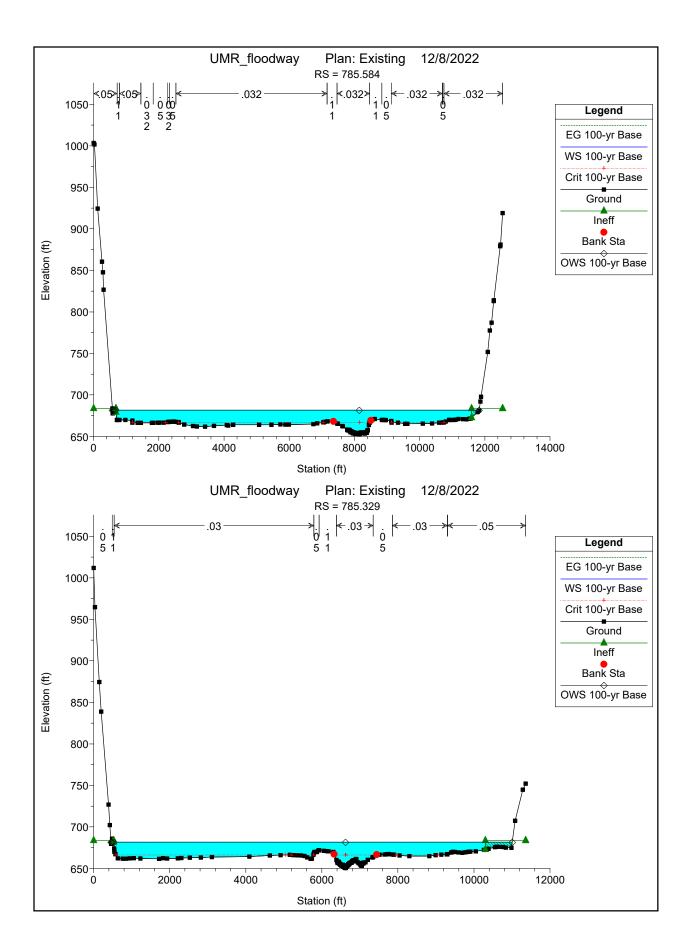


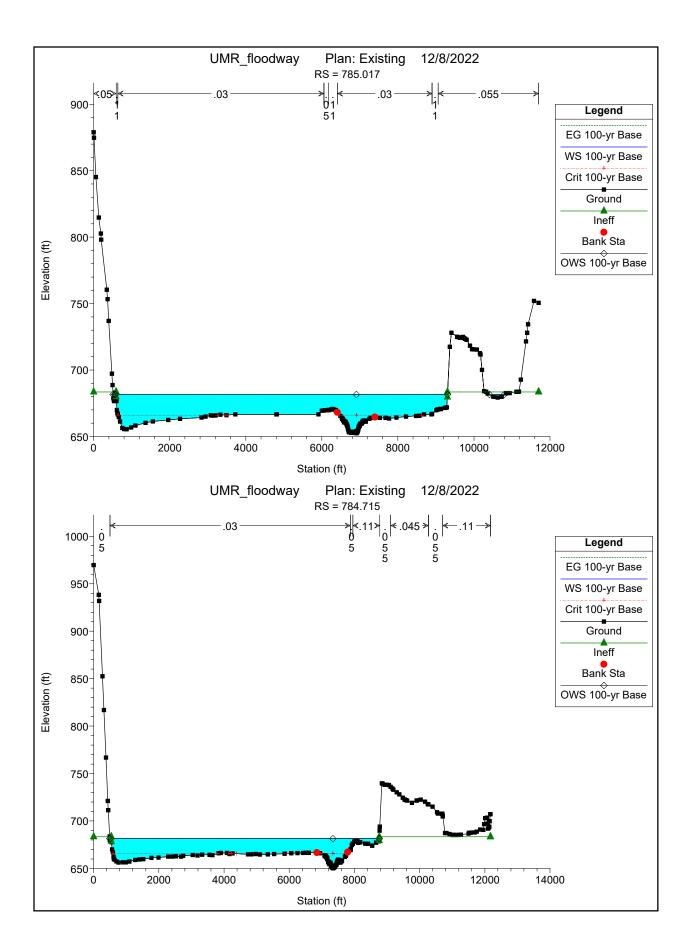


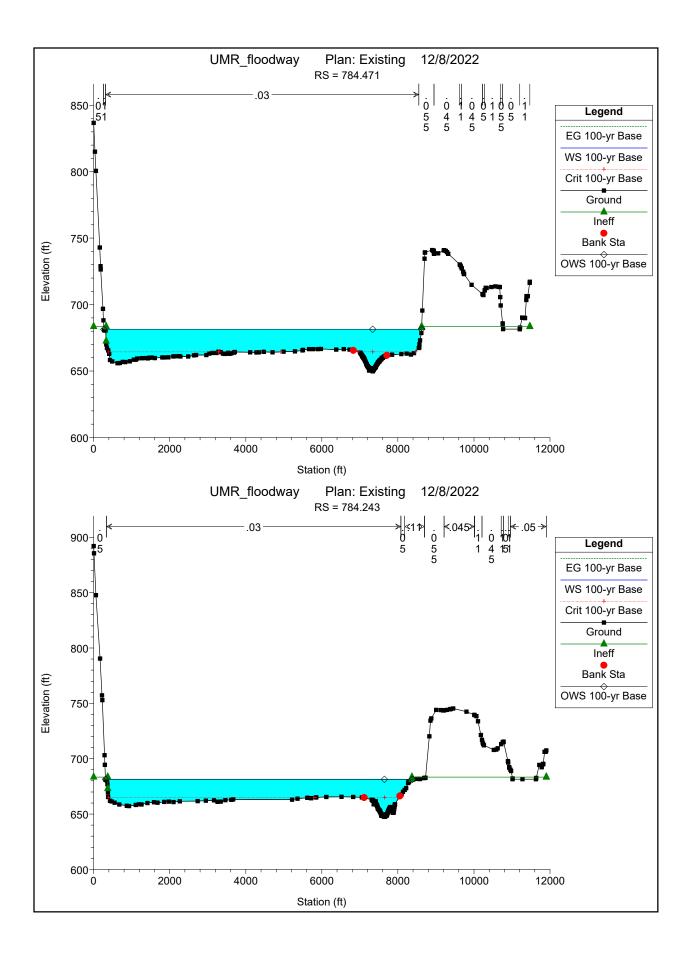


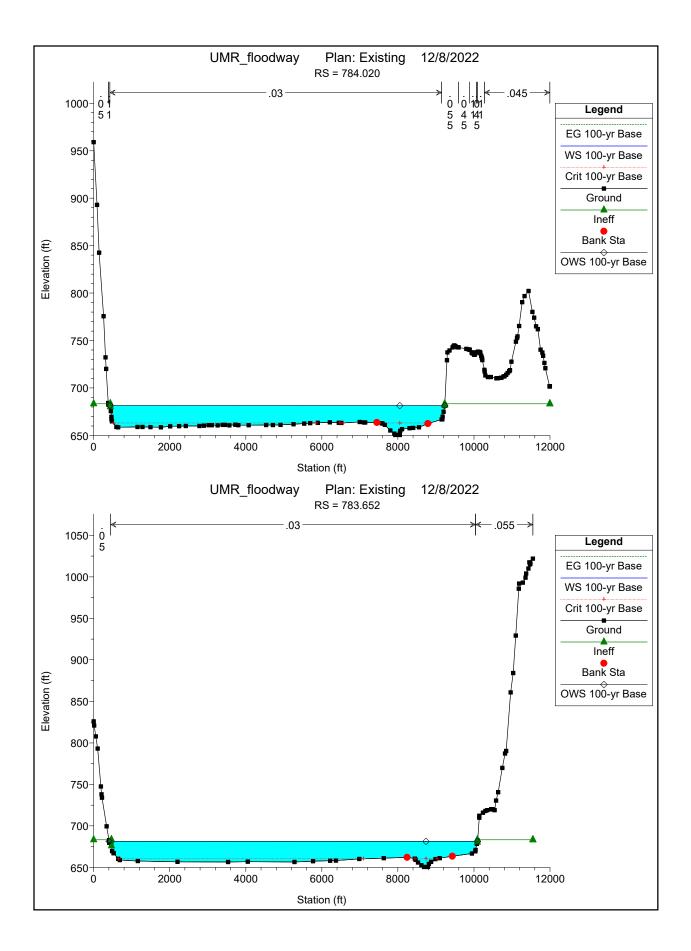


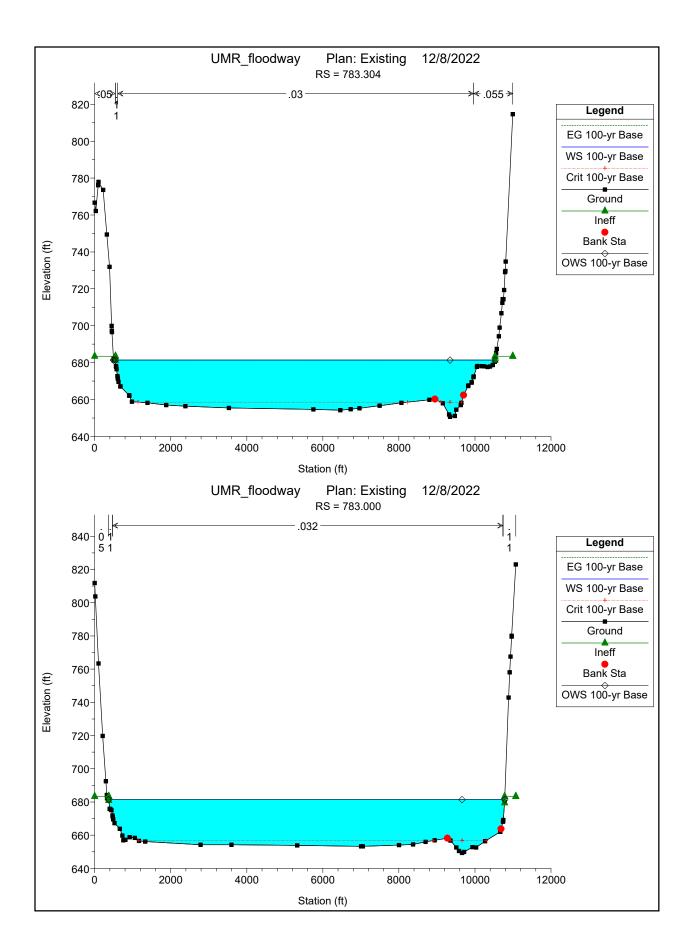


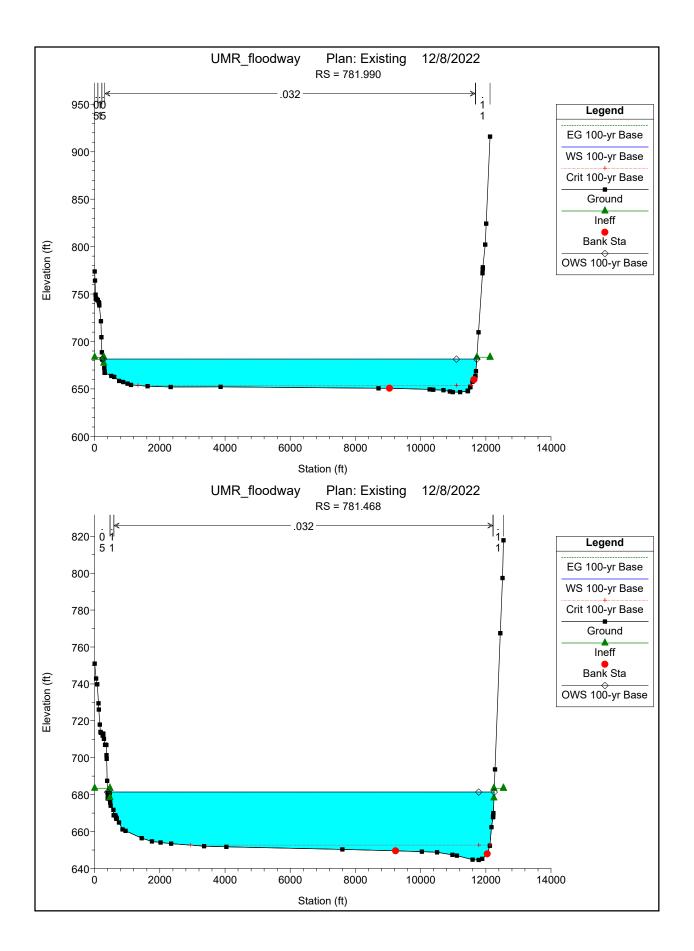


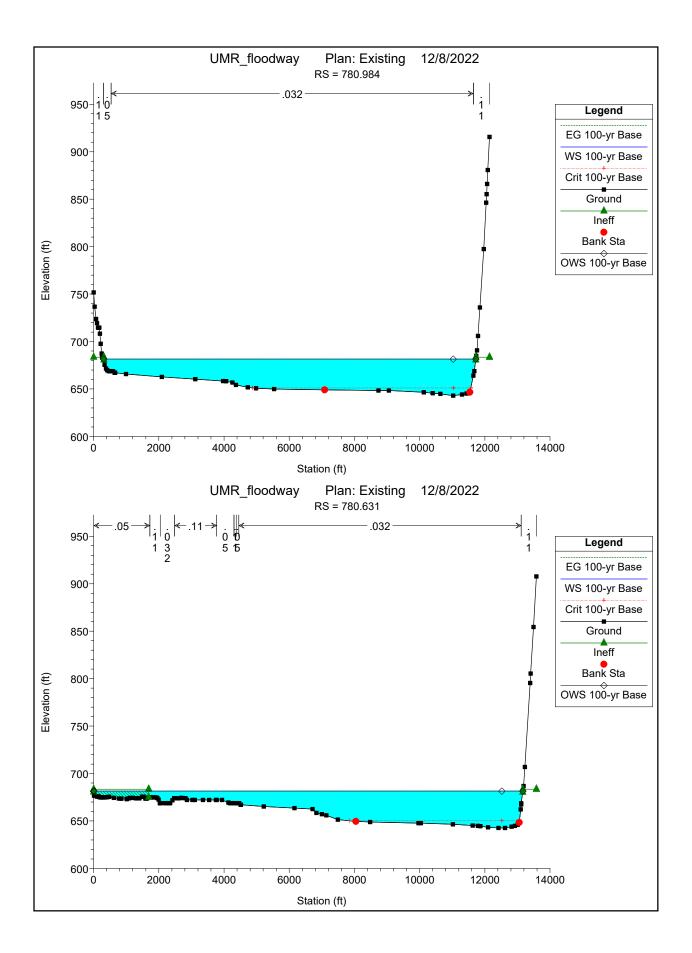


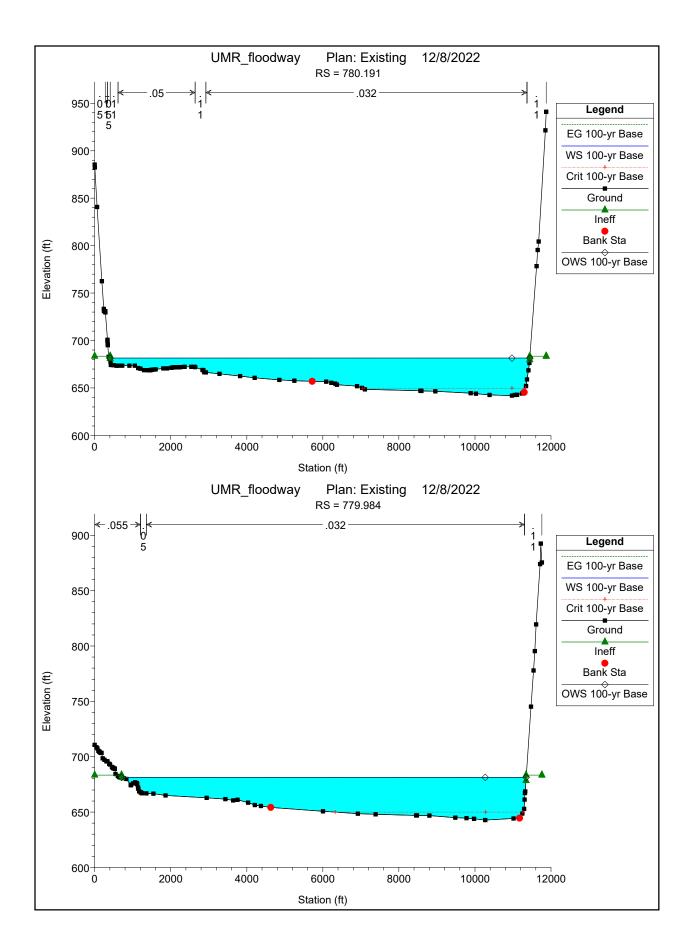


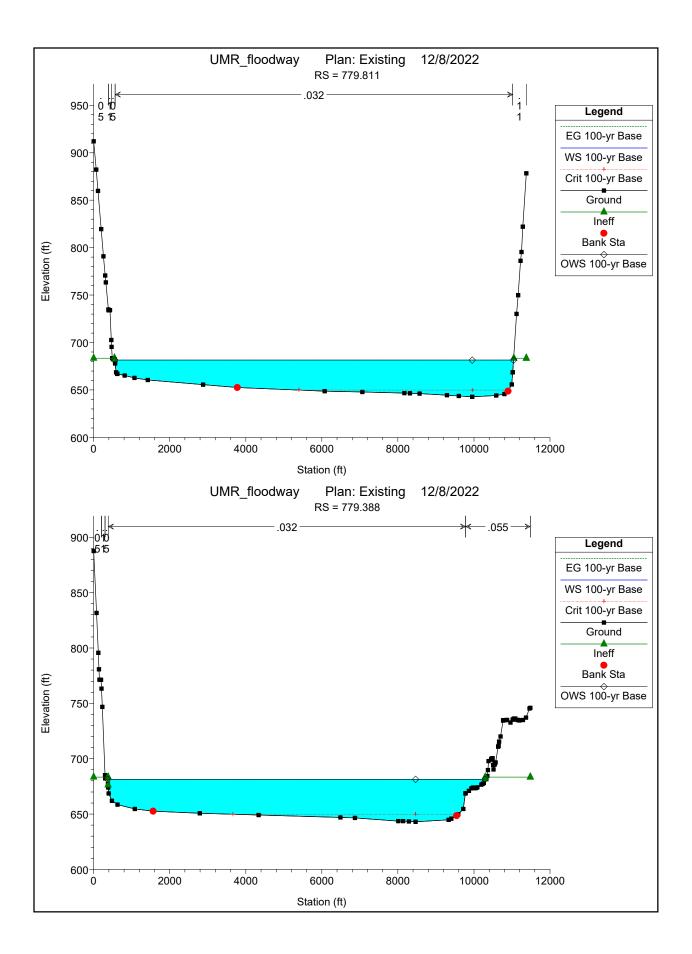


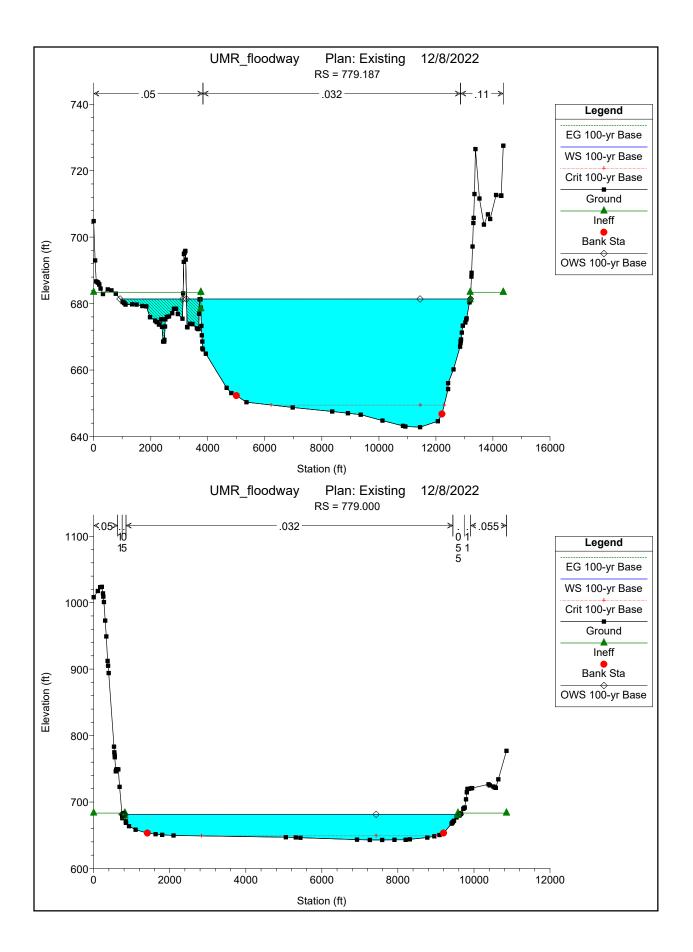


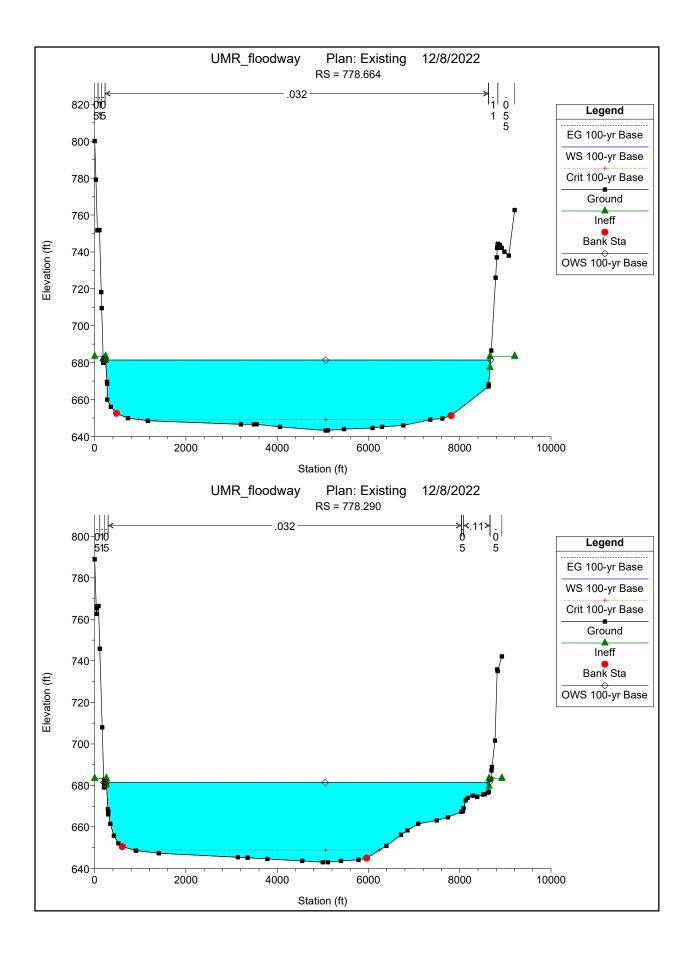


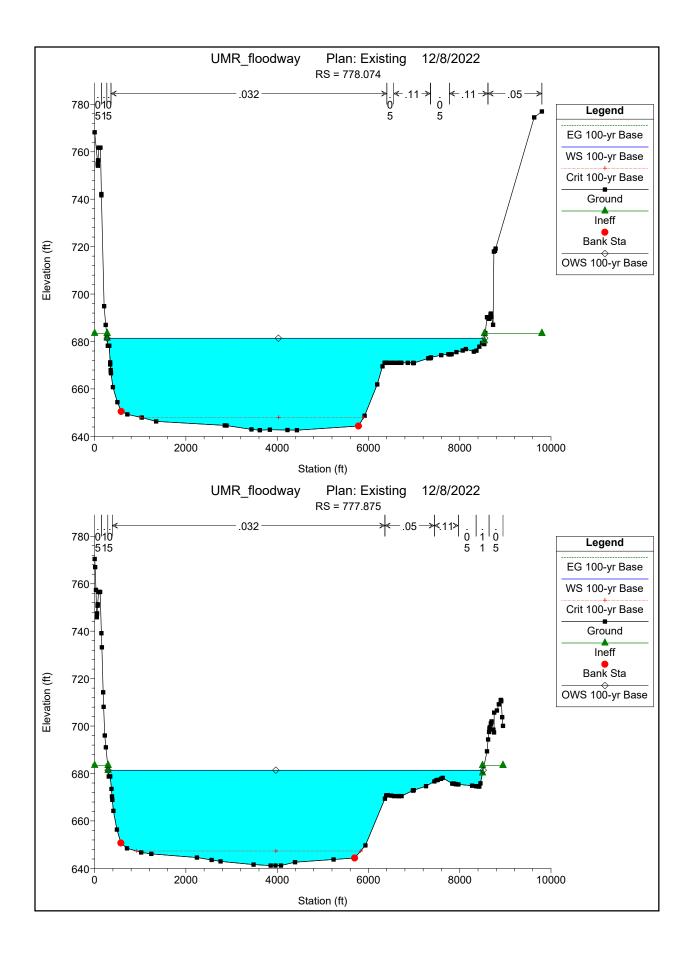


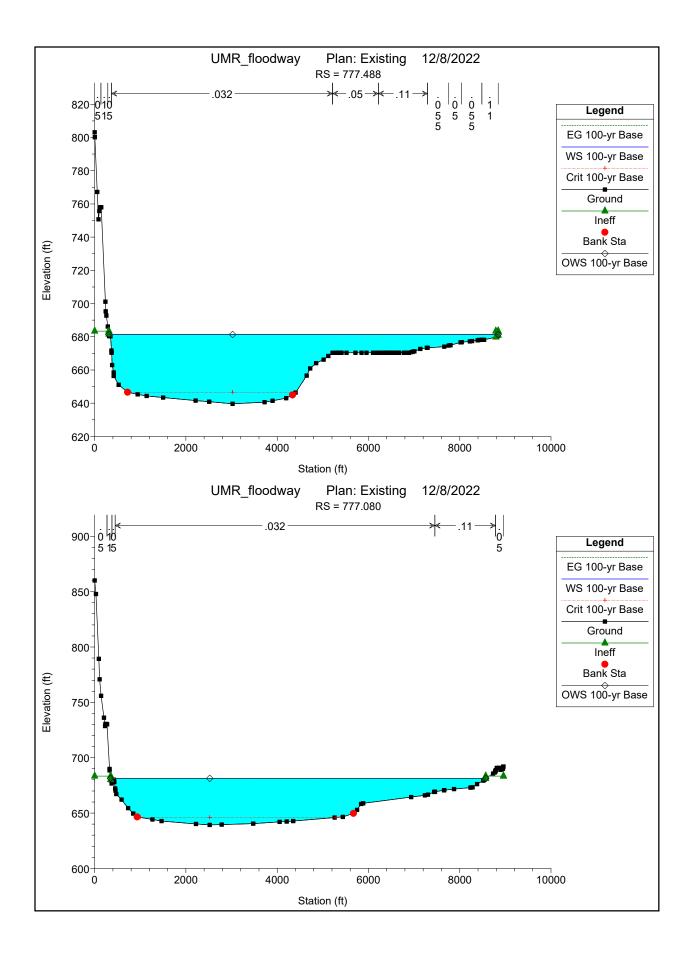


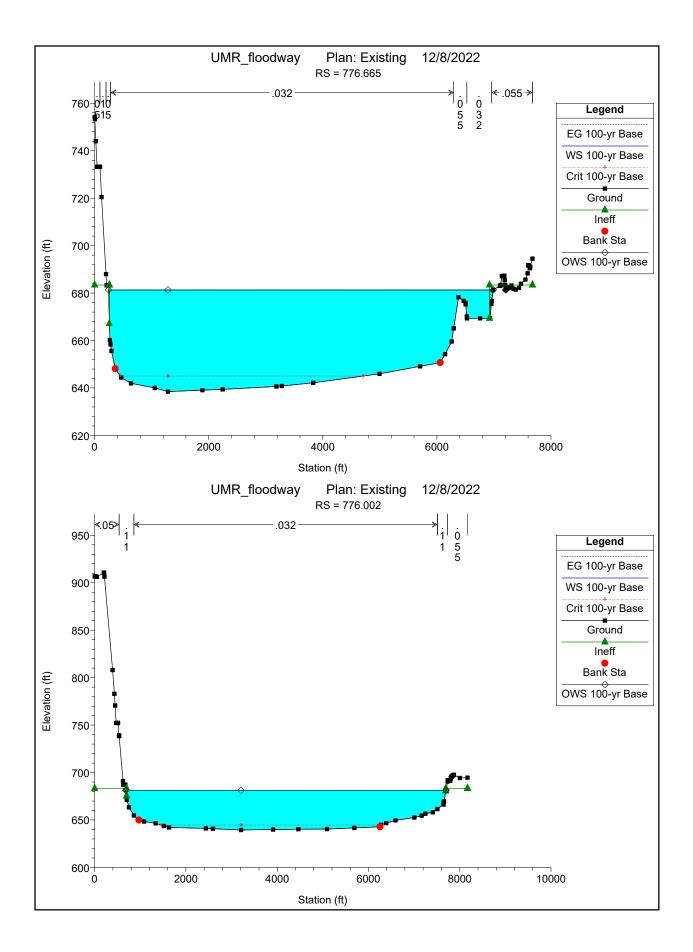


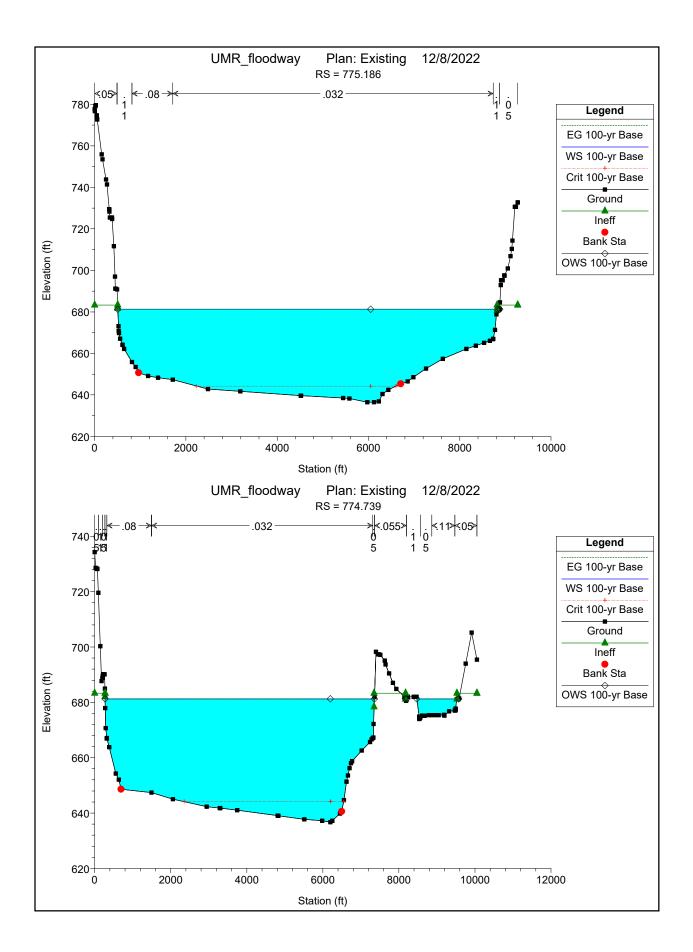


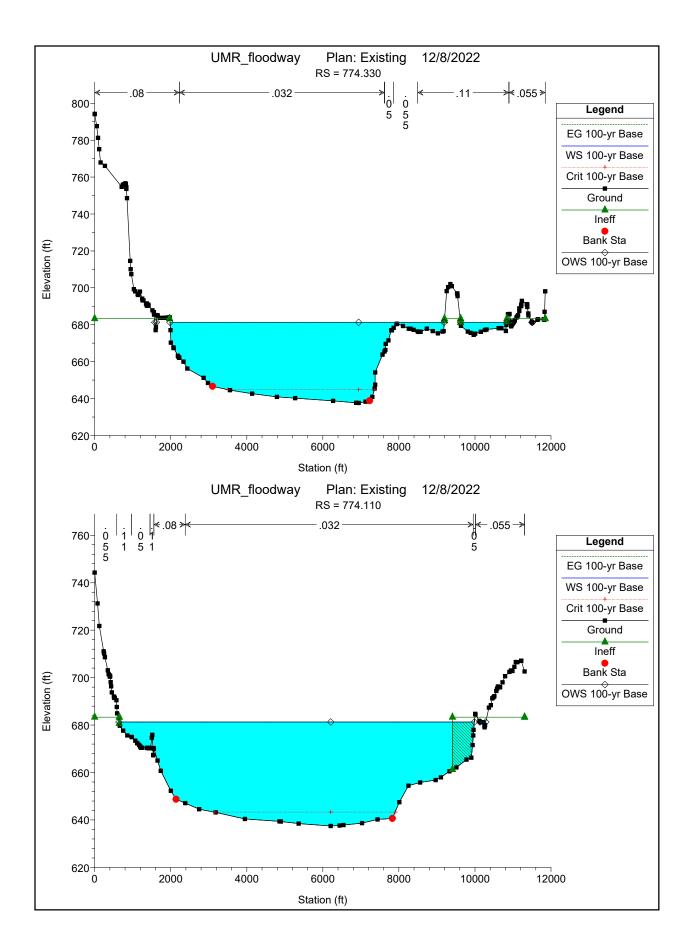


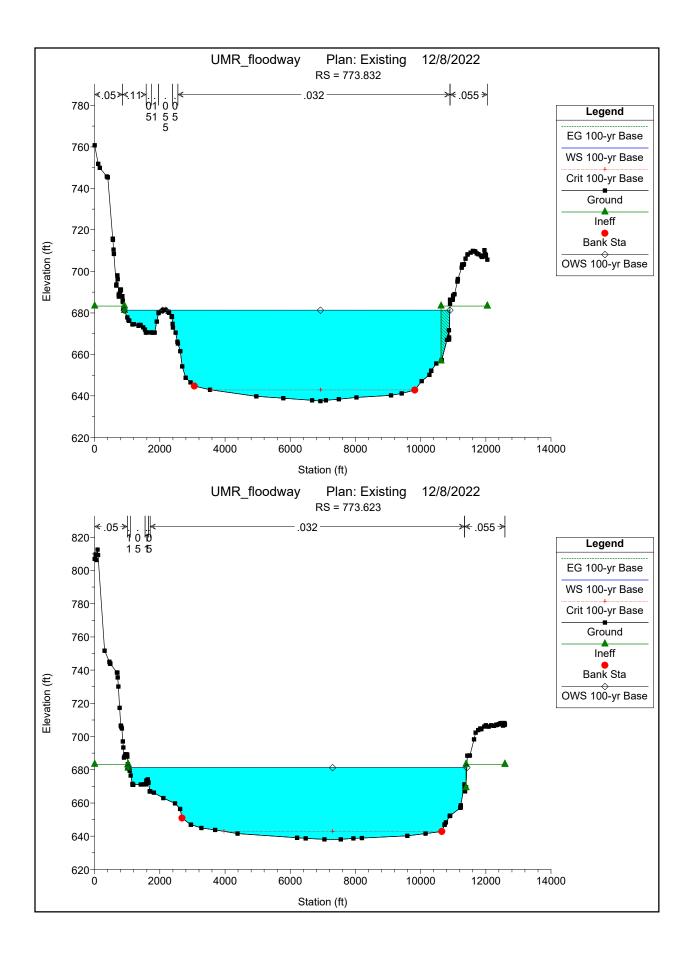


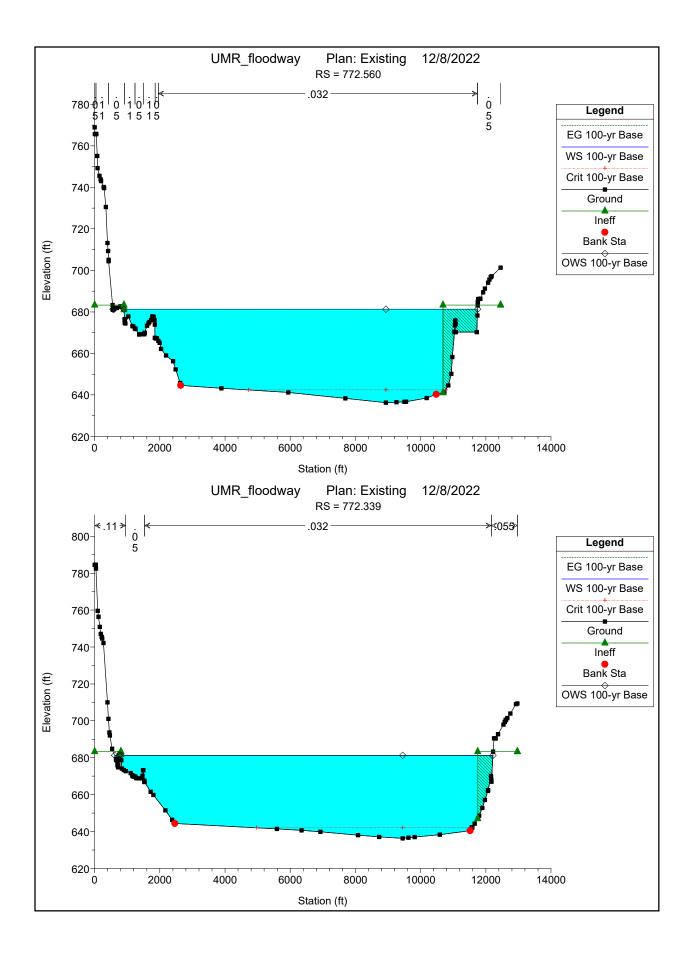


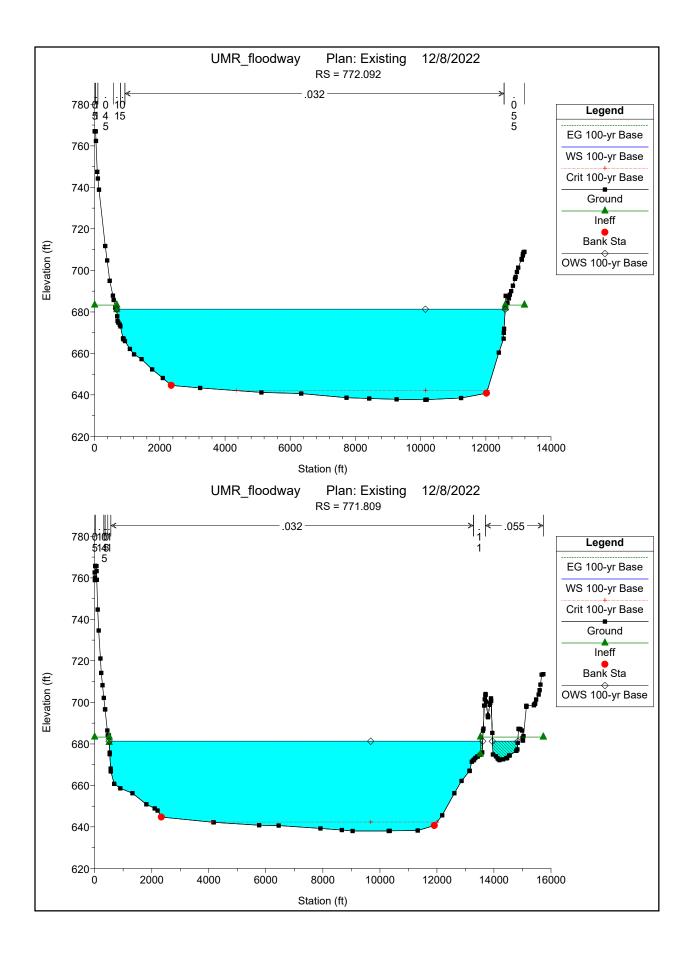


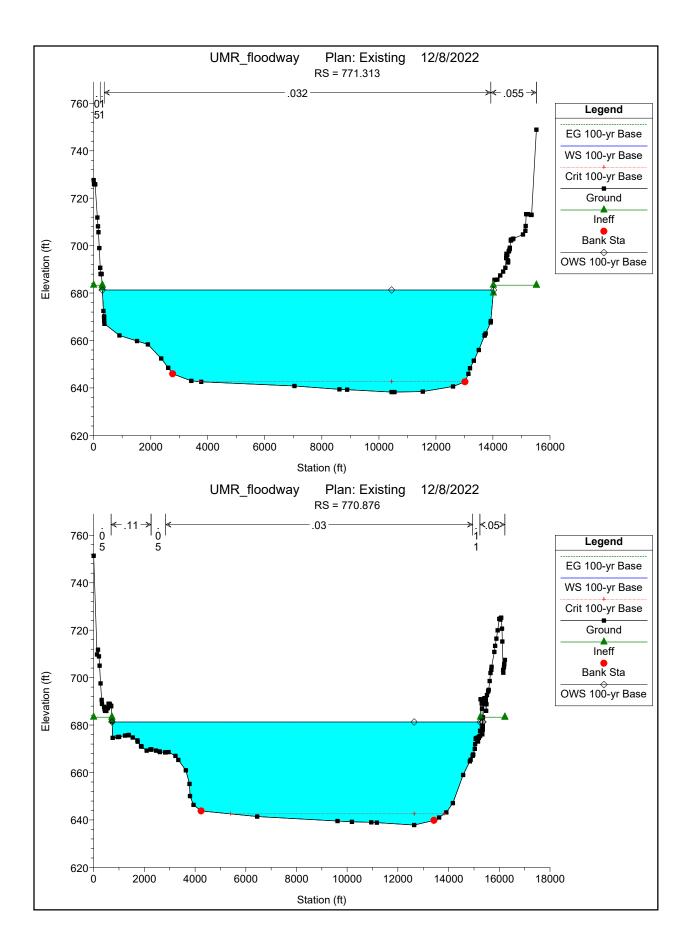


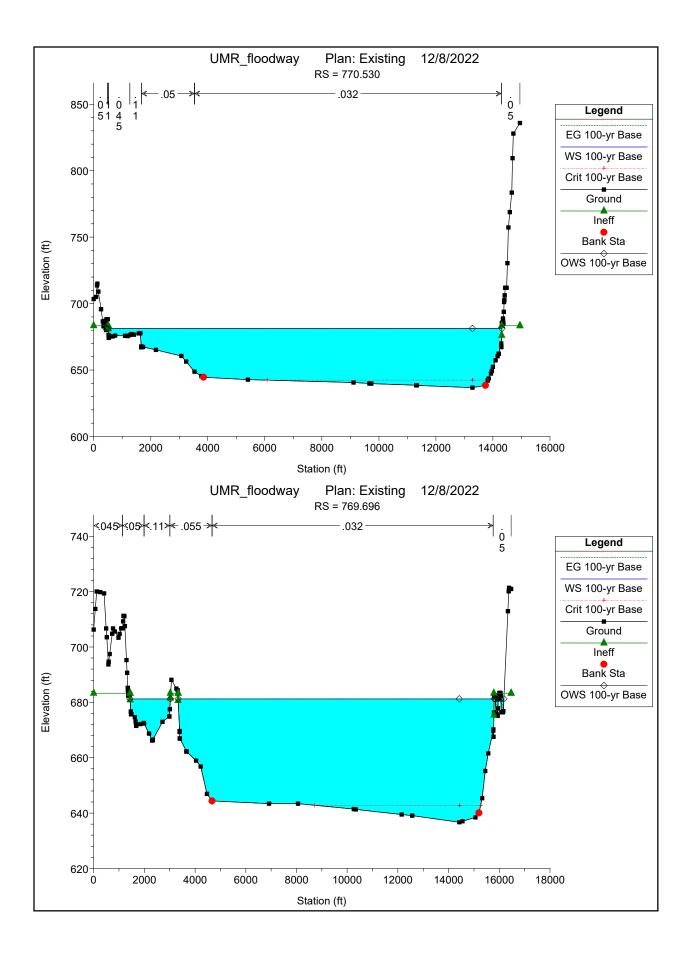


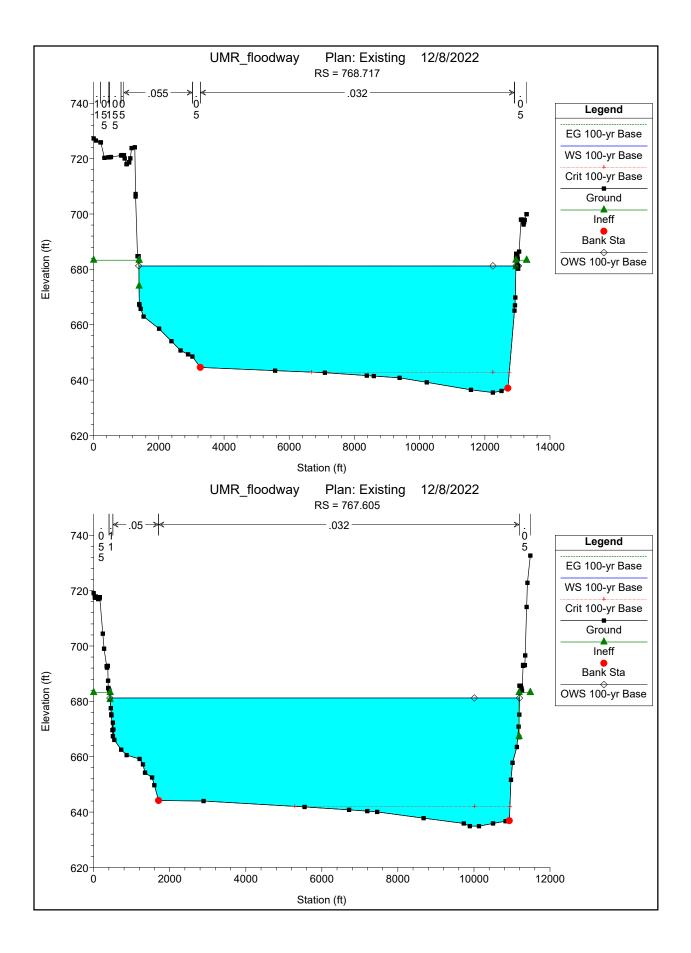


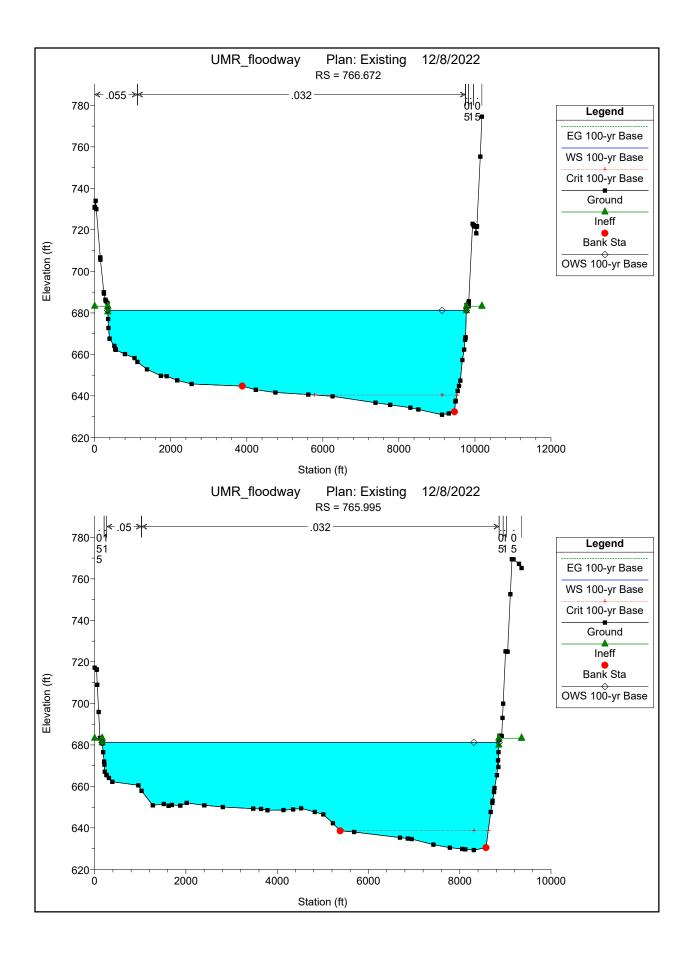


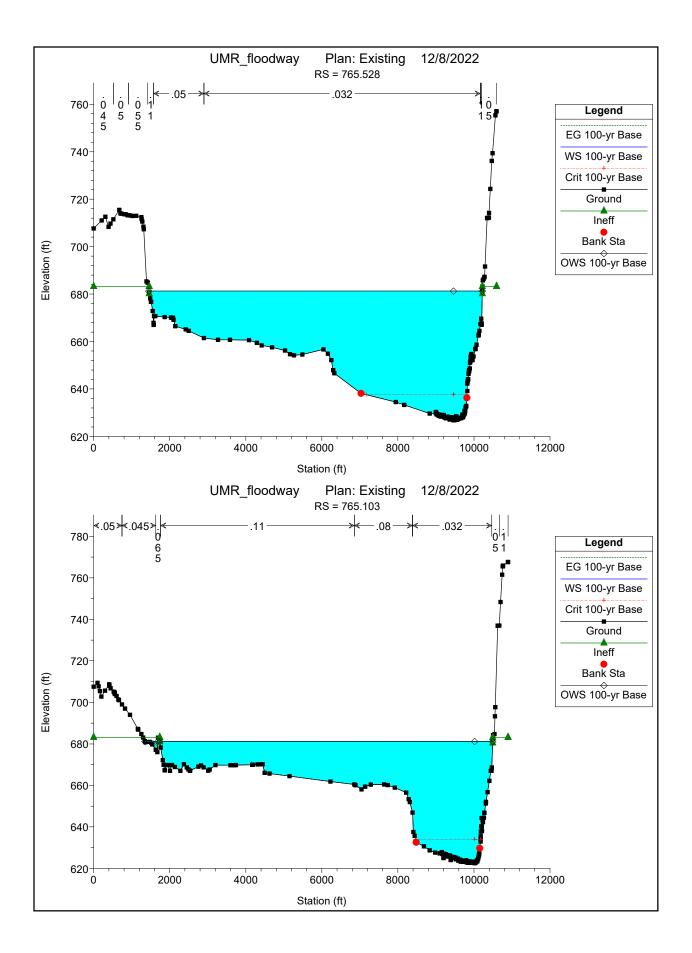


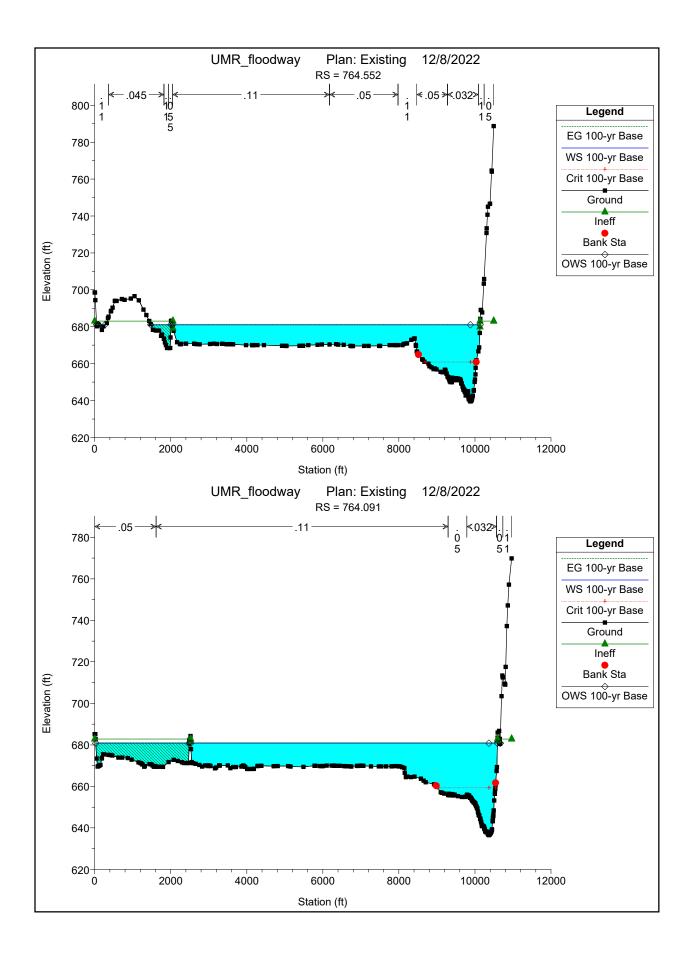


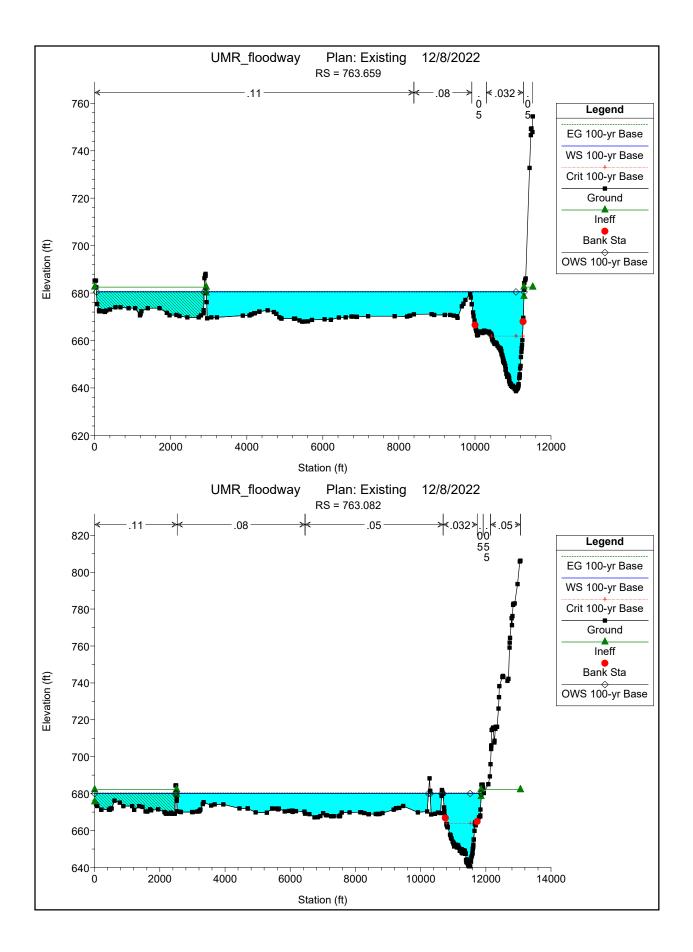


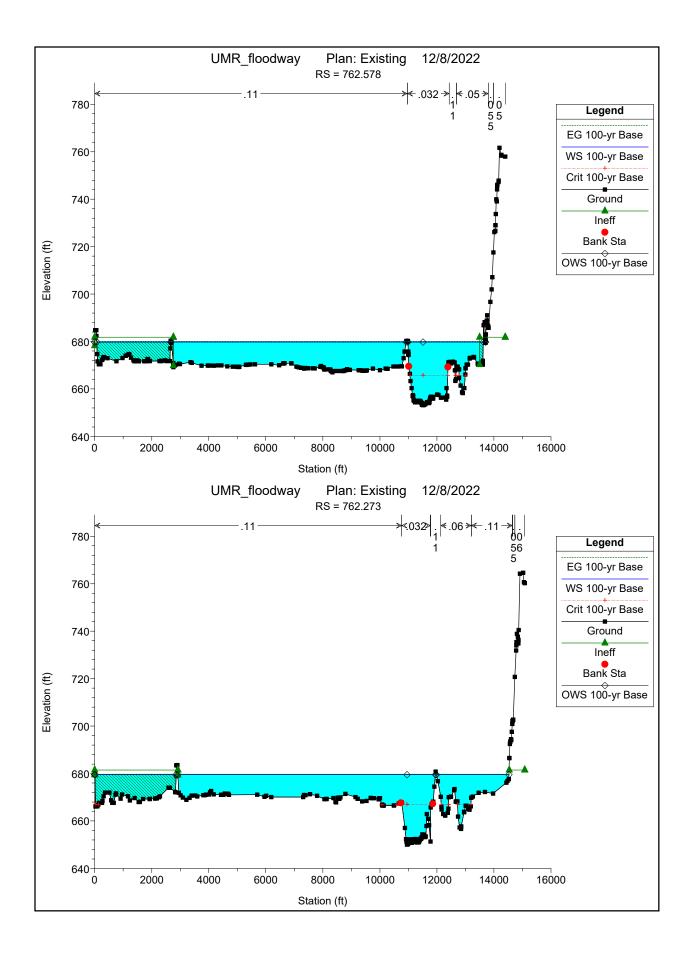


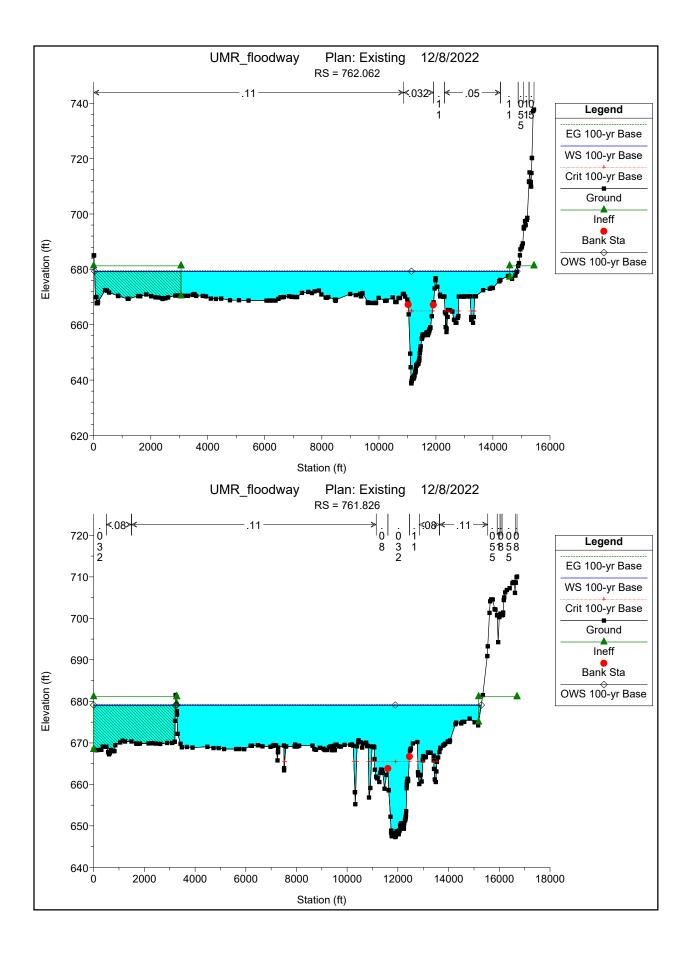


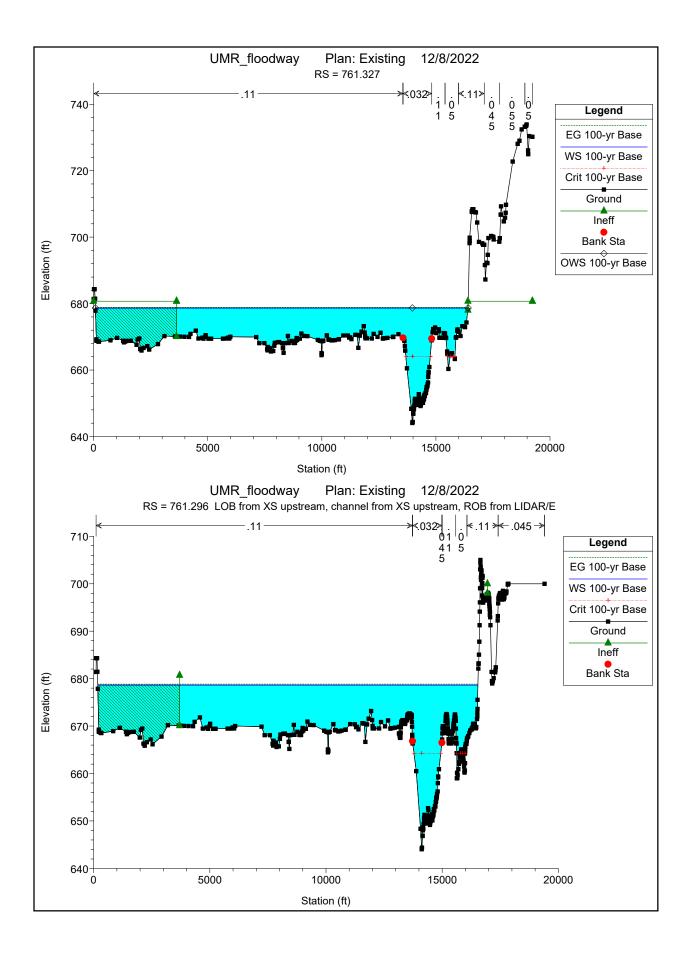


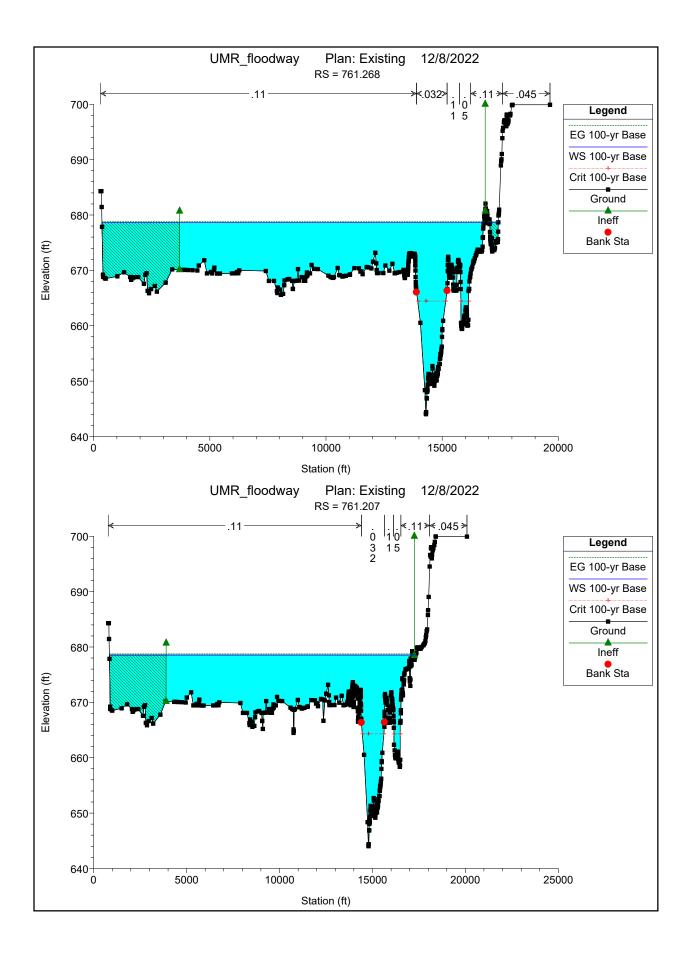


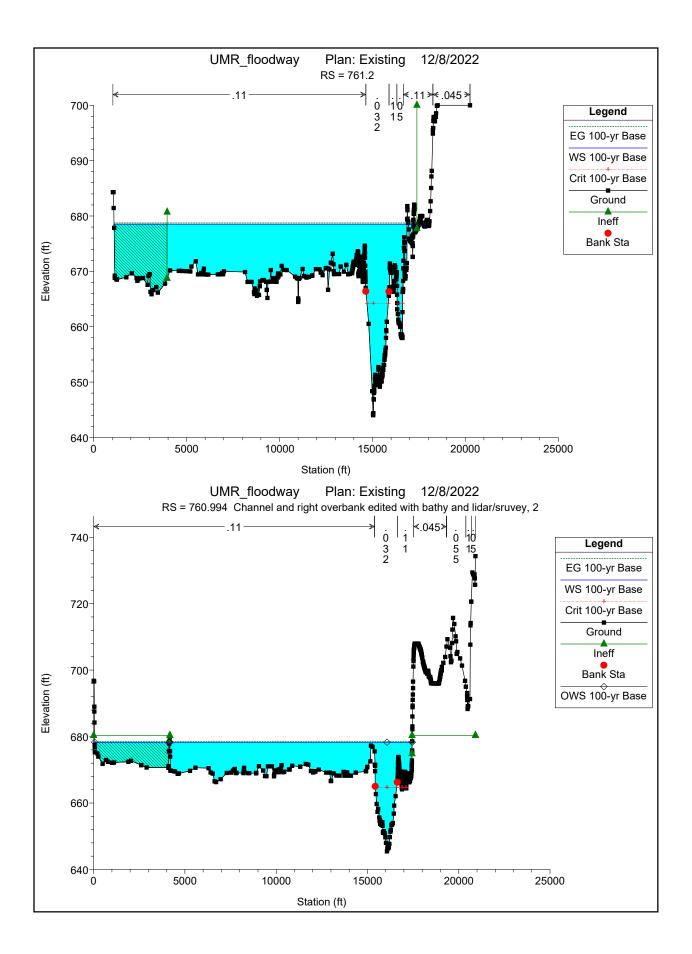


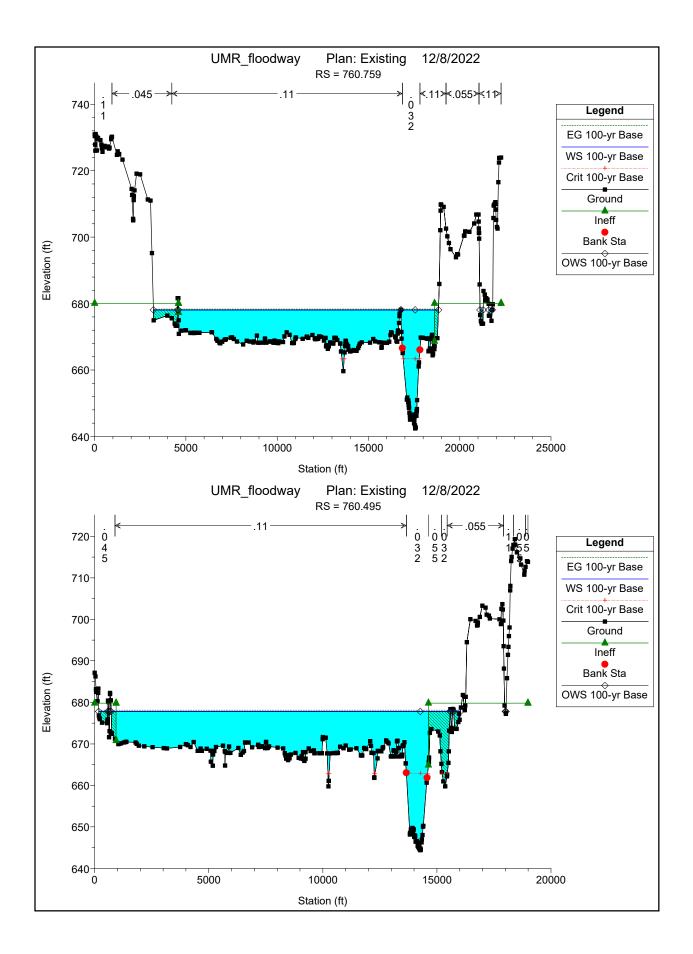


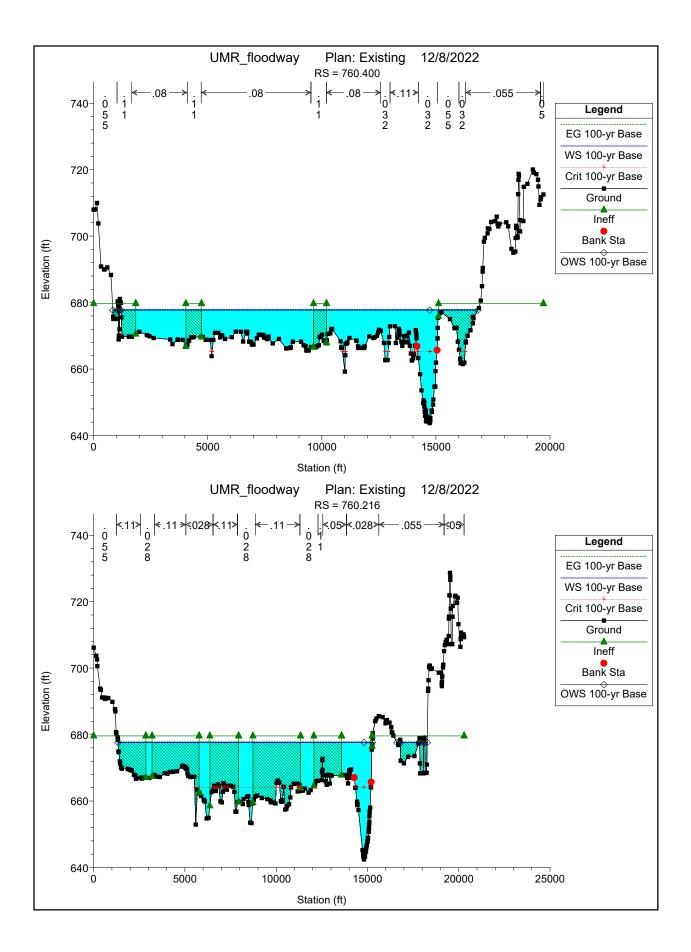


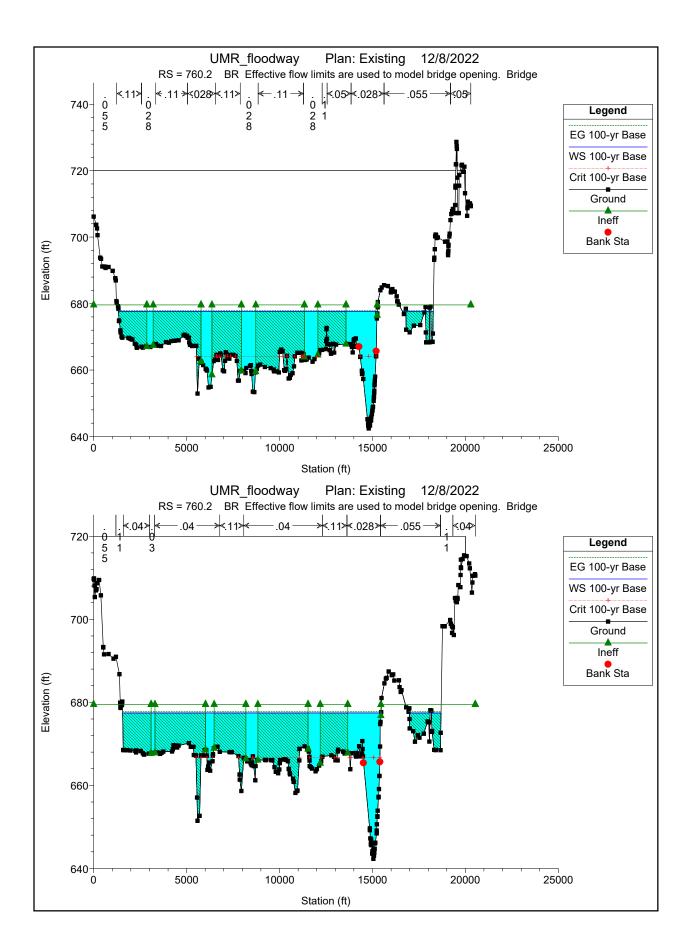


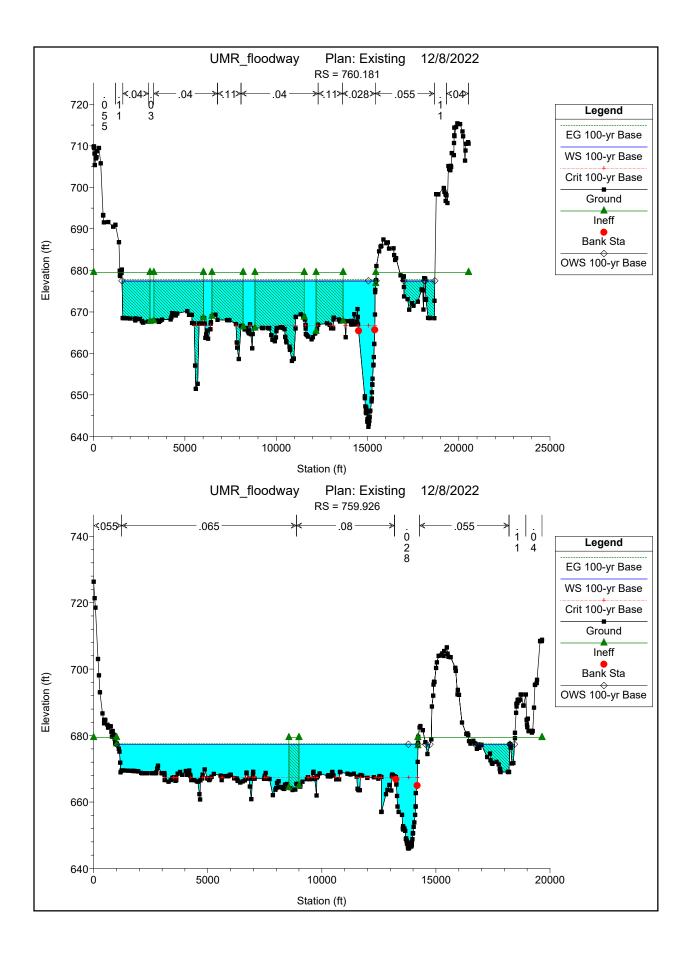


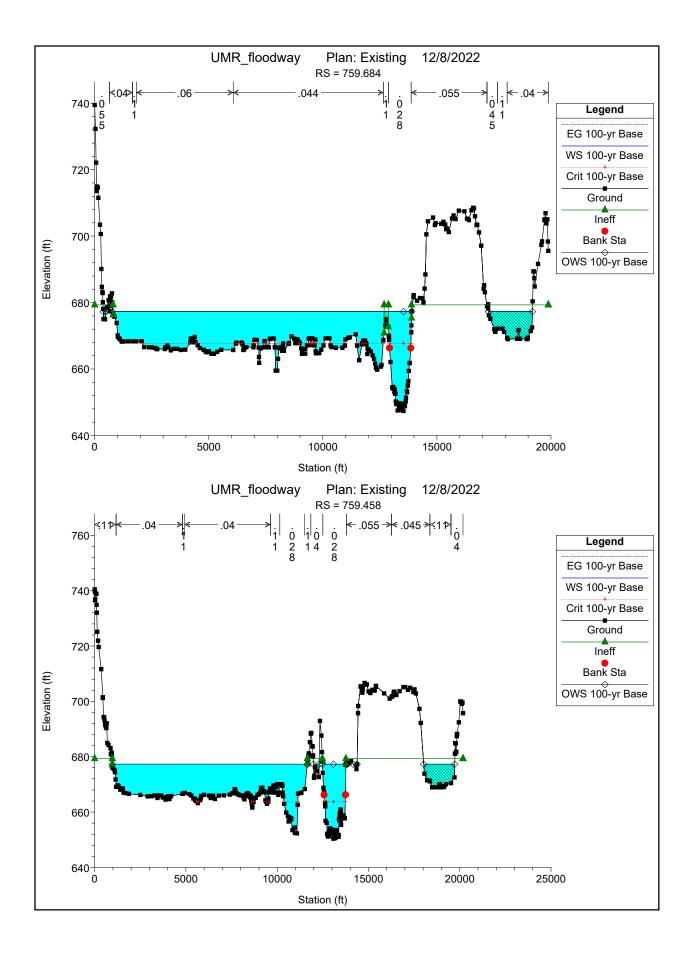


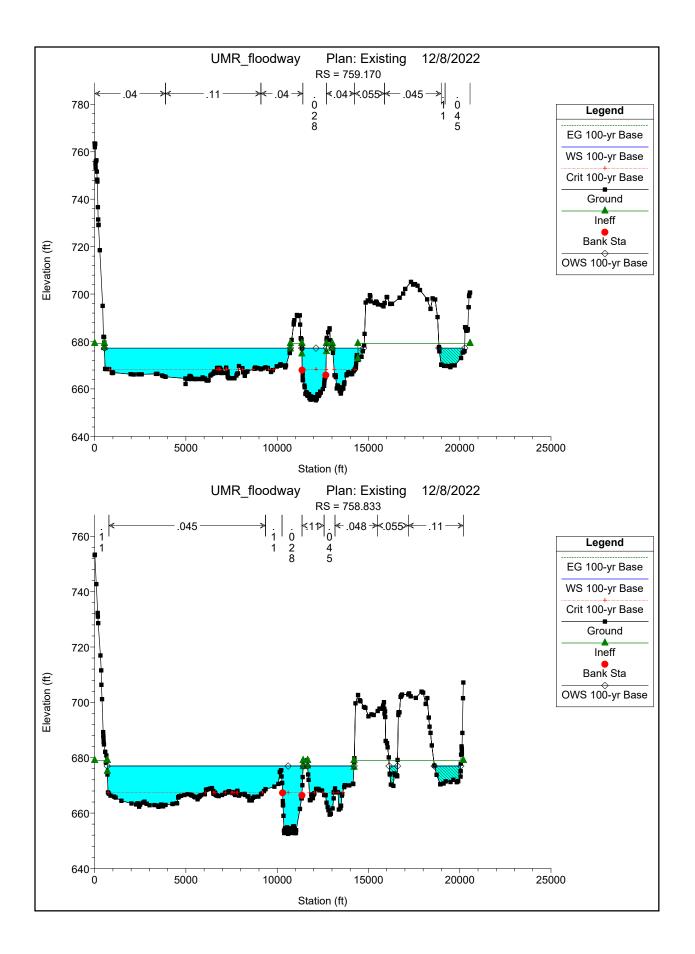


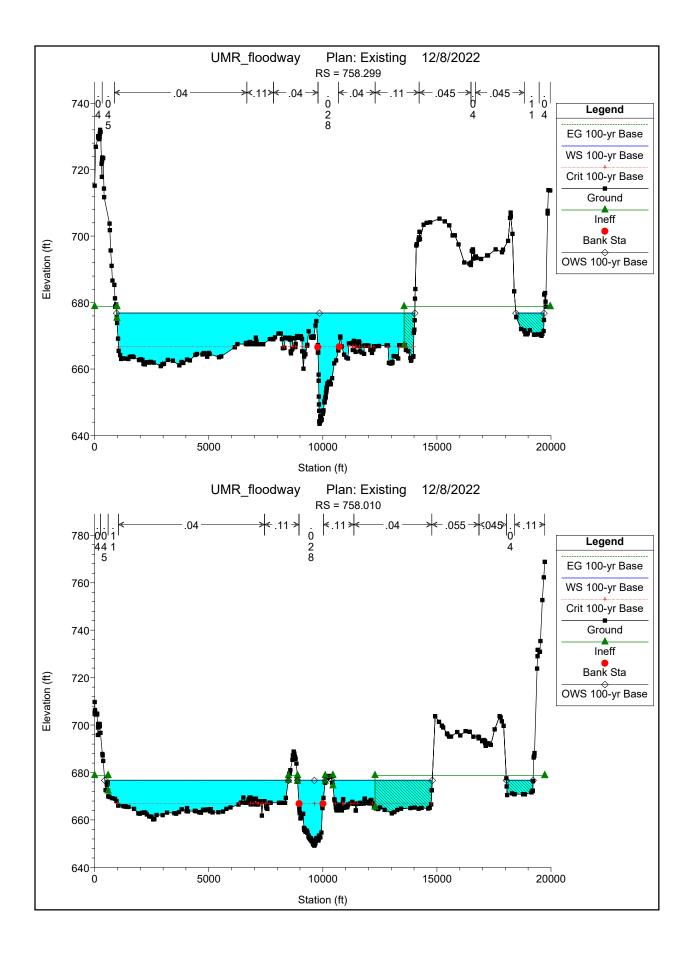


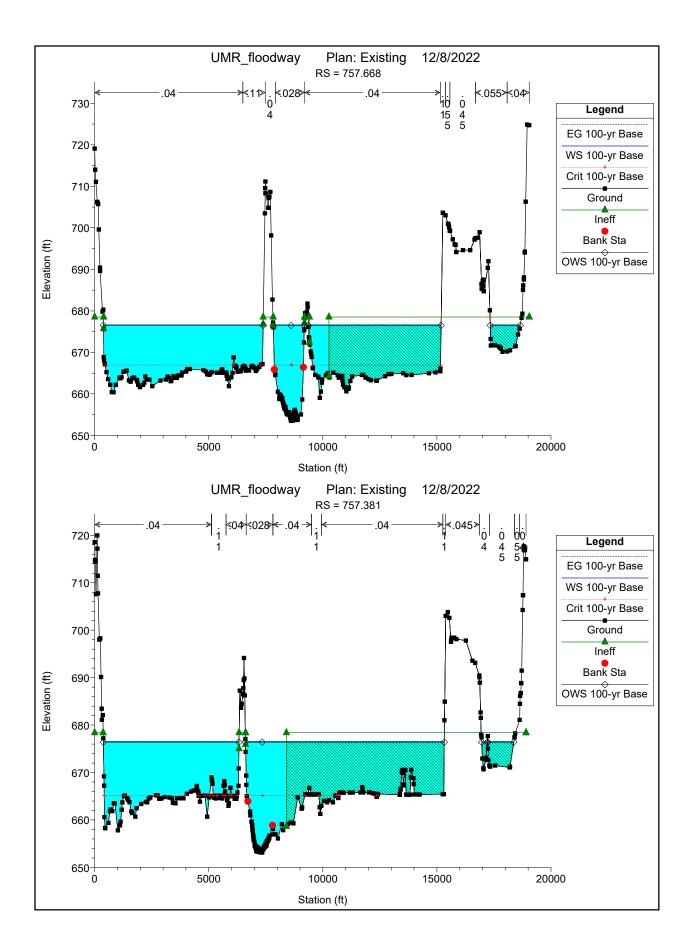


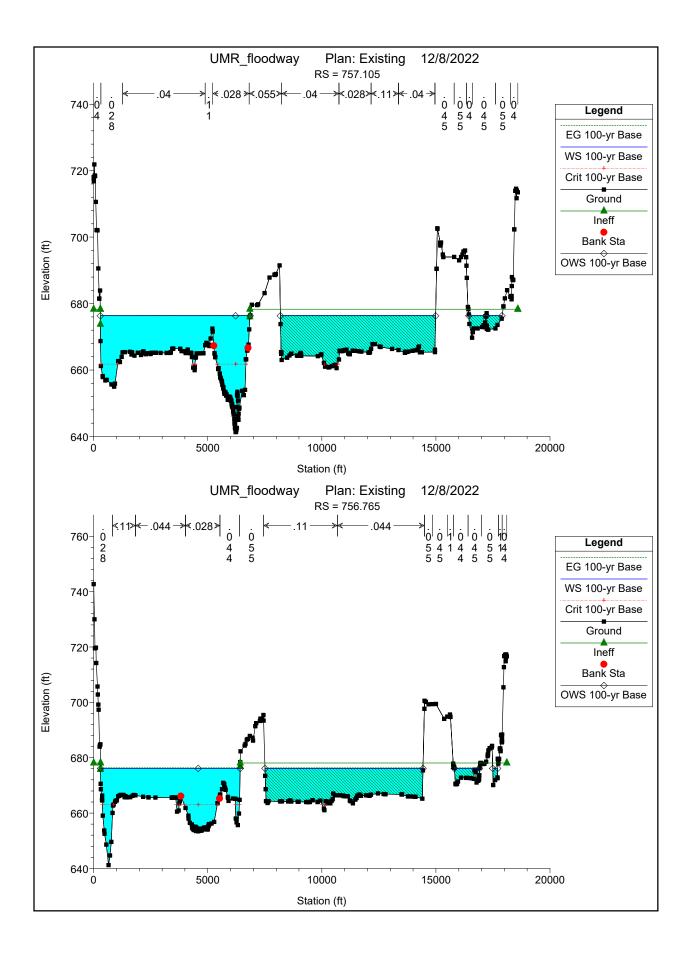


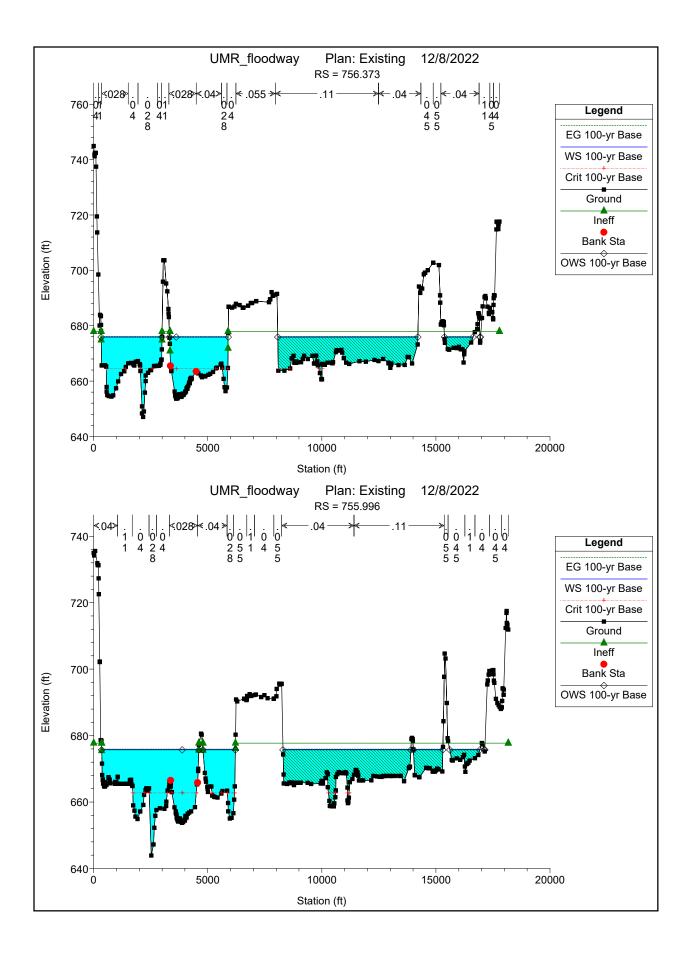


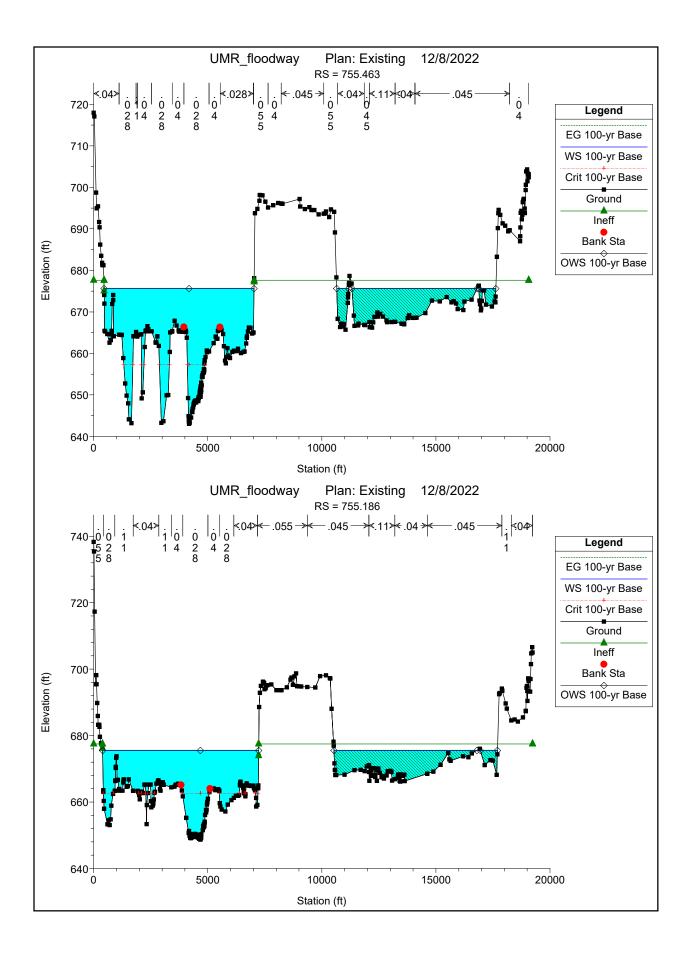


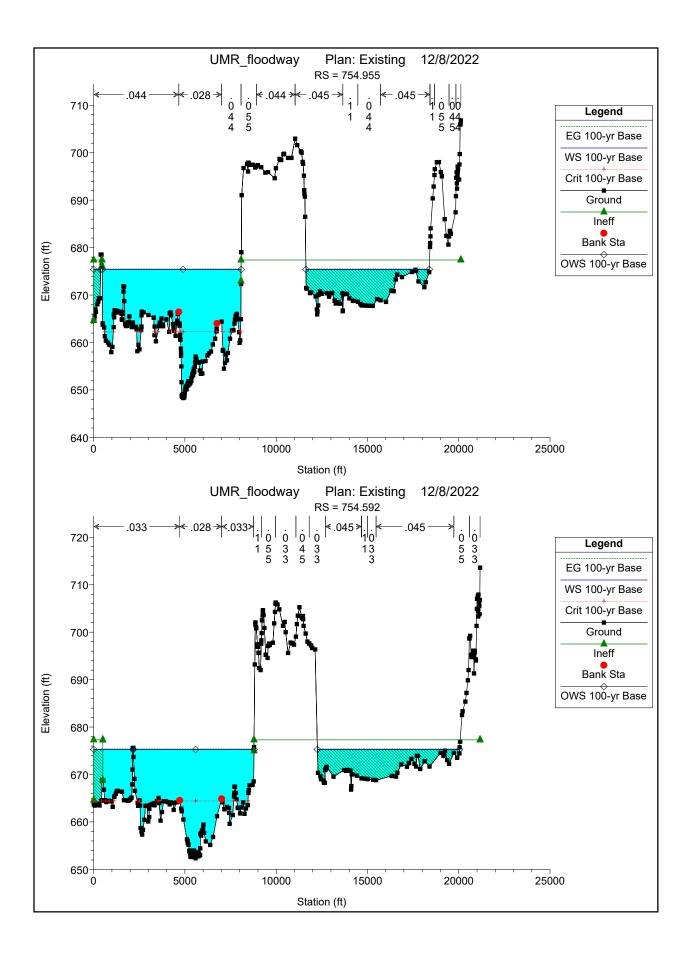


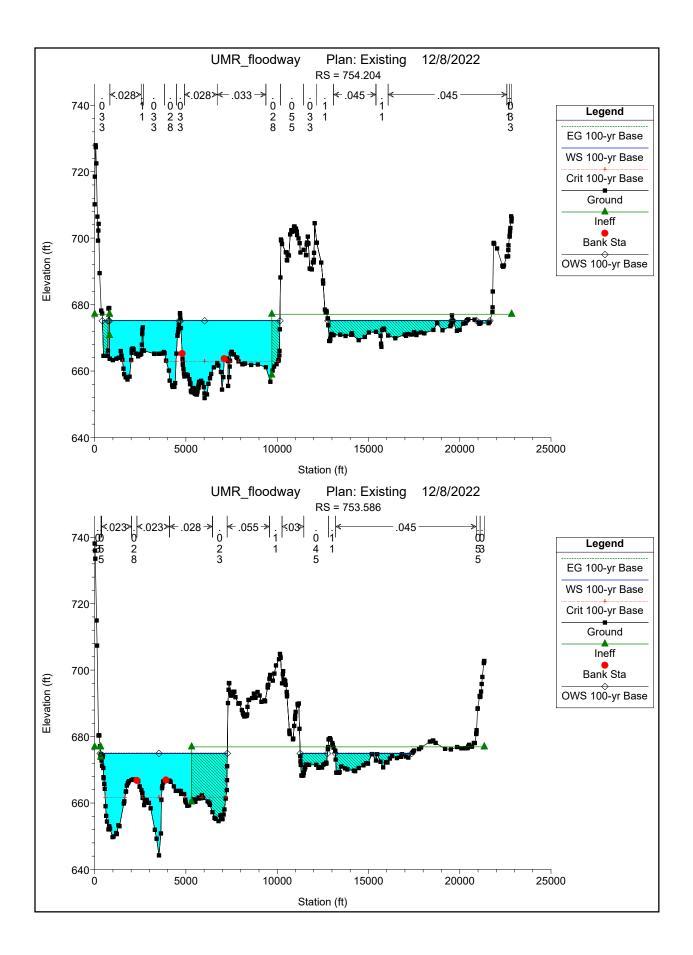


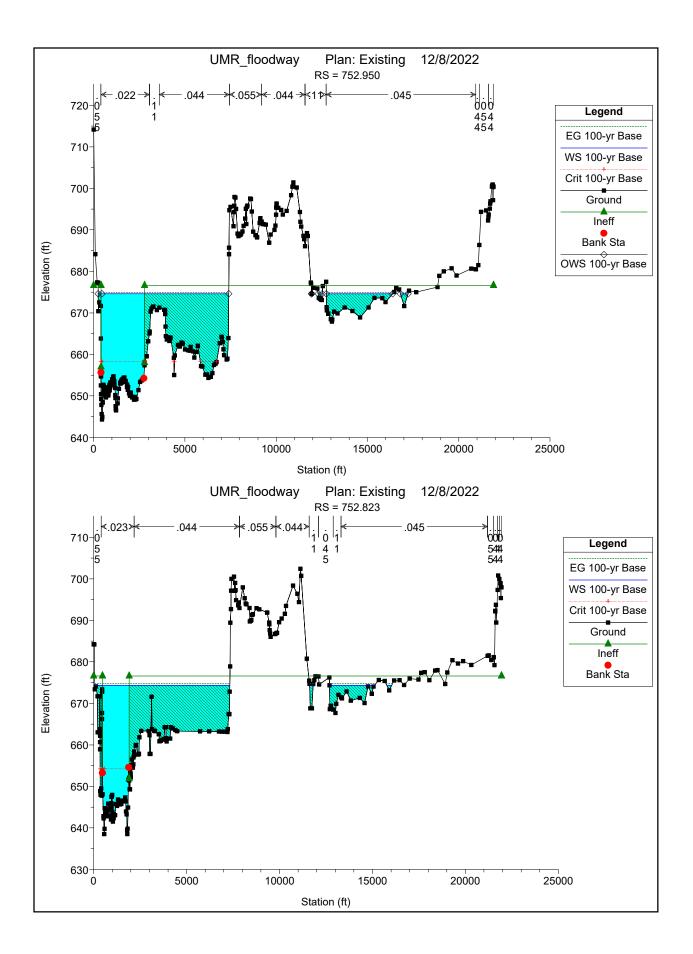


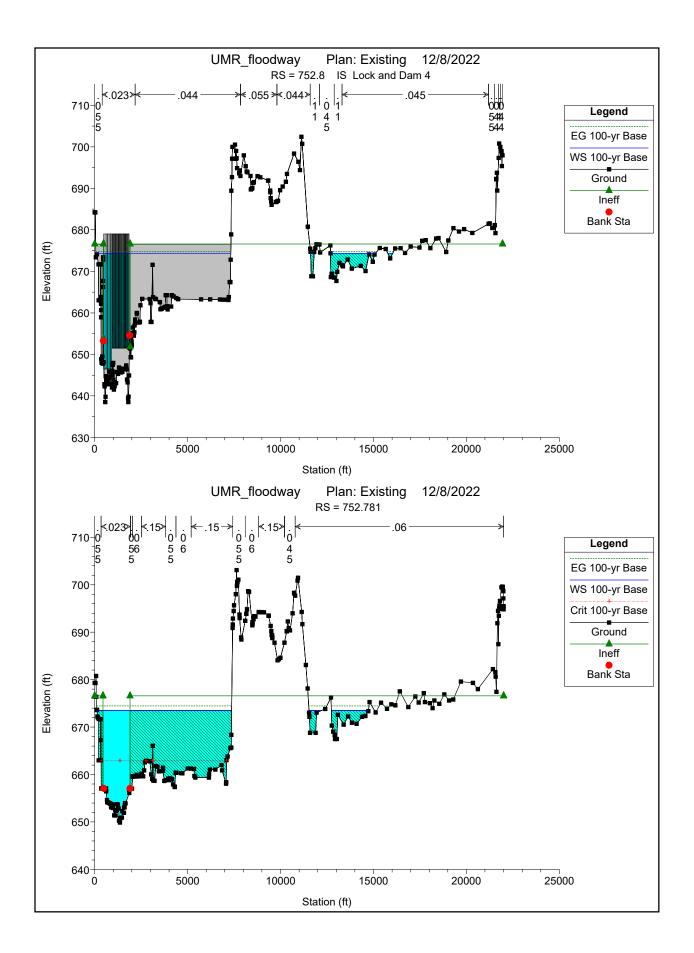


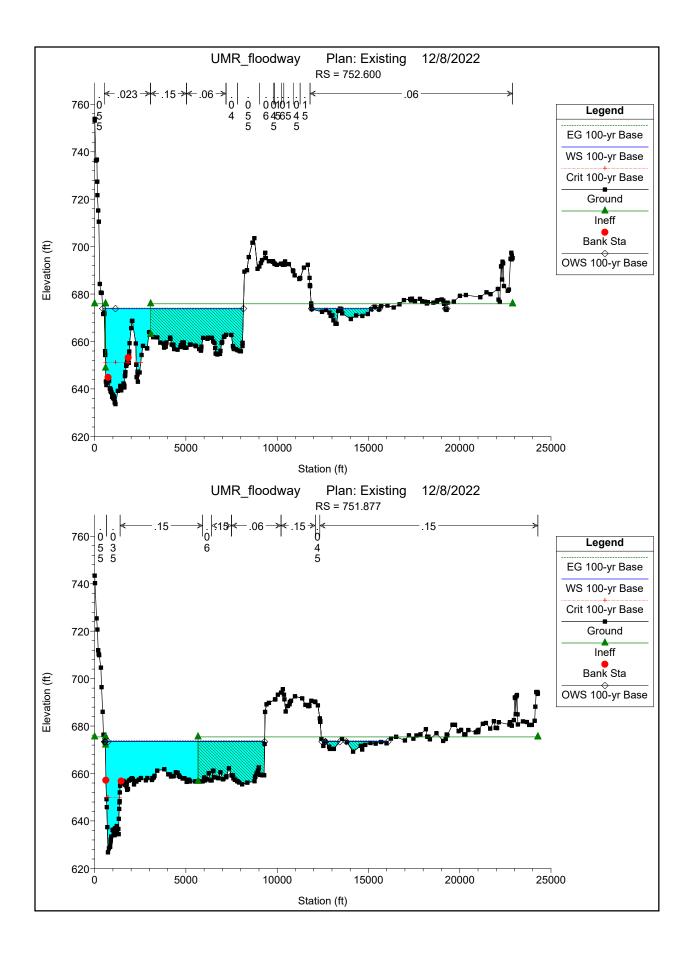


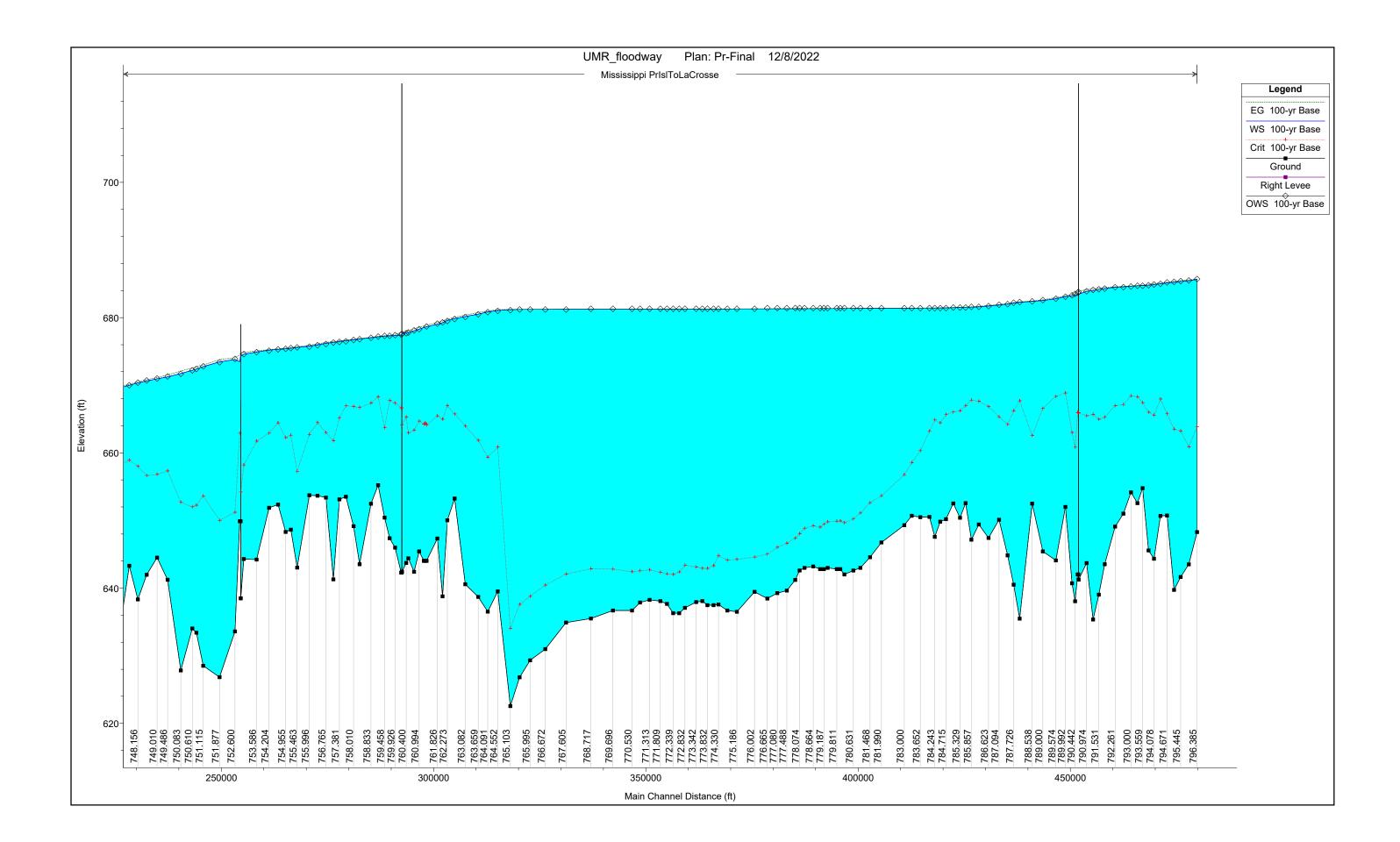


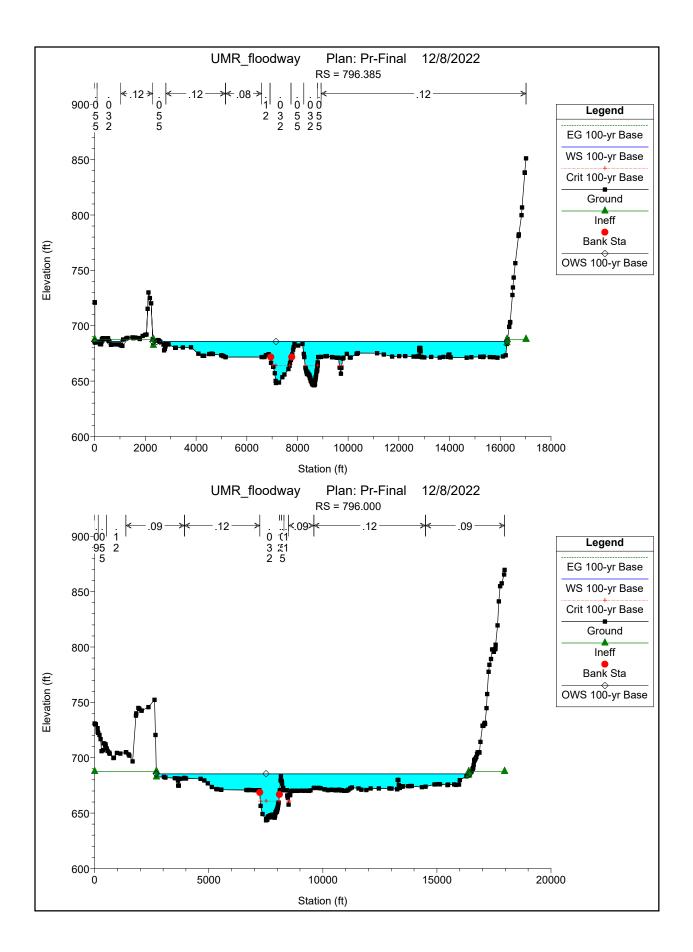


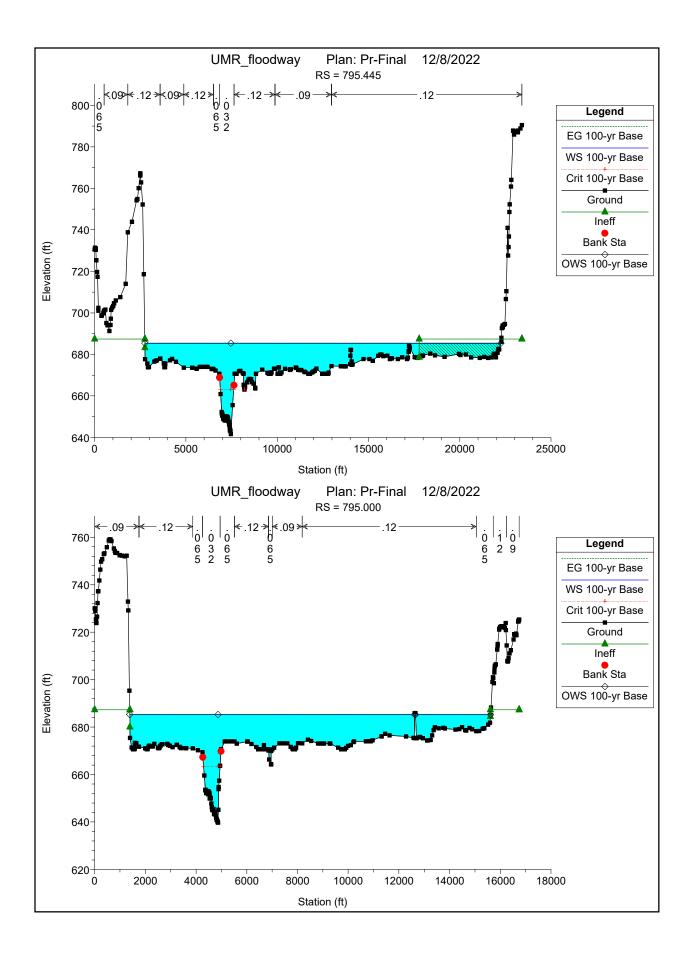


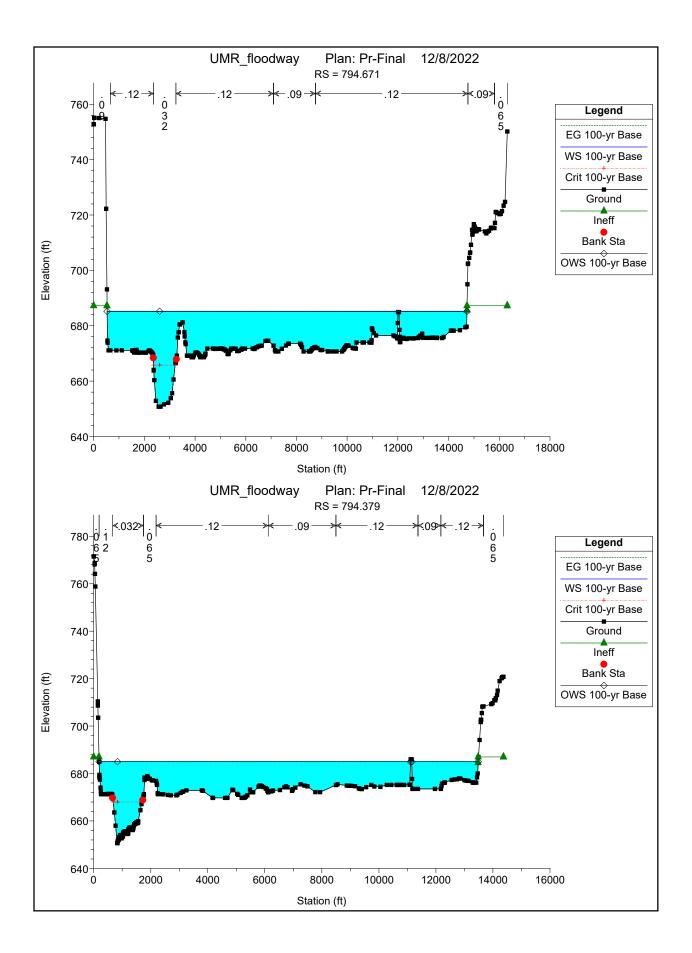


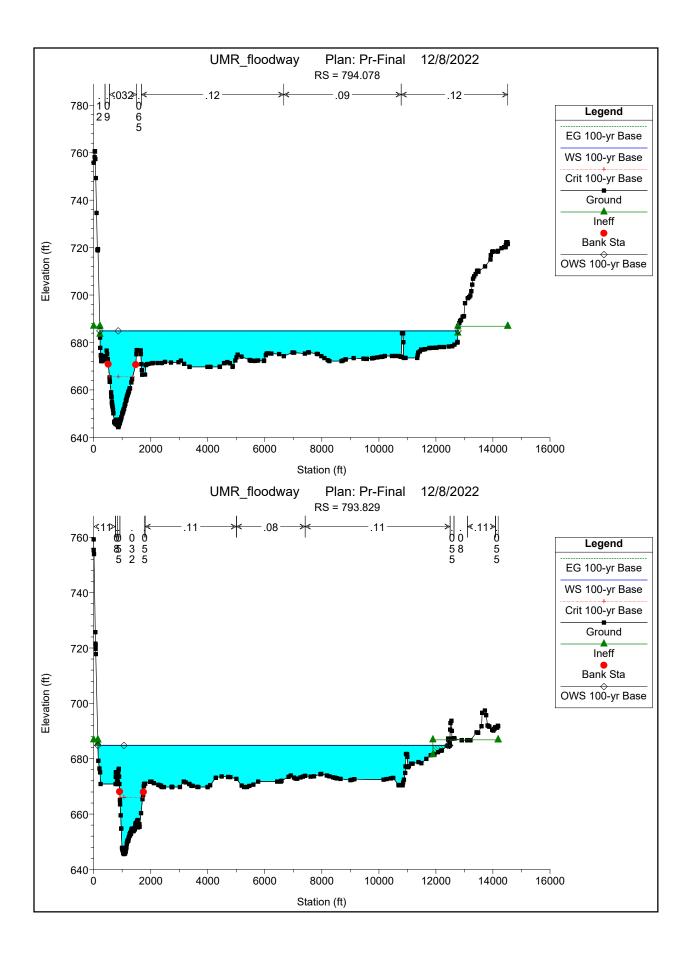


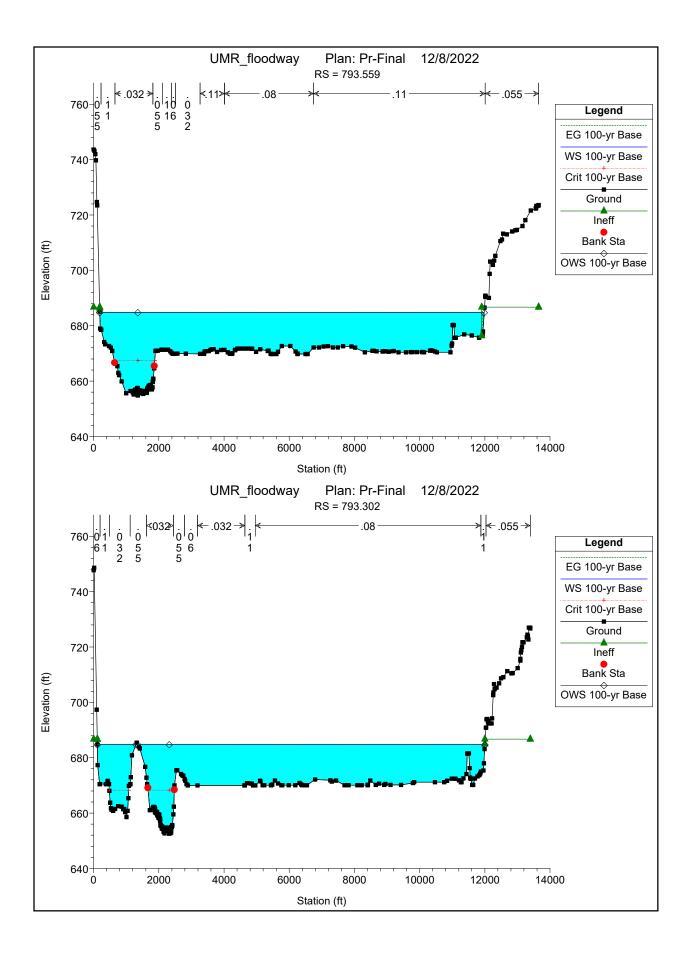


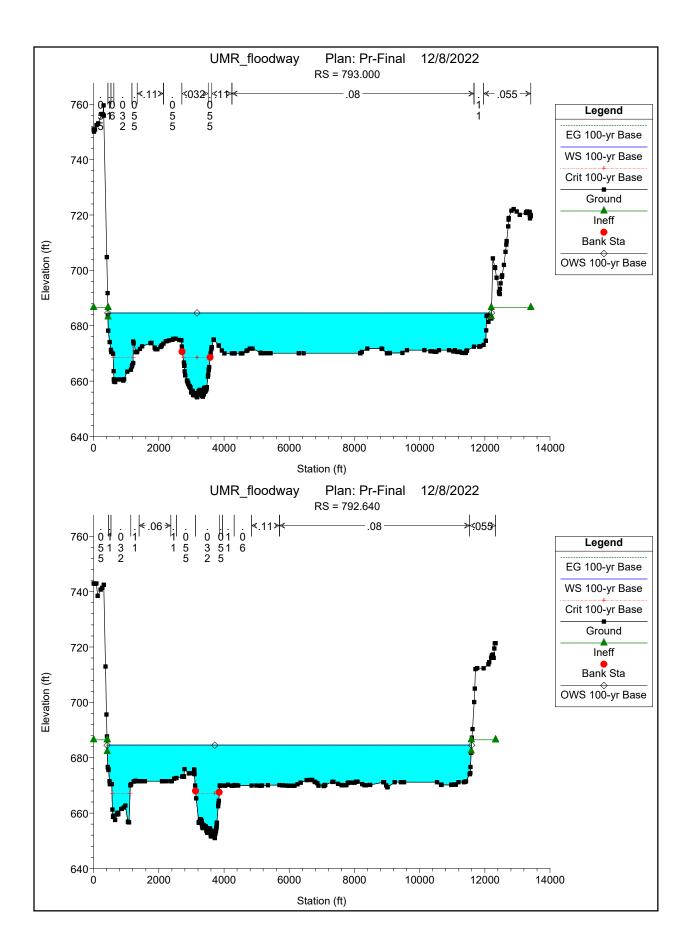


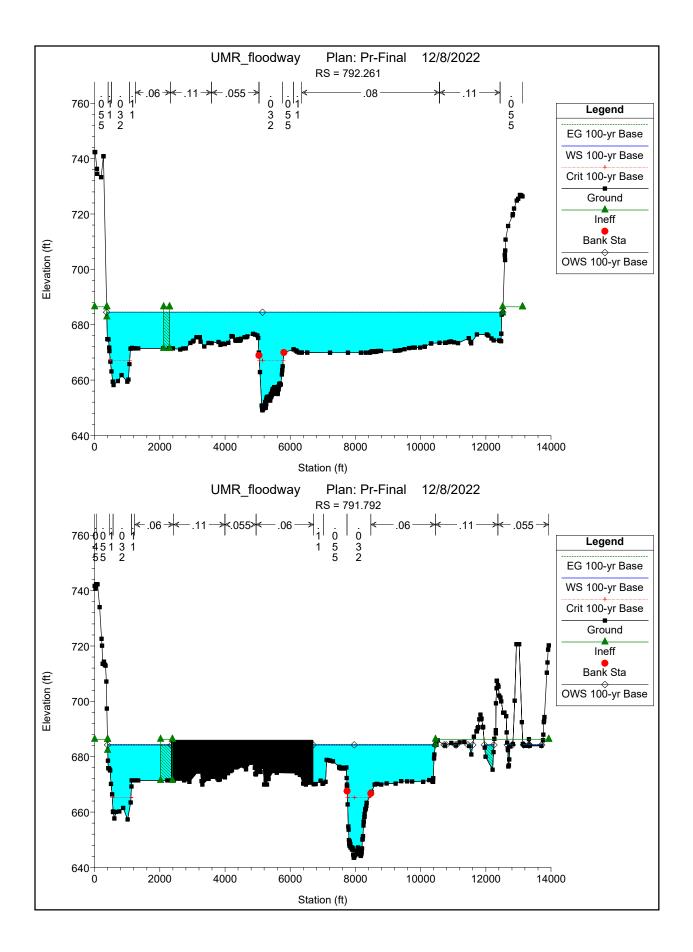

Appendix E: Proposed Condition HEC-RAS

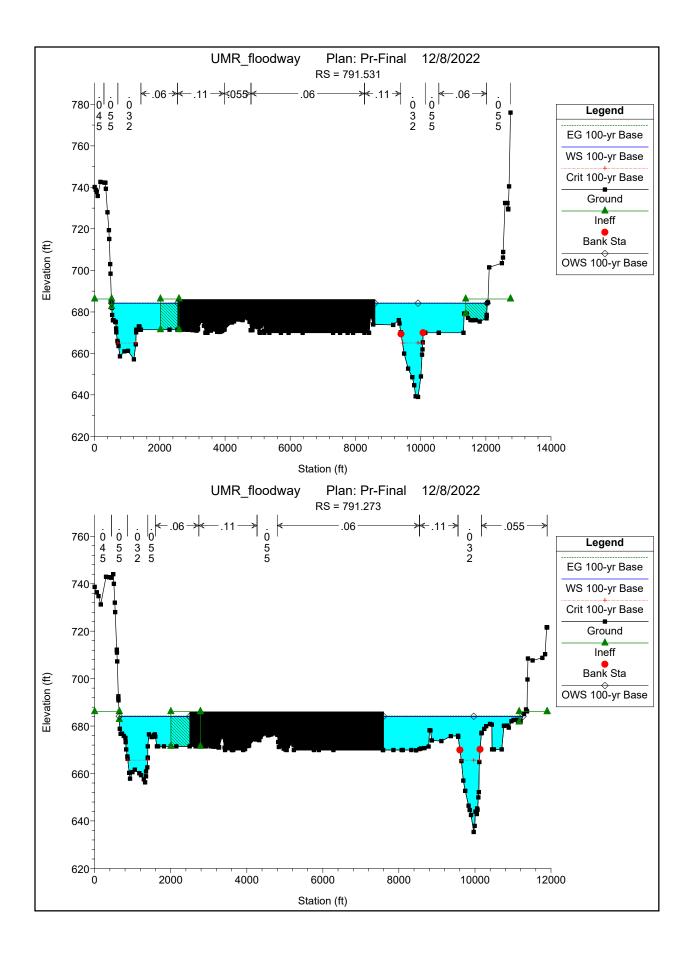

River	Reach	s: User Defined River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Ch
TUVCI	ricaon	Tuver old	Tronic	(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	1 Todac # Off
lississippi	PrIsIToLaCrosse	796.385	100-yr Base	192930.00	648.28	685.6722	663.85	685.73	0.000046	2.92	187512.80	14649.85	0.1
lississippi	PrisiToLaCrosse	796.000	100-yr Base	192930.00	643.51	685.4578	660.87	685.59	0.000056	3.75	175721.50	13735.36	0.1
lississippi	PrIsIToLaCrosse	795.445	100-yr Base	192930.00	641.65	685.3458	663.22	685.47	0.000062	3.82	183954.60	19506.62	0.1
lississippi	PrIsIToLaCrosse	795.000	100-yr Base	192930.00	639.73	685.2301	663.51	685.37	0.000071	4.09	174128.90	14198.10	0.1
lississippi	PrIsIToLaCrosse	794.671	100-yr Base	196287.00	650.73	685.1453	665.78	685.25	0.000080	3.57	186379.30	14193.75	0.4
lississippi	PrIsIToLaCrosse	794.379	100-yr Base	196231.00	650.68	685.0093	667.96	685.14	0.000082	3.79	166520.40	13249.94	0.1
lississippi	PrisiToLaCrosse	794.078	100-yr Base	196276.00	644.35	684.8959	665.58	685.04	0.000082	3.95	159732.60	12555.03	0.1
lississippi	PrIsIToLaCrosse	793.829	100-yr Base	196321.00	645.57	684.8000	666.01	684.93	0.000079	3.98	158481.50	12273.37	0.1
lississippi	PrisiToLaCrosse	793.559	100-yr Base	196366.00	654.79	684.7501	667.42	684.82	0.000051	2.92	170989.90	11794.28	0.1
lississippi	PrisiToLaCrosse	793.302	100-yr Base	196412.00	652.56	684.7176	668.29	684.76	0.000037	2.43	173937.90	11833.16	0.0
lississippi	PrisiToLaCrosse	793.000	100-yr Base	196355.00	654.16	684.6478	668.44	684.70	0.000048	2.79	173326.00	11766.46	0.1
lississippi	PrisiToLaCrosse	792.640	100-yr Base	196445.00	651.01	684.5644	667.14	684.62	0.000046	2.93	168560.30	11179.77	0.1
lississippi	PrisiToLaCrosse	792.261	100-yr Base	196491.00	649.10	684.5012	666.99	684.56	0.000051	3.04	165318.70	12153.91	0.1
lississippi	PrisiToLaCrosse	791.792	100-yr Base	196479.00	643.53	684.3033	665.27	684.45	0.000077	4.08	87112.88	6932.10	0.1
lississippi	PrisiToLaCrosse	791.531	100-yr Base	196524.00	639.03	684,1603	664.97	684.35	0.000092	4.54	73096.38	5474.90	0.1
lississippi	PrIsIToLaCrosse	791.273	100-yr Base	196570.00	635.36	684.0085	665.67	684.25	0.000118	5.25	70295.23	5513.48	0.1
lississippi	PrisiToLaCrosse	790.974	100-yr Base	196615.00	643.70	683.9065	665.49	684.14	0.000121	4.89	67782.63	6017.48	0.1
lississippi	PrisiToLaCrosse	790.604	100-yr Base	196558.00	641.25	683.4734	665.90	683.91	0.000183	6.26	42257.64	8472.94	0.1
lississippi	PrisiToLaCrosse	790.6	100-yr Dasc	Bridge	041.20	000.4704	000.00	000.01	0.000100	0.20	42201.04	0472.04	0
lississippi	PrisiToLaCrosse	790.563	100-yr Base	196558.00	642.03	683.4482	665.98	683.86	0.000178	6.14	44252.83	8452.31	0.1
lississippi	PrisiToLaCrosse	790.442	100-yr Base	196604.00	638.05	683.3463	660.85	683.55	0.000087	4.76	103666.30	7528.14	0.
lississippi	PrisiToLaCrosse PrisiToLaCrosse	790.302 789.992	100-yr Base	196604.00 196649.00	640.72 652.00	683.2388 683.1122	663.03 668.86	683.41 683.23	0.000087	4.44 3.78	102729.30 102166.70	6408.90 6271.34	0.
lississippi			100-yr Base										
lississippi	PrisiToLaCrosse PrisiToLaCrosse	789.574	100-yr Base	196739.00	644.09	682.7988	668.35	682.96	0.000116	4.51	92365.86	6593.66	0.
ississippi	PrisiToLaCrosse	789.000	100-yr Base	196728.00	645.43	682.5208	666.57	682.64	0.000084	3.72	117063.10	7798.16	
ississippi	PrisiToLaCrosse	788.538	100-yr Base	196819.00	652.50	682.4036	662.57	682.46	0.000045	2.76	133146.70	8108.44	0.
lississippi	PrisiToLaCrosse	787.988	100-yr Base	196807.00	635.48	682.2679	667.70	682.33	0.000059	2.99	117557.60	7465.79	0.
lississippi	PrisiToLaCrosse	787.726	100-yr Base	196852.00	640.50	682.1490	666.21	682.24	0.000067	3.47	106920.10	7360.28	0.
ississippi	PrisiToLaCrosse	787.466	100-yr Base	196898.00	644.85	682.0060	664.20	682.08	0.000058	3.21	114450.20	7641.68	0.
lississippi	PrIsIToLaCrosse	787.094	100-yr Base	196943.00	650.12	681.8635	665.34	681.95	0.000069	3.42	122751.90	7668.48	0.
ississippi	PrIsIToLaCrosse	786.623	100-yr Base	196932.00	647.42	681.7122	666.85	681.80	0.000070	3.48	124728.40	8330.47	0.
ississippi	PrIsIToLaCrosse	786.191	100-yr Base	197022.00	649.40	681.6062	667.63	681.65	0.000045	2.69	153382.20	9456.08	0.
lississippi	PrisiToLaCrosse	785.857	100-yr Base	197068.00	647.16	681.5588	667.79	681.59	0.000022	2.05	166677.60	11945.81	0.
lississippi	PrisiToLaCrosse	785.584	100-yr Base	197011.00	652.56	681.5380	666.97	681.56	0.000015	1.41	177578.50	11191.62	0.
lississippi	PrisiToLaCrosse	785.329	100-yr Base	197056.00	650.40	681.5134	666.22	681.54	0.000014	1.46	166693.60	10502.10	0.
lississippi	PrisiToLaCrosse	785.017	100-yr Base	197102.00	652.52	681.4806	666.06	681.51	0.000017	1.59	148236.50	9162.83	0.
ississippi	PrisiToLaCrosse	784.715	100-yr Base	197147.00	650.20	681.4459	665.65	681.48	0.000018	1.63	138918.60	8268.53	0.
lississippi	PrisiToLaCrosse	784.471	100-yr Base	197090.00	649.82	681.4325	664.44	681.46	0.000013	1.42	157319.90	8355.13	0.
lississippi	PrisiToLaCrosse	784.243	100-yr Base	197136.00	647.59	681.4158	664.87	681.44	0.000013	1.49	152575.20	8071.91	0.
lississippi	PrisiToLaCrosse	784.020	100-yr Base	197181.00	650.53	681.4091	663.18	681.43	0.00009	1.20	179984.70	8796.41	0.
lississippi	PrisiToLaCrosse	783.652	100-yr Base	197226.00	650.49	681.4010	660.33	681.41	0.000005	0.91	217800.50	9686.13	0.
lississippi	PrisiToLaCrosse	783.304	100-yr Base	197170.00	650.69	681.3939	658.55	681.41	0.000004	0.88	232304.10	9984.62	0.
lississippi	PrIsIToLaCrosse	783.000	100-yr Base	197215.00	649.31	681.3906	656.78	681.40	0.000003	0.73	271884.80	10415.20	0.
lississippi	PrIsIToLaCrosse	781.990	100-yr Base	197294.00	646.75	681.3793	653.65	681.38	0.000002	0.62	335800.30	11492.00	0.
lississippi	PrisiToLaCrosse	781.468	100-yr Base	197385.00	644.58	681.3748	652.63	681.38	0.000002	0.61	350813.30	11860.57	0.
ississippi	PrisiToLaCrosse	780.984	100-yr Base	197476.00	643.00	681.3683	651.11	681.37	0.000002	0.70	317119.40	11414.77	0.
	PrisiToLaCrosse	780.631	100-yr Base	197419.00	642.60	681.3605	650.23	681.37	0.000002	0.84	277049.30	13165.86	0
ississippi	PrisiToLaCrosse	780.191		197419.00	642.00	681.3538	649.67	681.36	0.000003	0.84	273253.40	11036.70	
lississippi			100-yr Base		642.01		649.07	681.36			292670.10		0
ississippi	PrisiToLaCrosse	779.984	100-yr Base	198626.00		681.3521			0.000002	0.74		10639.55	0
lississippi	PrisiToLaCrosse	779.811	100-yr Base	198615.00	642.80	681.3512	649.88	681.36	0.000002	0.66	317437.60 307774.70	10485.81	0
lississippi	PrisiToLaCrosse	779.388	100-yr Base	198832.00	643.00	681.3467	649.80	681.35	0.000002	0.67		9928.39	
ississippi	PrisiToLaCrosse	779.187	100-yr Base	198866.00	642.80	681.3441	649.46	681.35	0.000002	0.71	293484.80	12154.13	0
ississippi	PrIsIToLaCrosse	779.000	100-yr Base	198900.00	642.80	681.3420	649.02	681.35	0.000002	0.70	288101.60	8854.01	0
ississippi	PrisiToLaCrosse	778.664	100-yr Base	199026.00	643.20	681.3380	649.19	681.35	0.000002	0.73	278740.20	8443.37	0
ississippi	PrisiToLaCrosse	778.290	100-yr Base	199152.00	643.00	681.3306	648.85	681.34	0.000003	0.85	252807.80	8401.98	0
ississippi	PrisiToLaCrosse	778.074	100-yr Base	199186.00	642.60	681.3235	648.04	681.34	0.000003	0.96	227552.10	8275.67	0
ississippi	PrisiToLaCrosse	777.875	100-yr Base	199232.00	641.22	681.3204	647.37	681.33	0.000003	0.94	228905.80	8214.85	0
ississippi	PrIsIToLaCrosse	777.488	100-yr Base	199232.00	639.64	681.3054	646.63	681.32	0.000005	1.18	200751.20	8529.87	0
ississippi	PrIsIToLaCrosse	777.080	100-yr Base	199232.00	639.25	681.3018	646.05	681.31	0.000003	0.93	239403.50	8219.75	0
ississippi	PrIsIToLaCrosse	776.665	100-yr Base	199232.00	638.46	681.2955	645.03	681.31	0.000003	0.87	235152.40	6741.74	0
ississippi	PrIsIToLaCrosse	776.002	100-yr Base	199232.00	639.45	681.2891	644.60	681.30	0.000002	0.82	256235.60	7015.01	0
ississippi	PrIsIToLaCrosse	775.186	100-yr Base	199232.00	636.49	681.2809	644.23	681.29	0.000002	0.75	285457.40	8317.79	0
ssissippi	PrIsIToLaCrosse	774.739	100-yr Base	199232.00	636.68	681.2737	644.14	681.28	0.000003	0.81	261953.40	8224.20	C
ssissippi	PrisiToLaCrosse	774.330	100-yr Base	199232.00	637.58	681.2620	644.78	681.28	0.000003	1.02	217234.50	8547.67	0
ssissippi	PrisiToLaCrosse	774.110	100-yr Base	199232.00	637.48	681.2636	643.30	681.27	0.000002	0.74	294421.40	9495.68	C
ssissippi	PrIsIToLaCrosse	773.832	100-yr Base	199232.00	637.48	681.2626	642.91	681.27	0.000001	0.64	328697.10	9883.54	(
ssissippi	PrIsIToLaCrosse	773.623	100-yr Base	199232.00	638.07	681.2620	642.94	681.27	0.000001	0.57	366709.50	10392.43	C
ssissippi	PrIsIToLaCrosse	773.342	100-yr Base	199232.00	637.94	681.2605	643.11	681.27	0.000001	0.56	370021.20	10624.26	C
ssissippi	PrIsIToLaCrosse	772.832	100-yr Base	199232.00	637.08	681.2551	643.38	681.26	0.000001	0.66	313775.90	9562.56	C
ssissippi	PrIsIToLaCrosse	772.560	100-yr Base	199232.00	636.29	681.2545	642.39	681.26	0.000001	0.58	355921.40	10877.79	(
ssissippi	PrIsIToLaCrosse	772.339	100-yr Base	199232.00	636.29	681.2540	642.02	681.26	0.000001	0.50	412621.00	11546.52	(
ssissippi	PrIsIToLaCrosse	772.092	100-yr Base	199232.00	637.67	681.2534	642.09	681.26	0.000001	0.46	452789.70	11919.25	(
ssissippi	PrisiToLaCrosse	771.809	100-yr Base	199232.00	638.07	681.2526	642.33	681.26	0.000001	0.44	476764.30	13982.90	(
sissippi	PrisiToLaCrosse	771.313	100-yr Base	199232.00	638.26	681.2511	642.68	681.25	0.000001	0.42	495981.10	13716.06	
ssissippi	PrIsIToLaCrosse	770.876	100-yr Base	199232.00	637.87	681.2494	642.56	681.25	0.000001	0.45	476078.70	14553.42	(
ssissippi	PrIsIToLaCrosse	770.530	100-yr Base	199232.00	636.69	681.2482	642.40	681.25	0.000001	0.45	472040.40	13811.46	(
ssissippi	PrisiToLaCrosse	769.696	100-yr Base	199232.00	636.69	681.2452	642.80	681.25	0.000001	0.45	482299.50	14291.96	
ssissippi	PrisiToLaCrosse	768.717	100-yr Base	199232.00	635.50	681.2407	642.85	681.24	0.000001	0.49	434805.70	11581.13	
ssissippi	PrisiToLaCrosse	767.605	100-yr Base	199232.00	634.91	681.2355	642.08	681.24	0.000001	0.51	409794.50	10764.52	
ssissippi	PrisiToLaCrosse	766.672	100-yr Base	199232.00	630.97	681.2296	640.45	681.23	0.000001	0.60	358428.30	9429.36	(
ssissippi	PrisiToLaCrosse	765.995	100-yr Base	199232.00	629.32	681.2232	638.79	681.23	0.000001	0.74	313698.80	8697.42	(
ssissippi	PrIsIToLaCrosse	765.528	100-yr Base	199232.00	626.80	681.2151	637.59	681.22	0.000002	0.91	273702.70	8769.84	C
ssissippi	PrIsIToLaCrosse	765.103	100-yr Base	199232.00	622.56	681.1797	634.06	681.22	0.00006	1.68	215072.50	9096.51	(
ississippi	PrisiToLaCrosse	764.552	100-yr Base	199232.00	639.50	681.0485	660.87	681.17	0.000078	3.34	113281.40	8823.91	0
ississippi	PrIsIToLaCrosse	764.091	100-yr Base	199232.00	636.52	680.8549	659.34	680.98	0.000079	3.26	123757.50	10520.26	0
	PrisiToLaCrosse	763.659	100-yr Base	199232.00	638.70	680.5264	661.86	680.75	0.000124	4.43	103968.60	11188.49	C
ssissippi	FIISHOLACIOSSE												

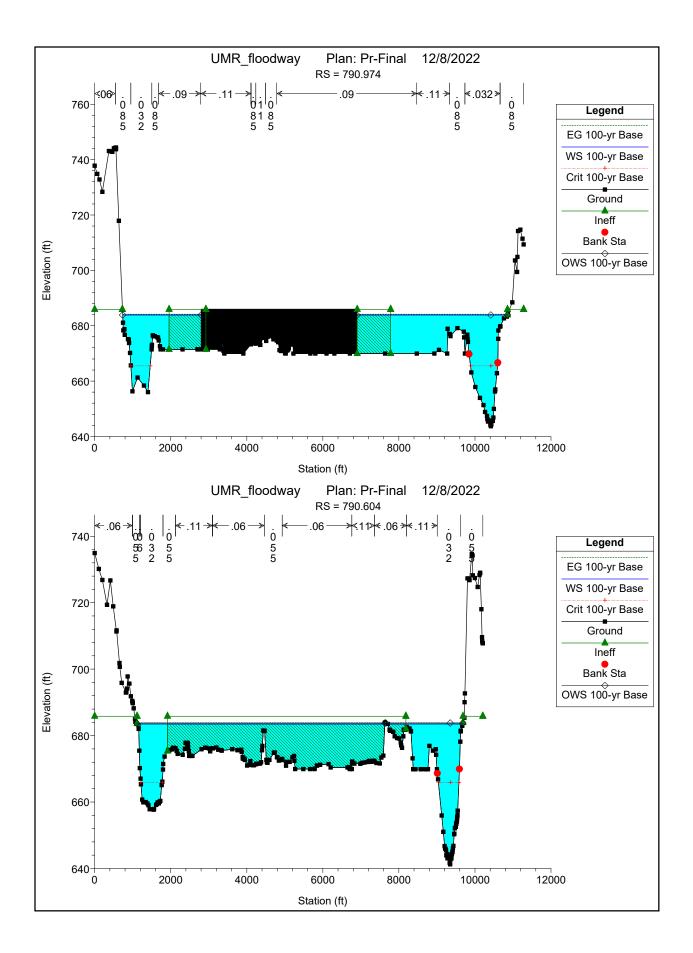

River	Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
				(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
Mississippi	PrisiToLaCrosse	762.578	100-yr Base	229611.00	653.24	679.8478	665.76	680.05	0.000143	4.52	129185.30	13484.81	0.16
Mississippi	PrisiToLaCrosse	762.273	100-yr Base	229611.00	650.04	679.5850	666.97	679.75	0.000236	4.40	127106.70	14423.33	0.16
Mississippi	PrisiToLaCrosse	762.062	100-yr Base	229611.00	638.79	679.2454	664.97	679.51	0.000169	5.42	122937.00	14803.85	0.18
Mississippi	PrisiToLaCrosse	761.826	100-yr Base	229611.00	647.34	679.0425	665.46	679.30	0.000170	5.44	136147.20	15237.20	0.18
Mississippi	PrisiToLaCrosse	761.327	100-yr Base	229611.00	644.03	678.6475	664.10	678.88	0.000157	4.81	134676.00	16334.60	0.17
Mississippi	PrisiToLaCrosse	760.994	100-yr Base	229611.00	645.42	678.3035	664.70	678.57	0.000179	5.14	134245.60	17374.84	0.19
Mississippi	PrisiToLaCrosse	760.759	100-yr Base	229611.00	642.41	678.0528	663.34	678.34	0.000178	5.47	142371.60	15918.74	0.19
Mississippi	PrisiToLaCrosse	760.495	100-yr Base	229611.00	644.41	677.8153	662.94	678.10	0.000170	5.50	141621.90	15728.67	0.18
Mississippi	PrisiToLaCrosse	760.400	100-yr Base	229611.00	643.73	677.7733	665.31	678.00	0.000173	5.25	122586.30	15909.14	0.18
Mississippi	PrisiToLaCrosse	760.216	100-yr Base	229611.00	642.43	677.6870	664.11	677.87	0.000079	4.02	70217.59	15434.44	0.14
Mississippi	PrisiToLaCrosse	760.2		Bridge									
Mississippi	PrisiToLaCrosse	760.181	100-yr Base	229611.00	642.30	677.4159	666.65	677.82	0.000185	6.20	54347.52	15557.62	0.22
Mississippi	PrisiToLaCrosse	759.926	100-yr Base	229611.00	645.99	677.3667	667.35	677.53	0.000113	4.66	140750.90	15098.92	0.17
Mississippi	PrisiToLaCrosse	759.684	100-yr Base	229611.00	647.38	677.3054	667.75	677.39	0.000066	3.61	147763.40	15160.14	0.13
Mississippi	PrisiToLaCrosse	759.458	100-yr Base	229611.00	650.43	677.2606	663.72	677.31	0.000041	2.67	148451.40	14237.99	0.10
Mississippi	PrisiToLaCrosse	759.170	100-yr Base	229611.00	655.22	677.1453	668.29	677.23	0.000090	3.51	147218.40	14647.94	0.14
Mississippi	PrisiToLaCrosse	758.833	100-yr Base	229611.00	652.49	677.0261	667.37	677.09	0.000060	3.13	155104.20	15160.93	0.12
Mississippi	PrisiToLaCrosse	758.299	100-yr Base	229611.00	643.54	676.8544	666.70	676.91	0.000057	3.01	152263.80	14301.85	0.11
Mississippi	PrisiToLaCrosse	758.010	100-yr Base	229611.00	649.15	676.7234	666.84	676.80	0.000068	3.39	133920.50	14848.46	0.13
Mississippi	PrisiToLaCrosse	757.668	100-yr Base	229611.00	653.51	676.5935	666.97	676.68	0.000073	3.26	119497.60	15488.71	0.13
Mississippi	PrisiToLaCrosse	757.381	100-yr Base	229611.00	653.12	676.4689	665.14	676.57	0.000080	3.53	107455.30	16049.33	0.14
Mississippi	PrisiToLaCrosse	757.105	100-yr Base	229611.00	641.29	676.3539	661.79	676.47	0.000067	3.43	94481.04	14793.31	0.13
Mississippi	PrisiToLaCrosse	756.765	100-yr Base	229611.00	653.40	676.1973	663.00	676.34	0.000098	3.67	86410.75	14366.27	0.15
Mississippi	PrisiToLaCrosse	756.373	100-yr Base	229611.00	653.66	675.9711	664.47	676.13	0.000104	3.70	75525.72	12656.26	0.15
Mississippi	PrisiToLaCrosse	755.996	100-yr Base	229611.00	653.73	675.7877	662.73	675.92	0.000099	3.68	84299.00	13938.42	0.15
Mississippi	PrisiToLaCrosse	755.463	100-yr Base	229611.00	643.03	675.6042	657.27	675.68	0.000045	2.55	104051.30	13327.38	0.10
Mississippi	PrisiToLaCrosse	755.186	100-yr Base	229611.00	648.65	675.4694	662.62	675.59	0.000077	3.61	97485.73	13844.89	0.14
Mississippi	PrisiToLaCrosse	754.955	100-yr Base	229611.00	648.31	675.3977	662.26	675.50	0.000065	3.15	108445.30	14745.09	0.12
Mississippi	PrisiToLaCrosse	754.592	100-yr Base	229611.00	652.36	675.2984	664.44	675.38	0.000058	2.77	108146.10	16529.92	0.12
Mississippi	PrisiToLaCrosse	754.204	100-yr Base	231280.00	651.87	675.2051	662.92	675.27	0.000042	2.31	120203.60	17923.70	0.10
Mississippi	PrisiToLaCrosse	753.586	100-yr Base	231280.00	644.22	674.9178	661.74	675.09	0.000072	3.50	71972.00	12640.25	0.15
Mississippi	PrisiToLaCrosse	752.950	100-yr Base	231280.00	644.31	674.5962	658.21	674.87	0.000059	4.21	55018.50	11437.57	0.15
Mississippi	PrisiToLaCrosse	752.823	100-yr Base	231280.00	638.50	674.3370	654.22	674.80	0.000080	5.49	42262.00	10128.84	0.18
Mississippi	PrisiToLaCrosse	752.8		Inl Struct									
Mississippi	PrisiToLaCrosse	752.781	100-yr Base	231280.00	649.88	673.4761	662.91	674.47	0.000286	8.03	28904.10	10012.96	0.32
Mississippi	PrisiToLaCrosse	752.600	100-yr Base	231280.00	633.59	673.8111	651.22	674.06	0.000044	4.37	60690.73	11106.44	0.13
Mississippi	PrisiToLaCrosse	751.877	100-yr Base	231280.00	626.83	673.4516	650.02	673.80	0.000274	5.56	94419.30	11983.71	0.16

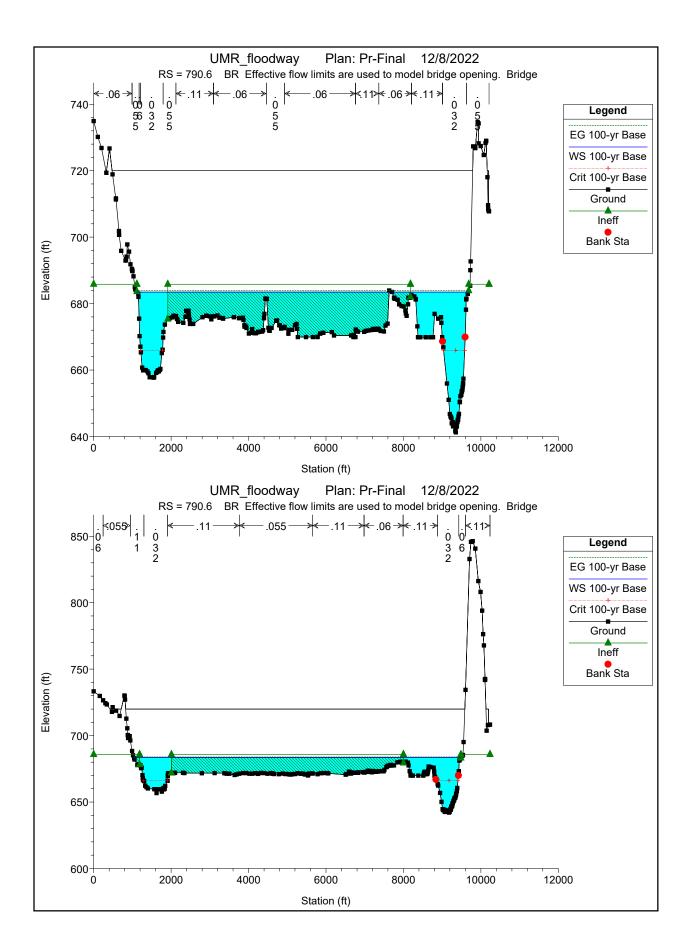


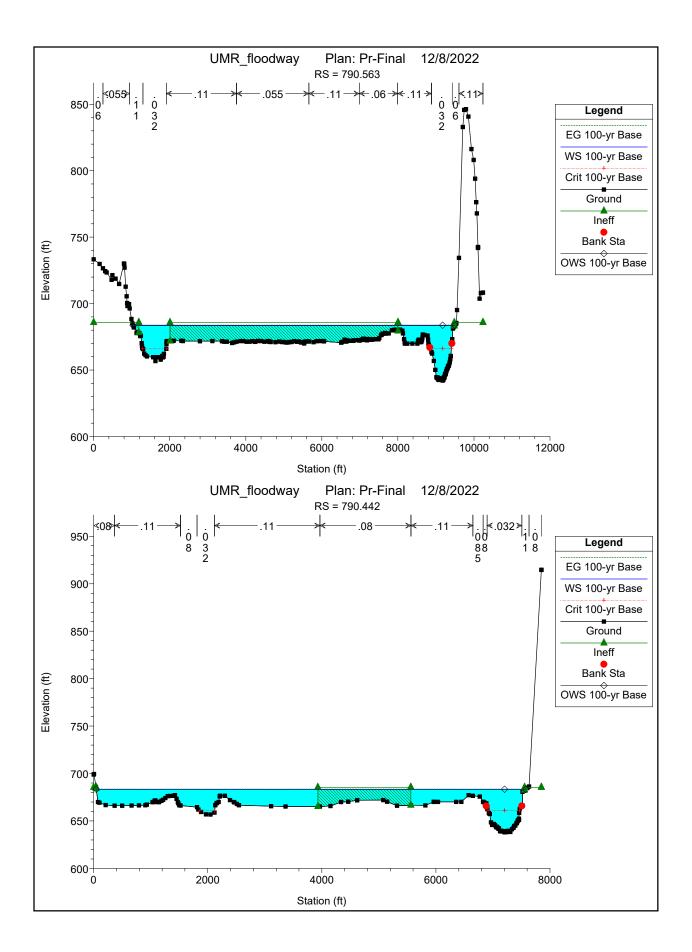


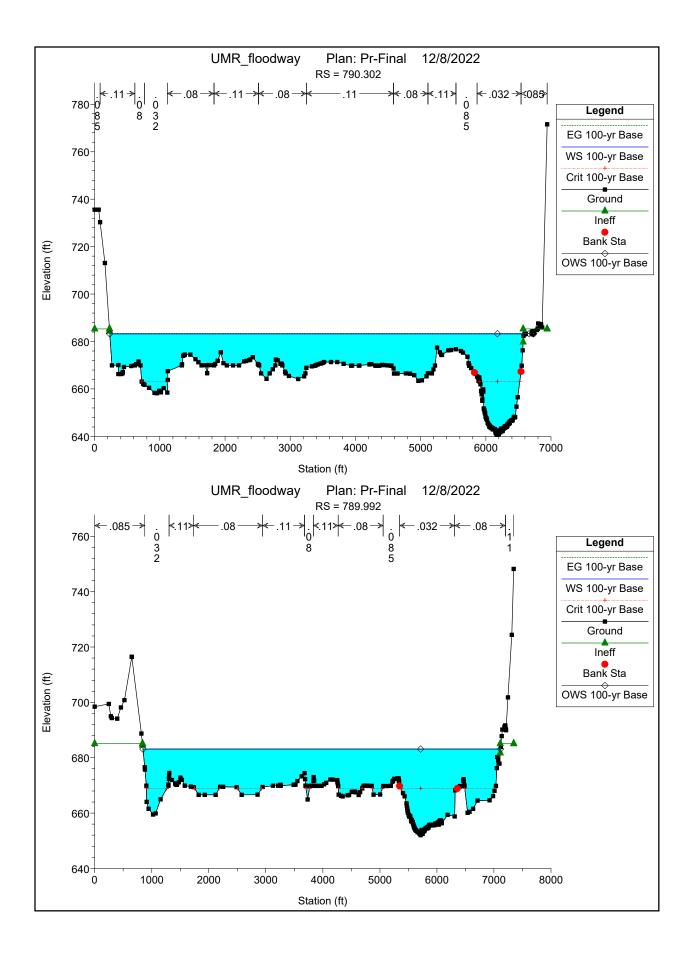


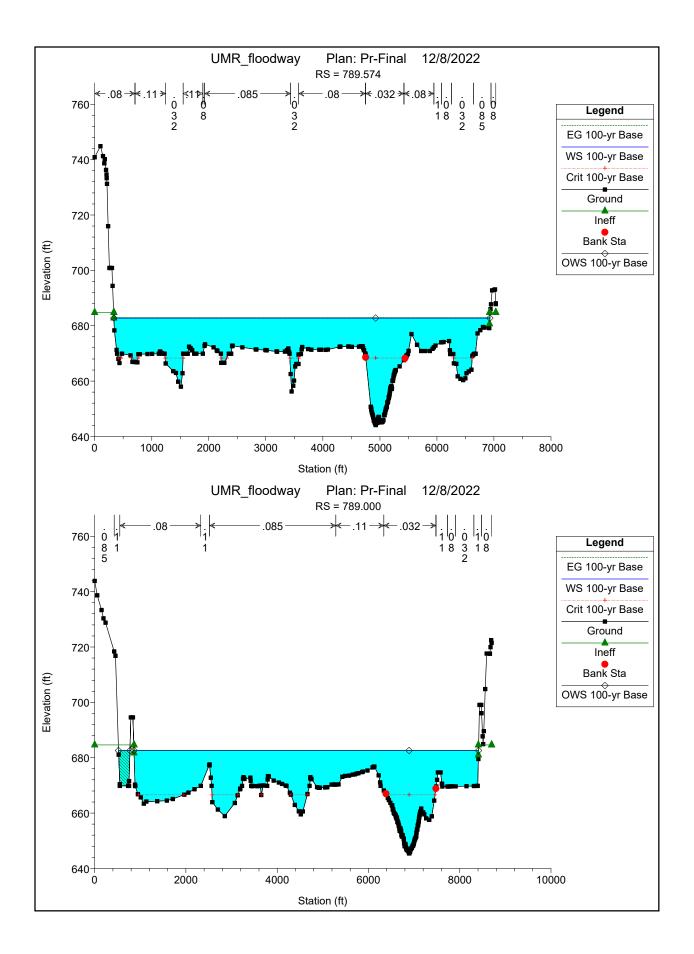


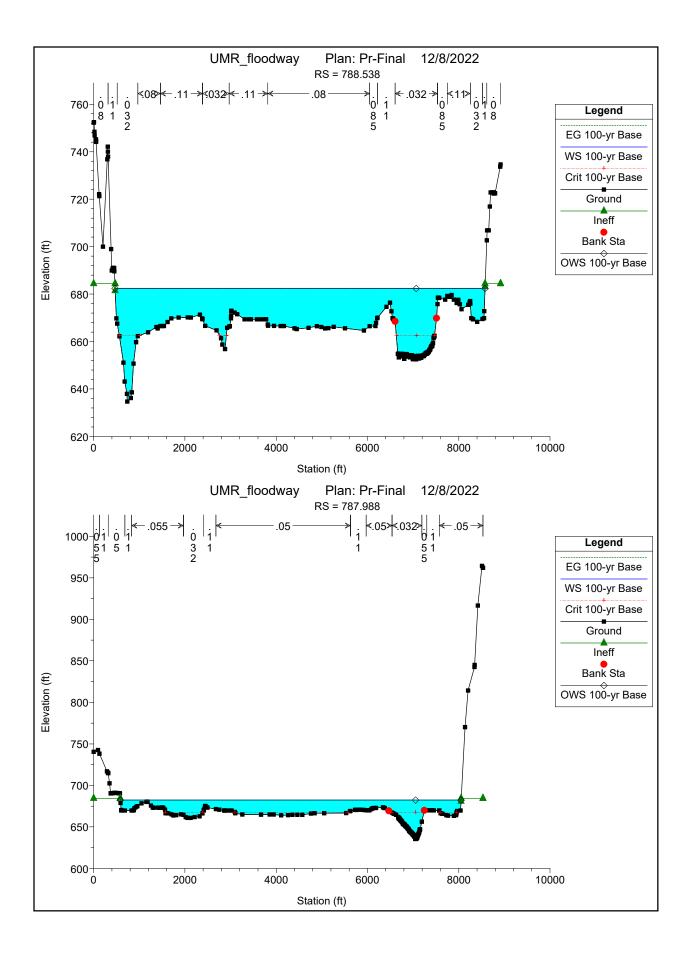


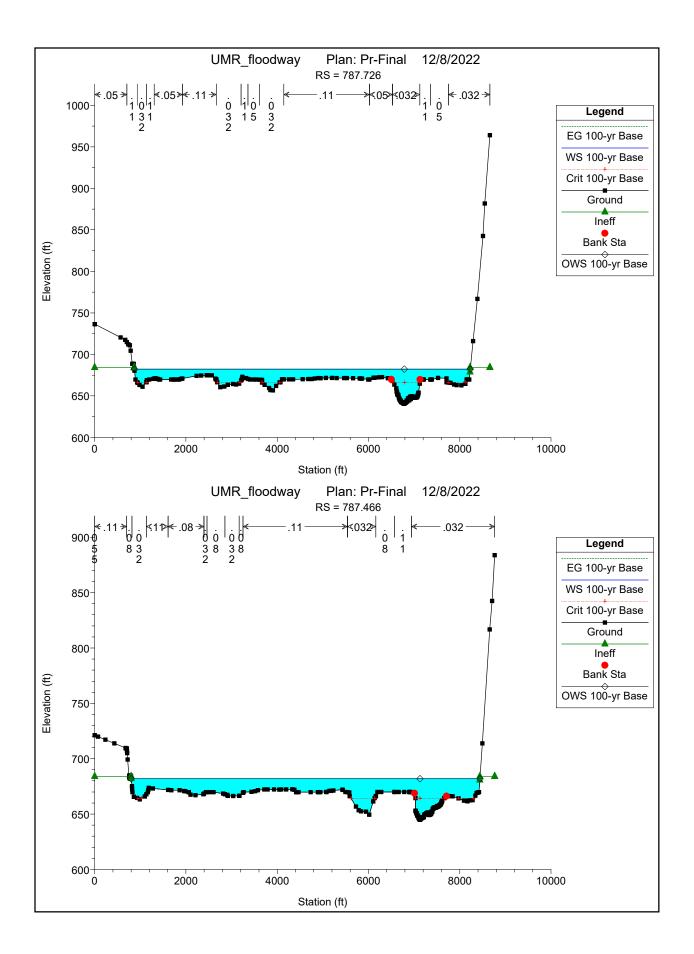


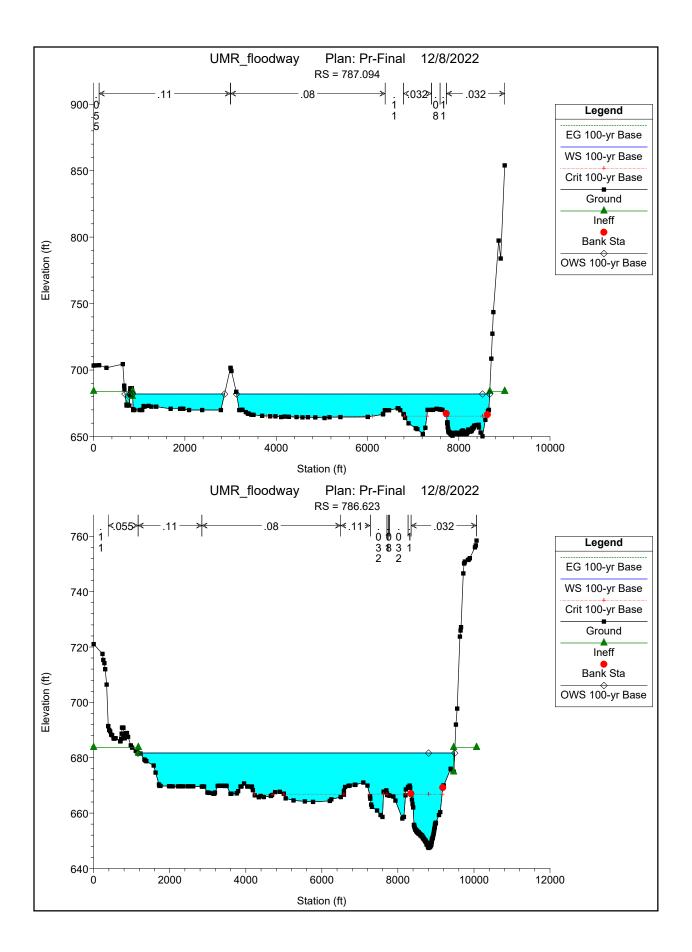


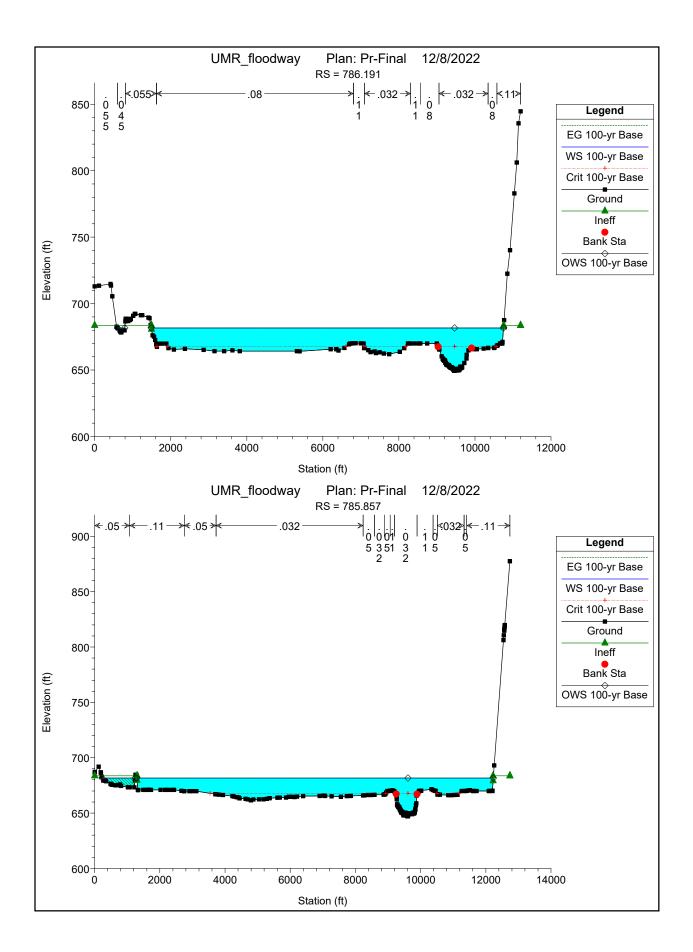


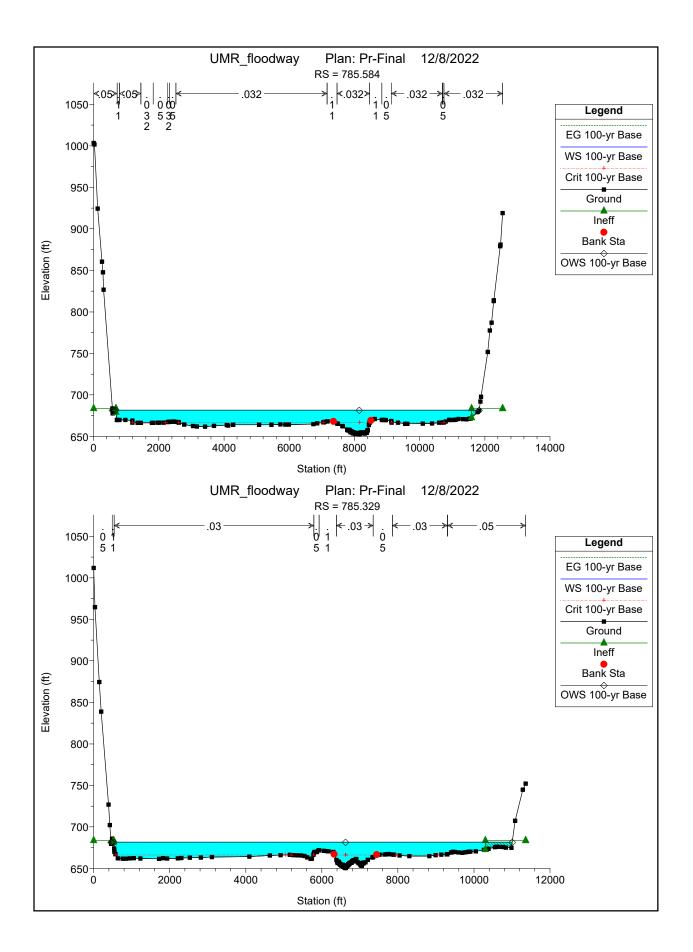


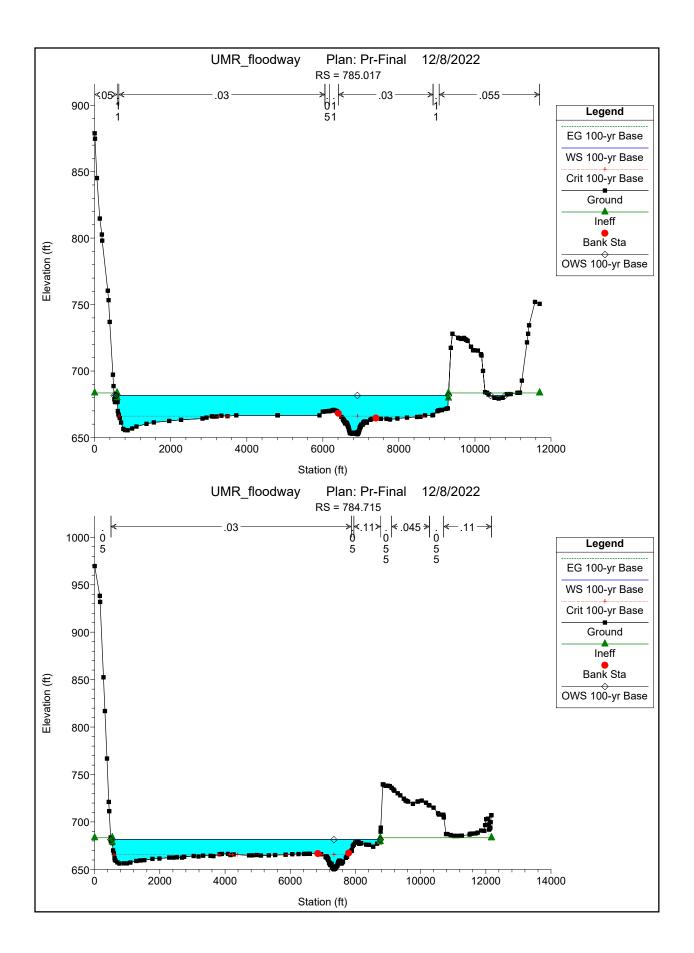


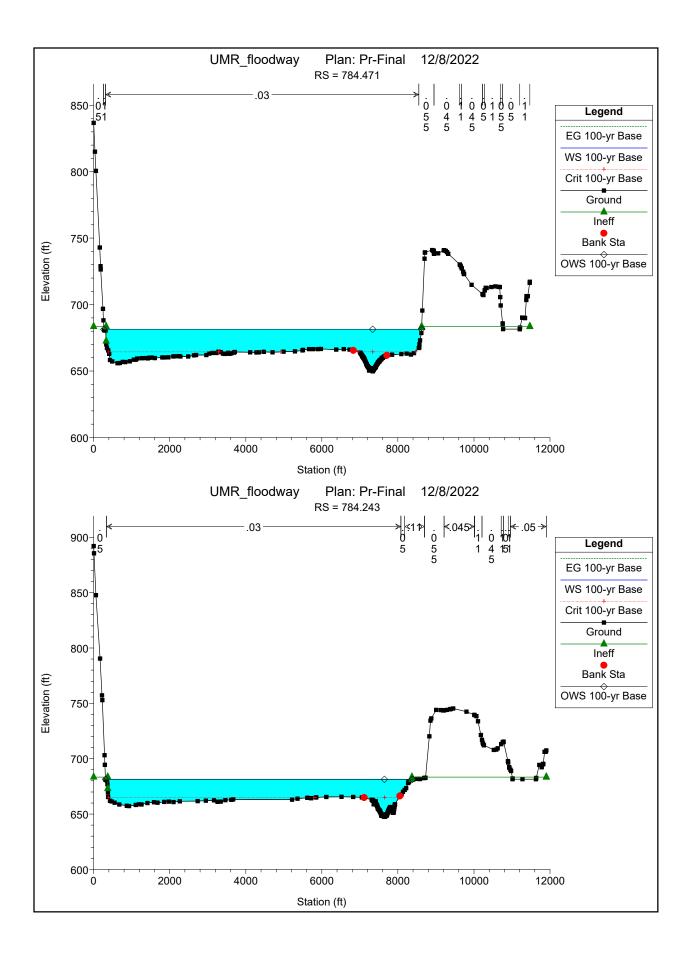


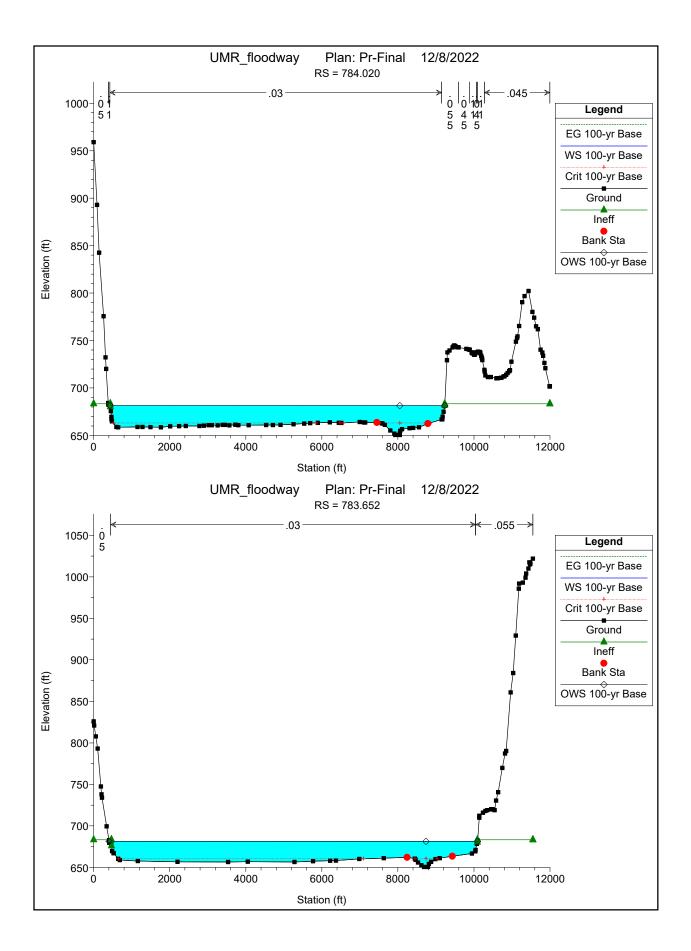


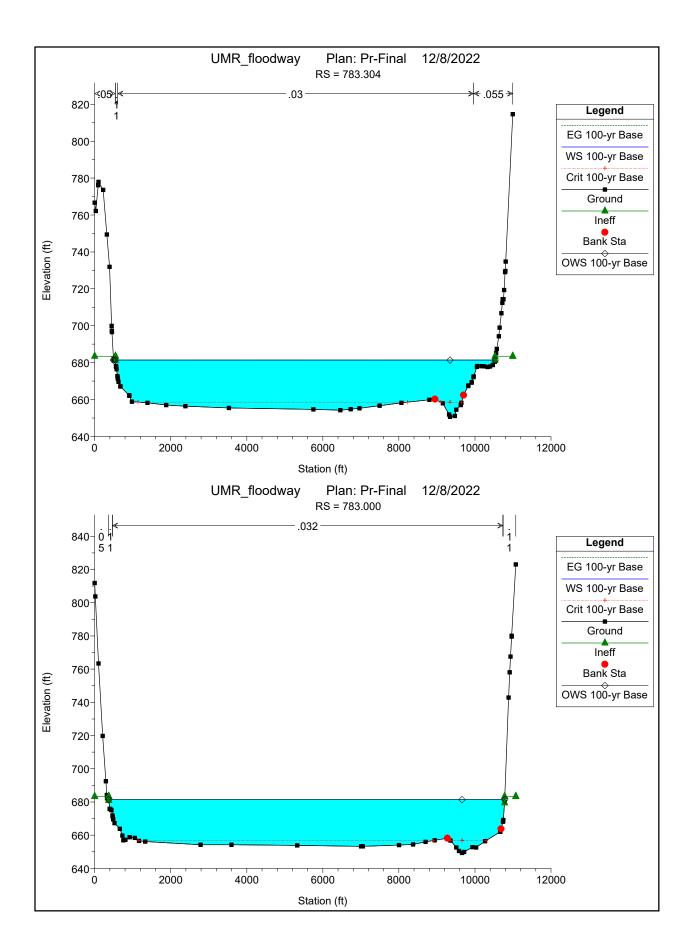


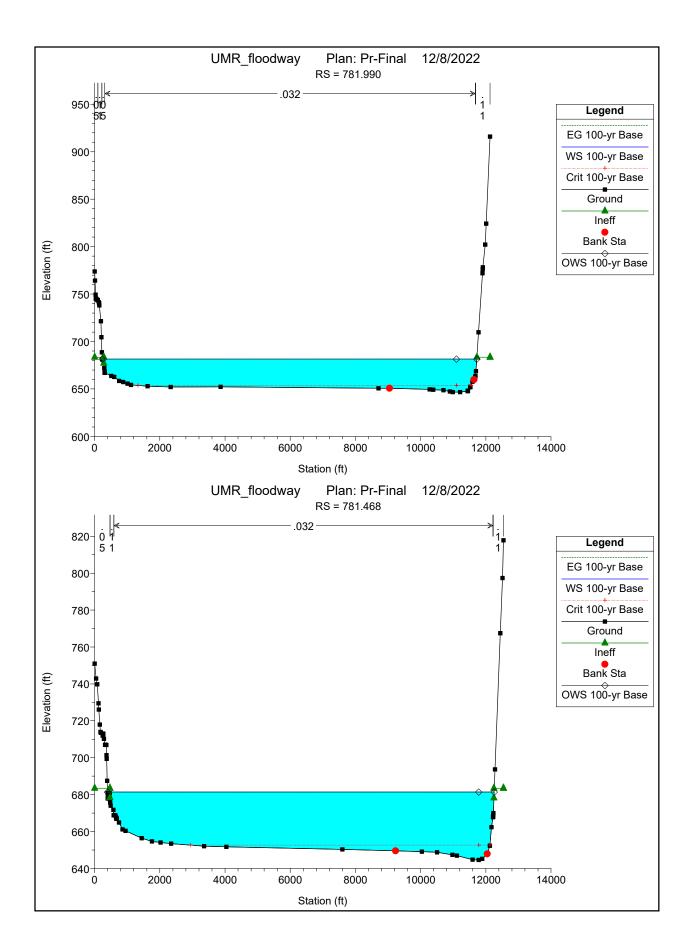


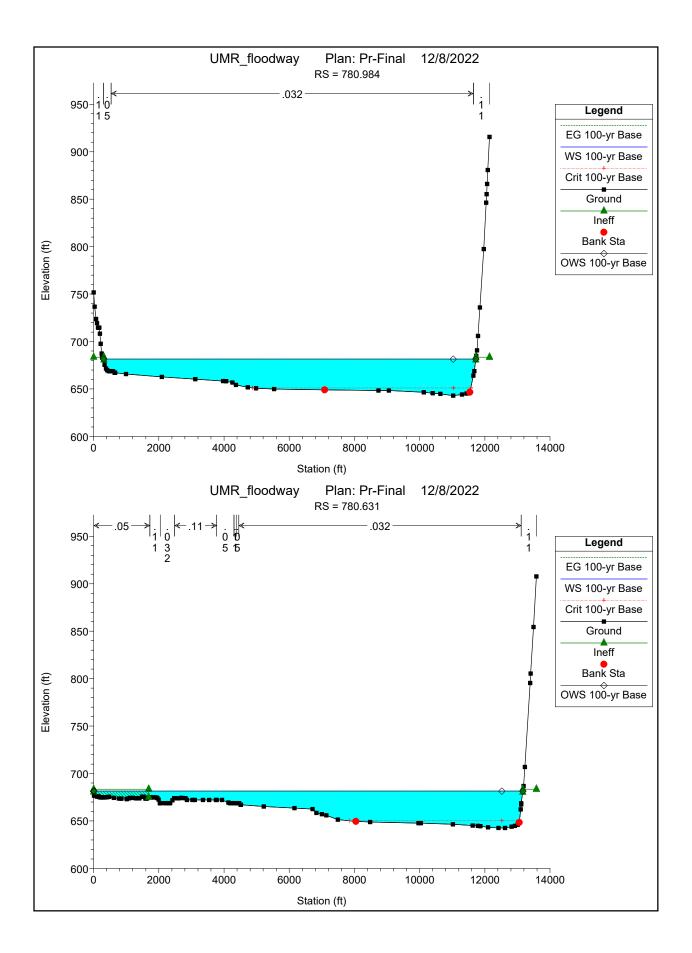


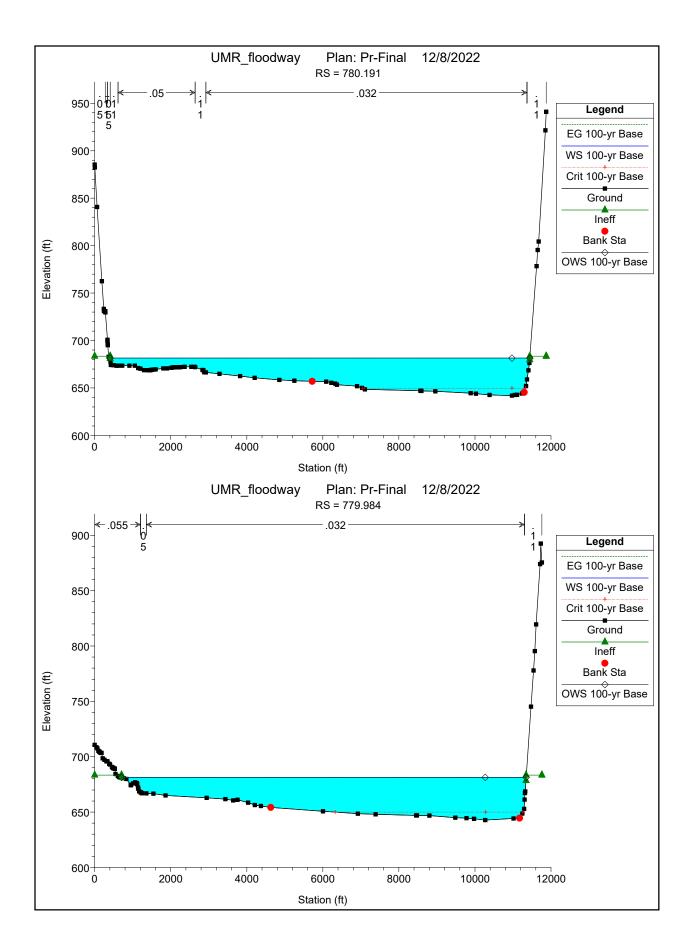


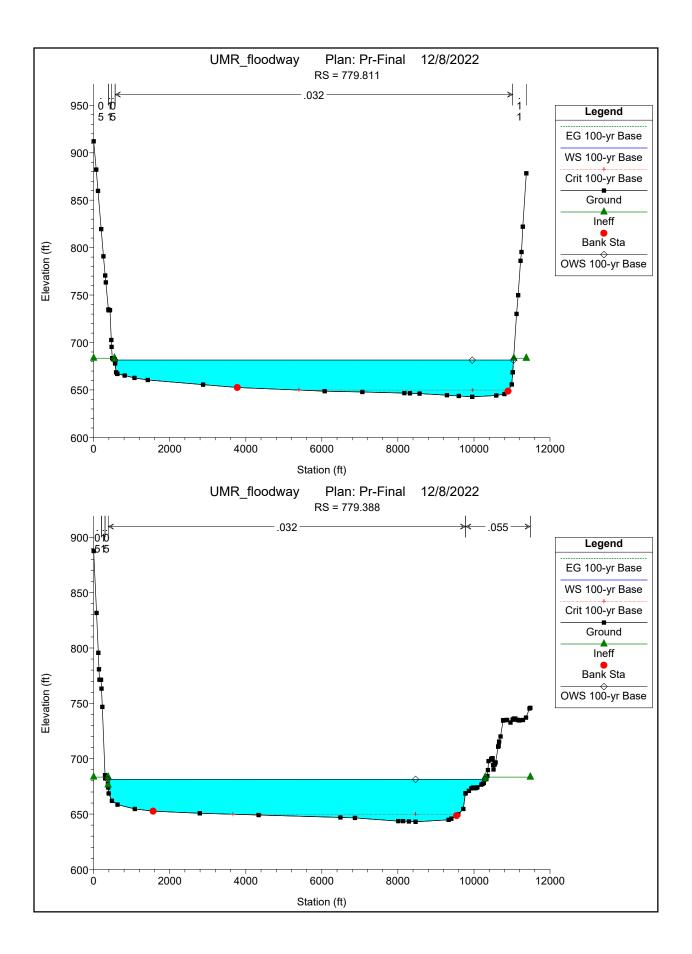


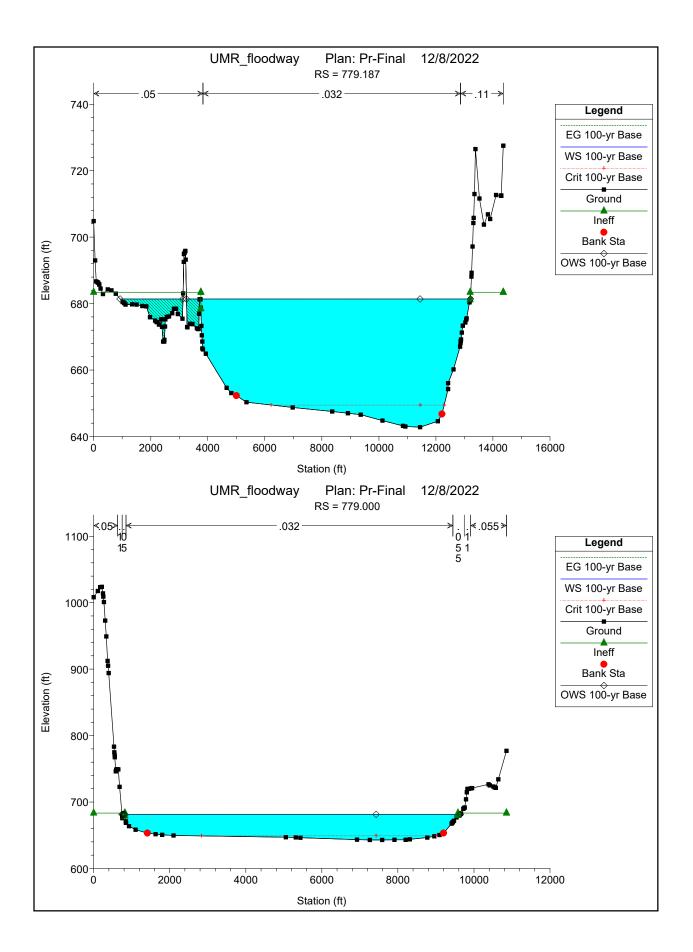


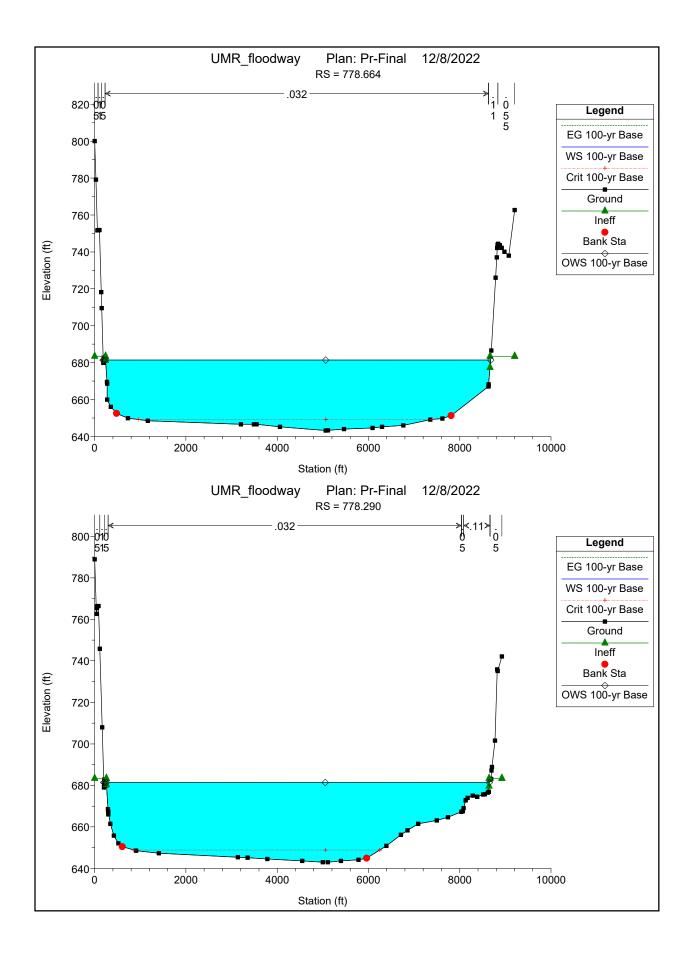


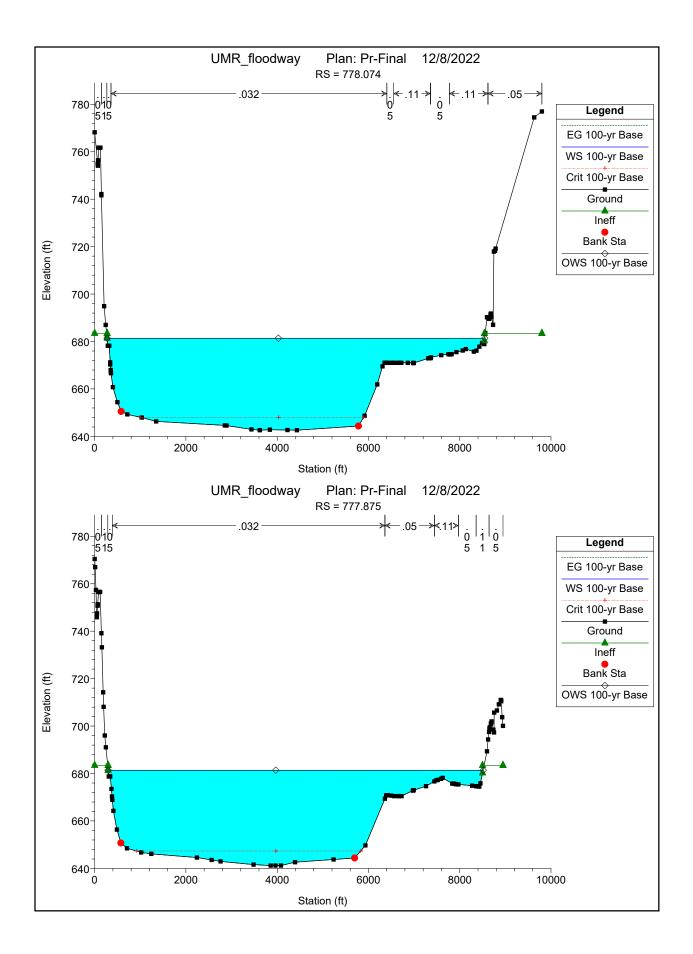


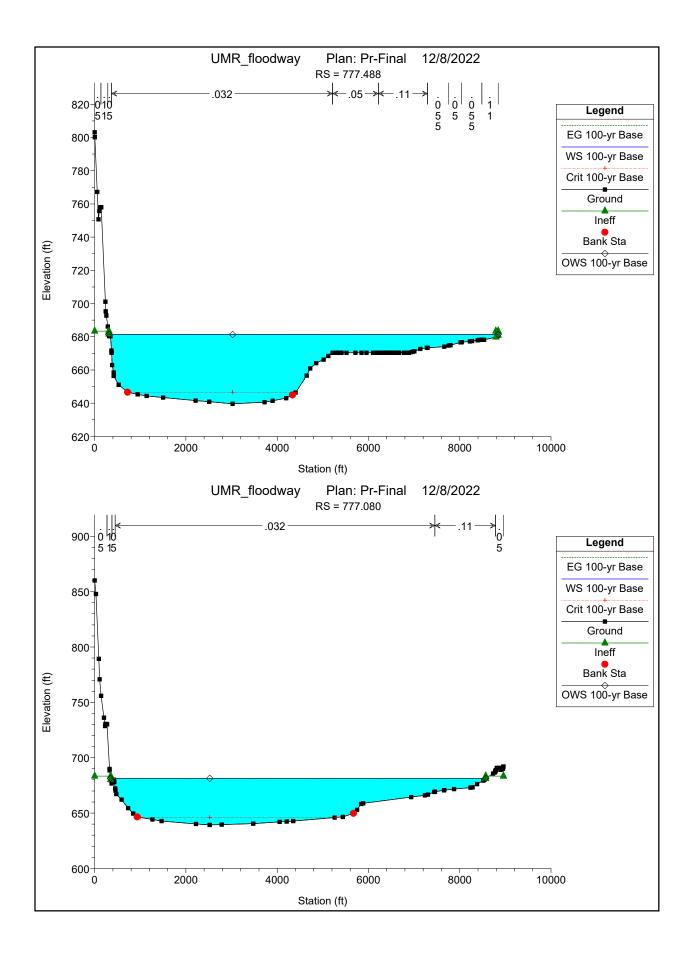


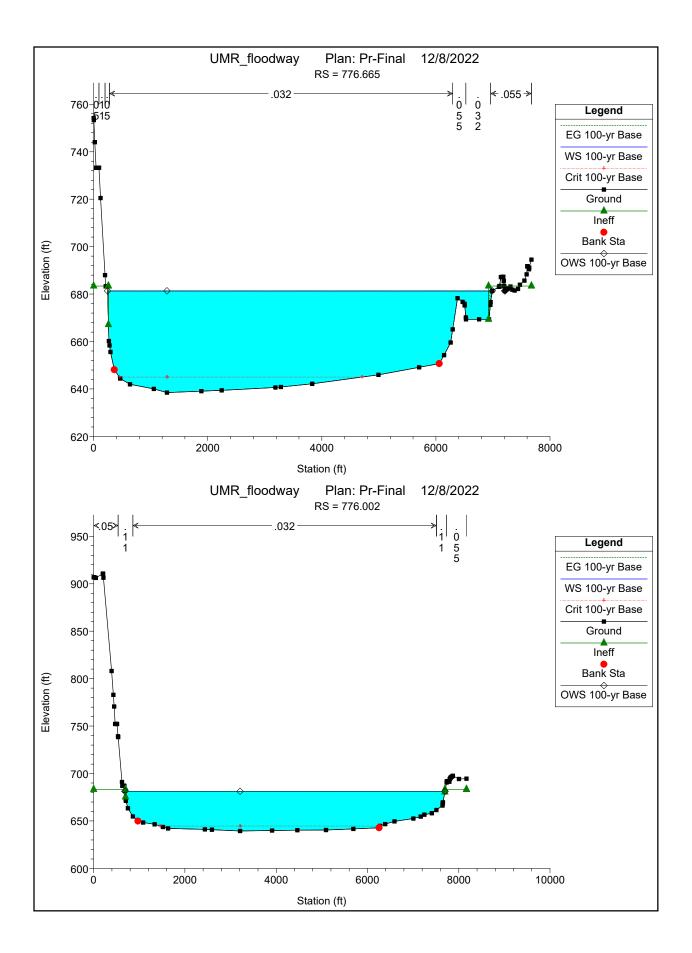


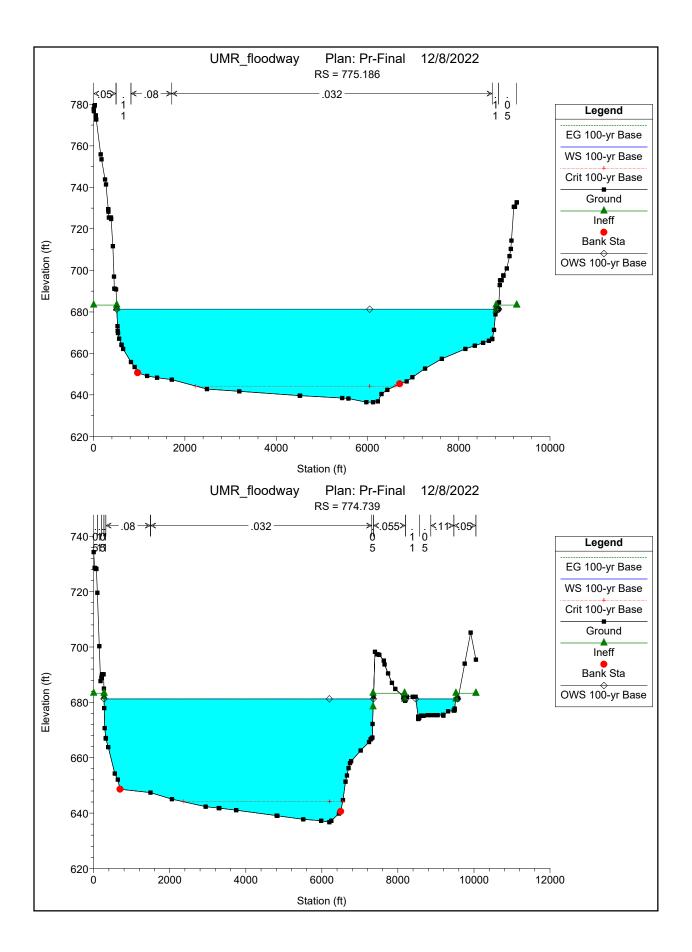


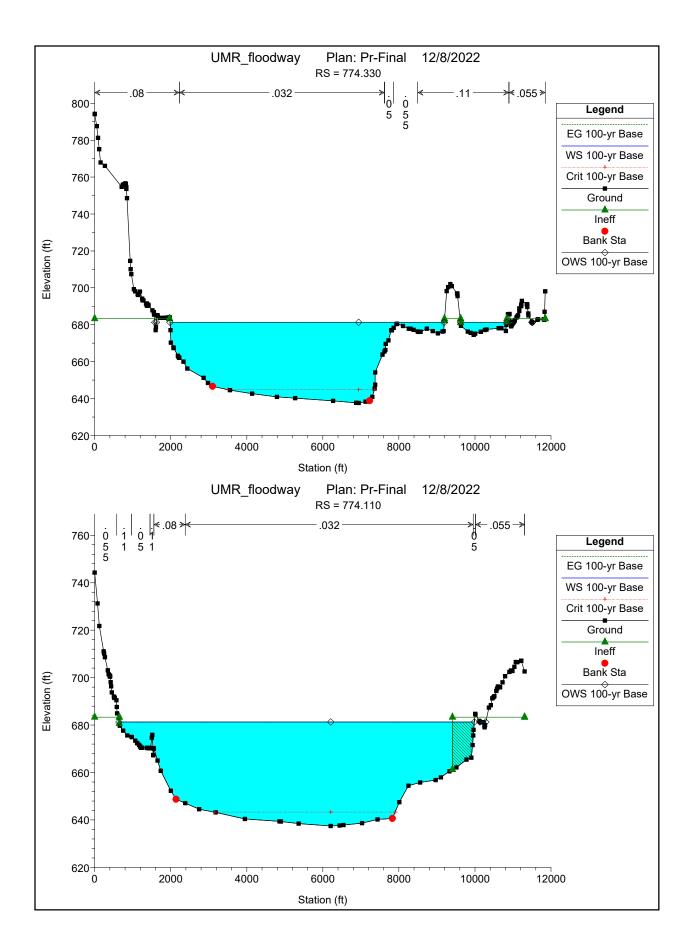


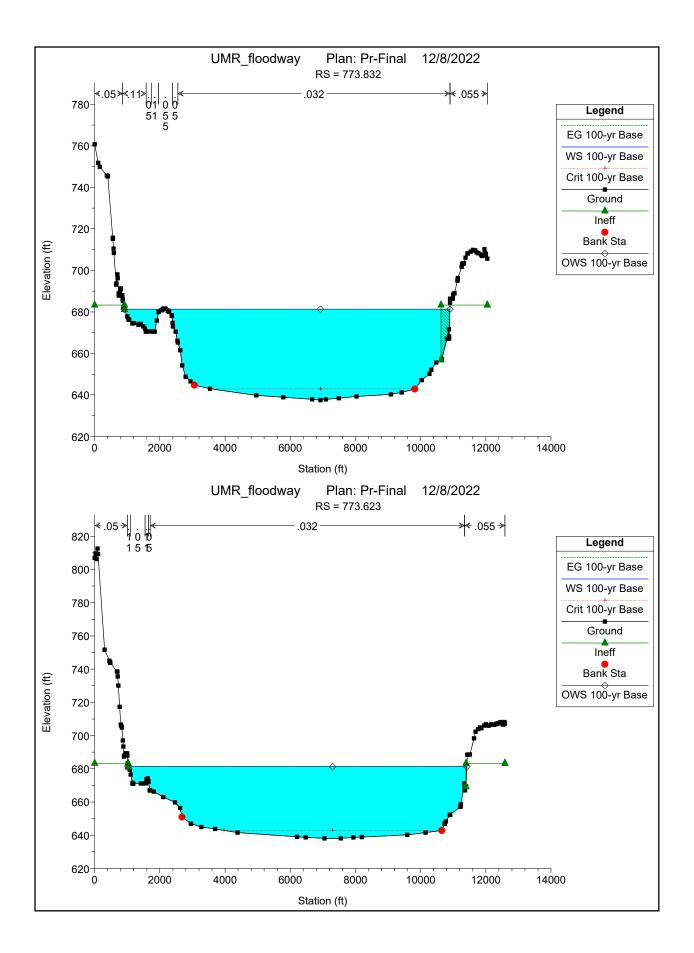


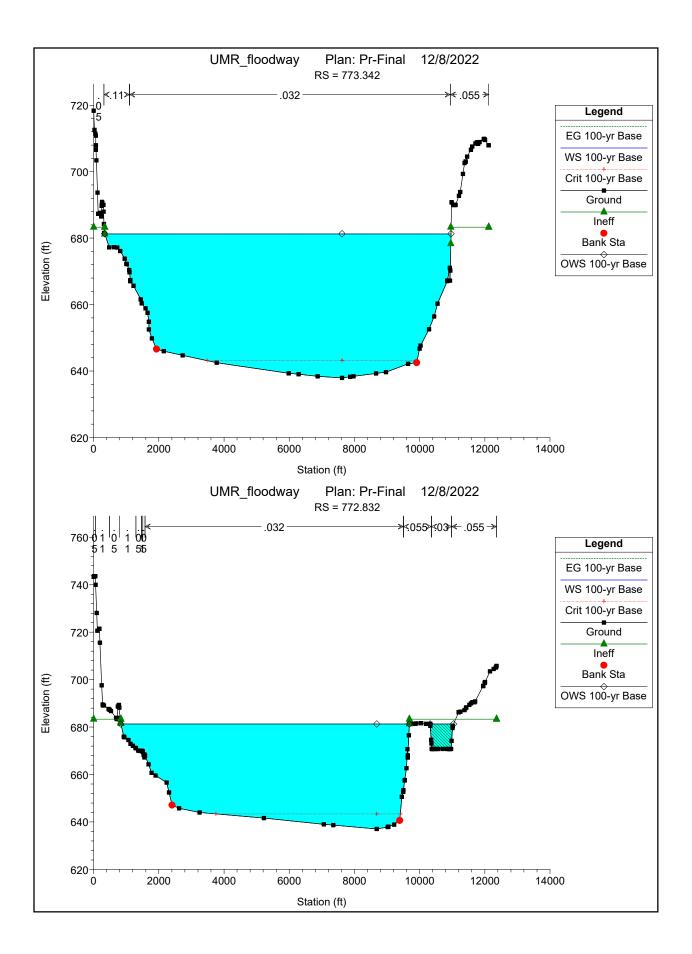


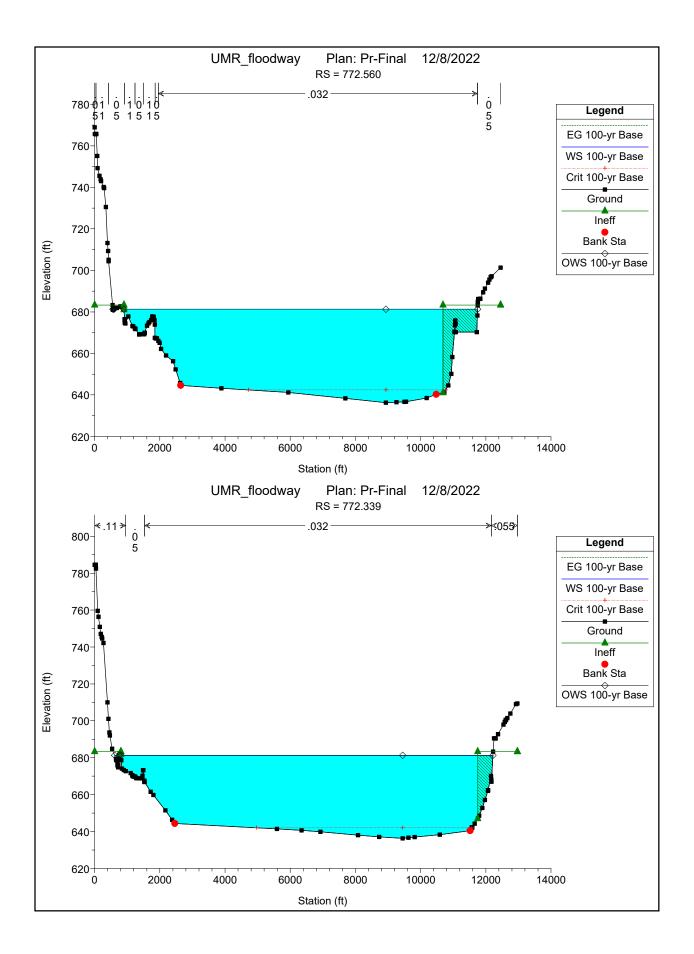


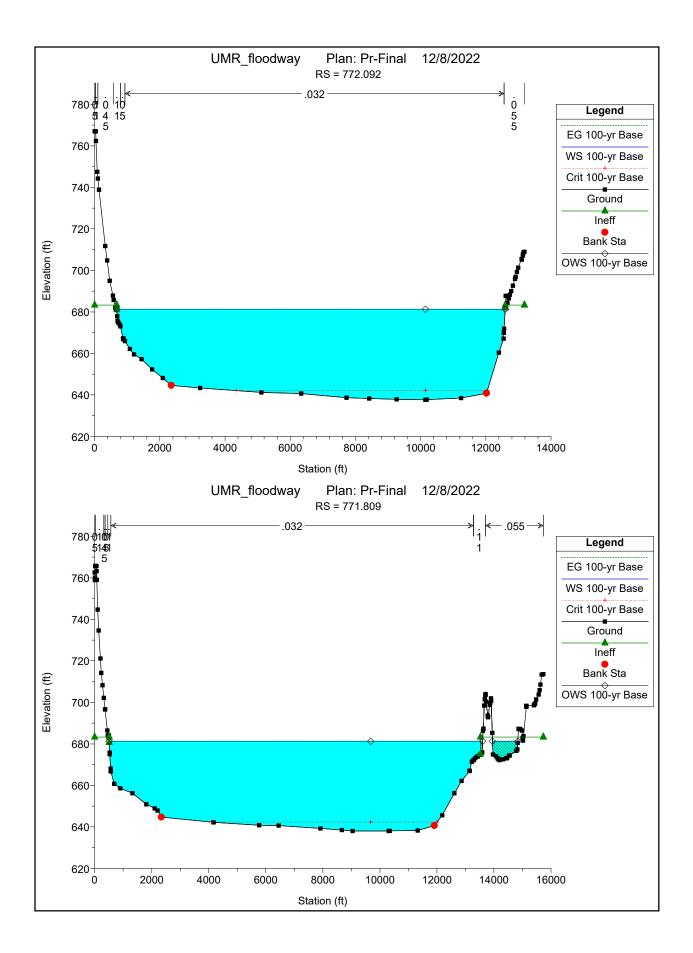


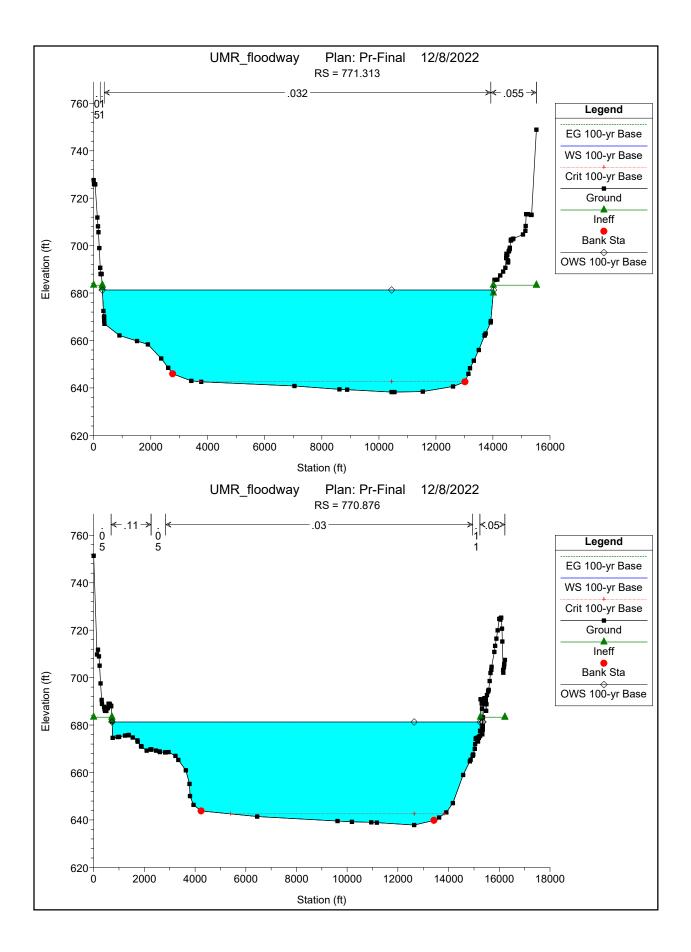


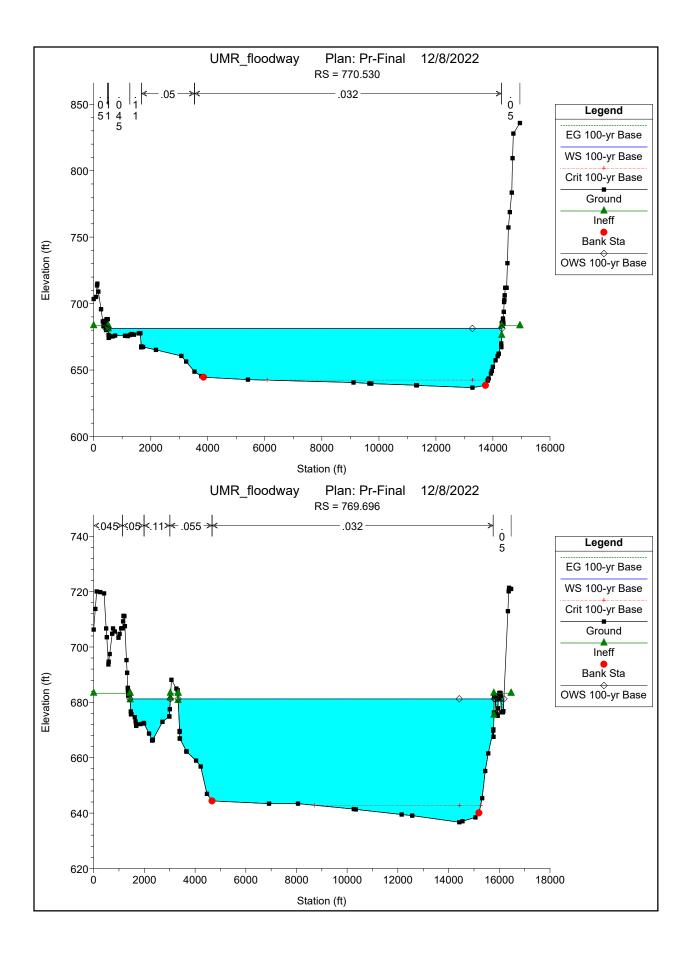


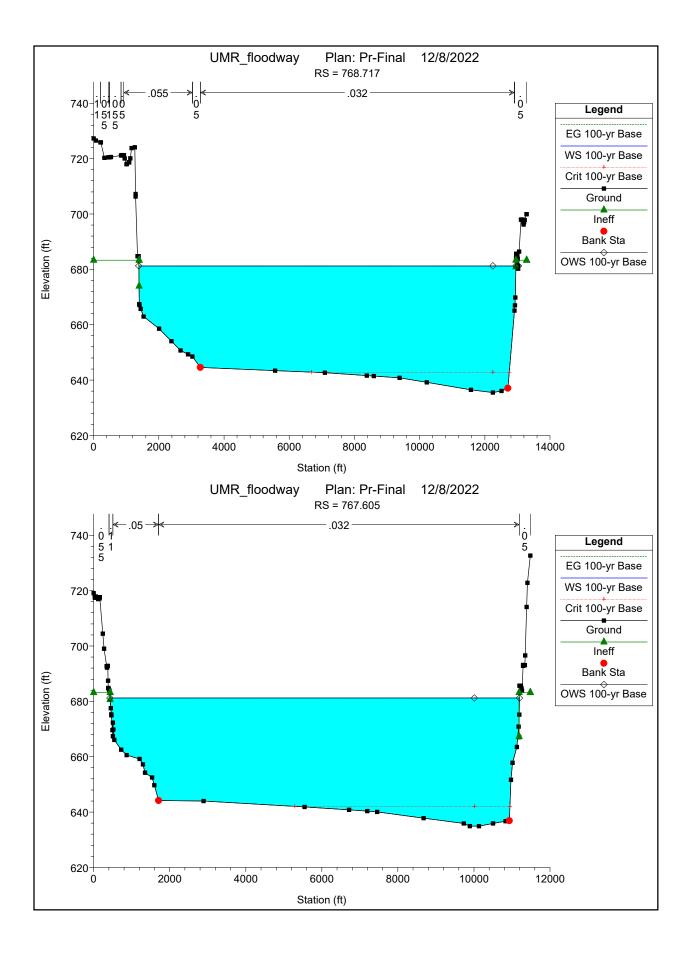


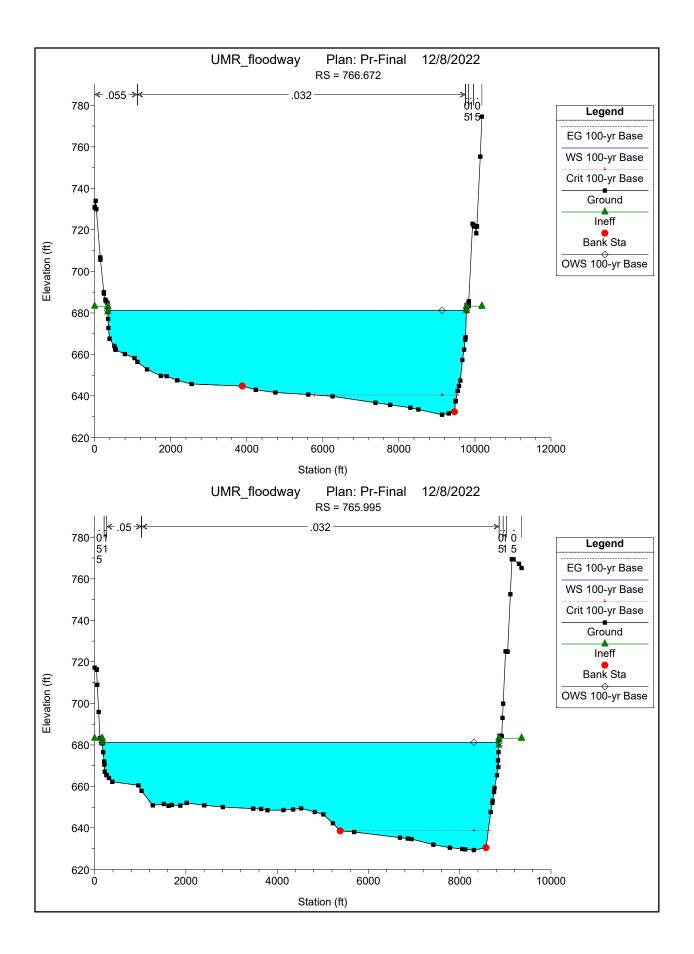


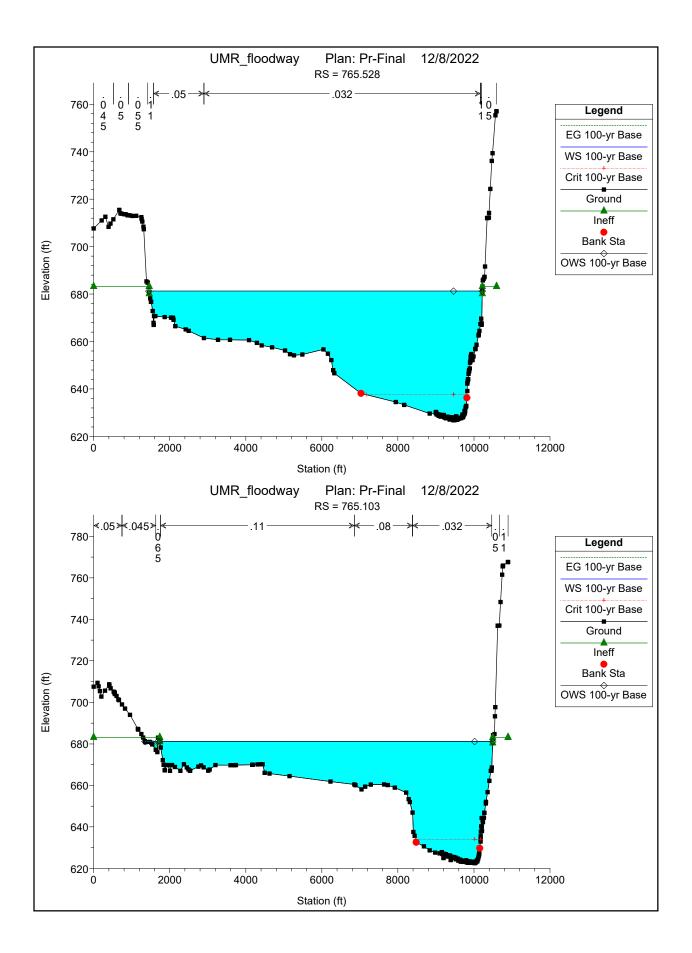


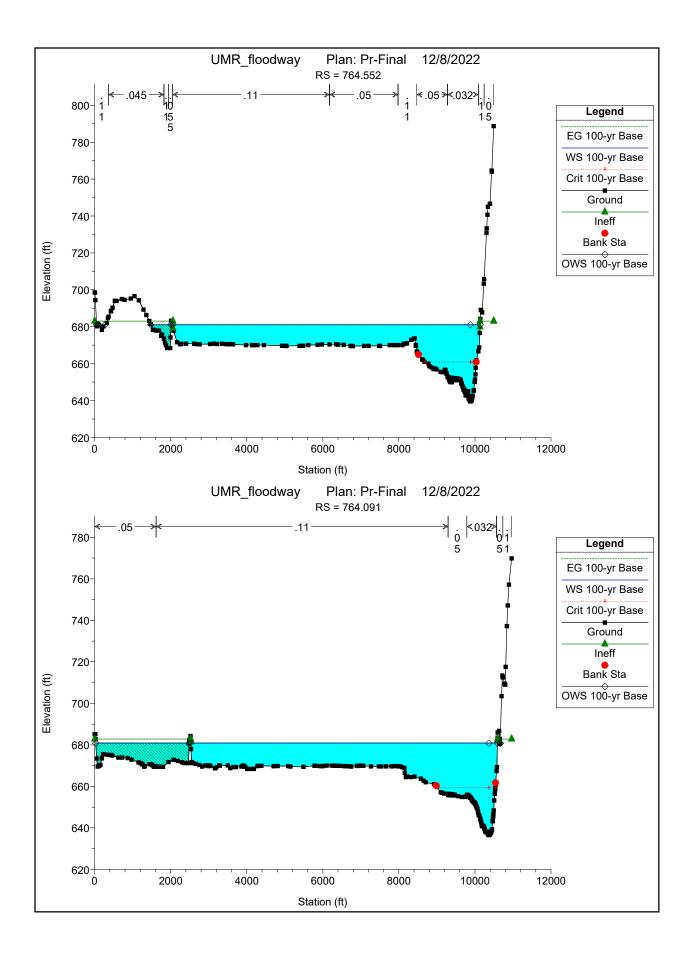


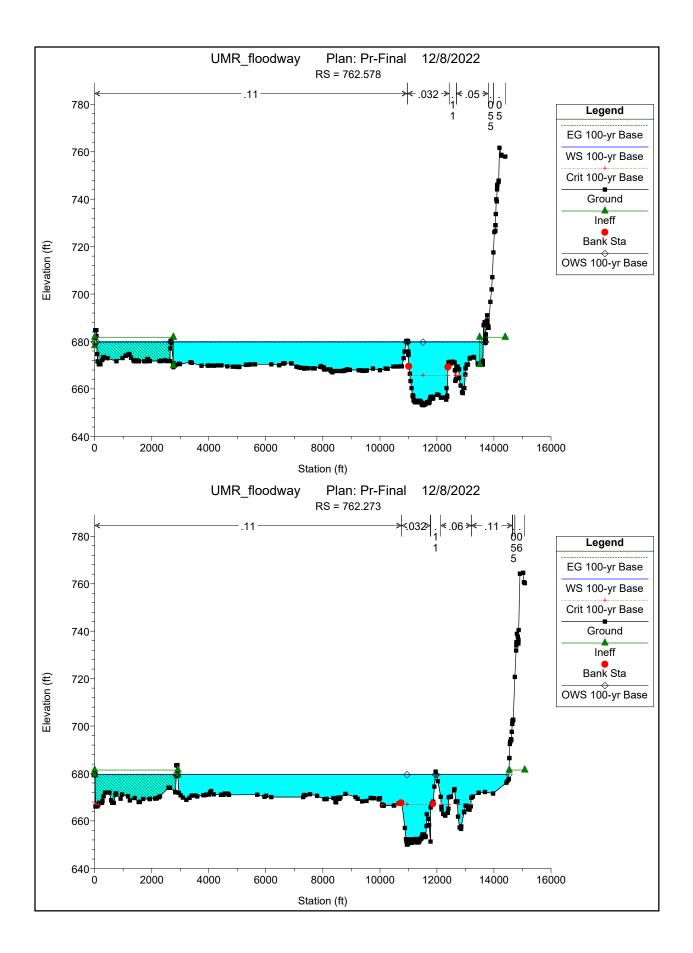


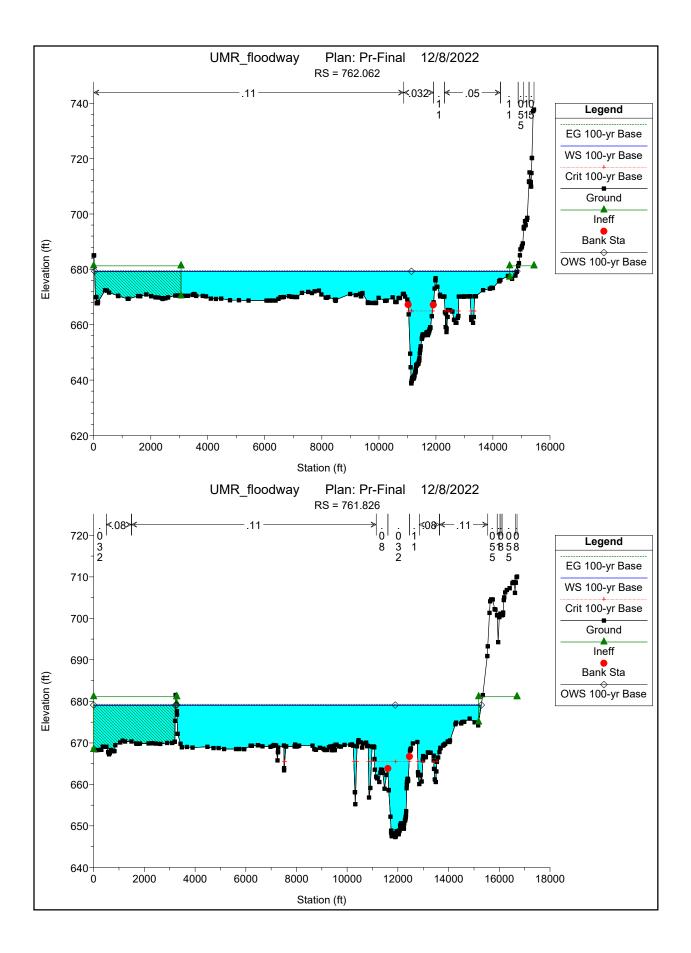


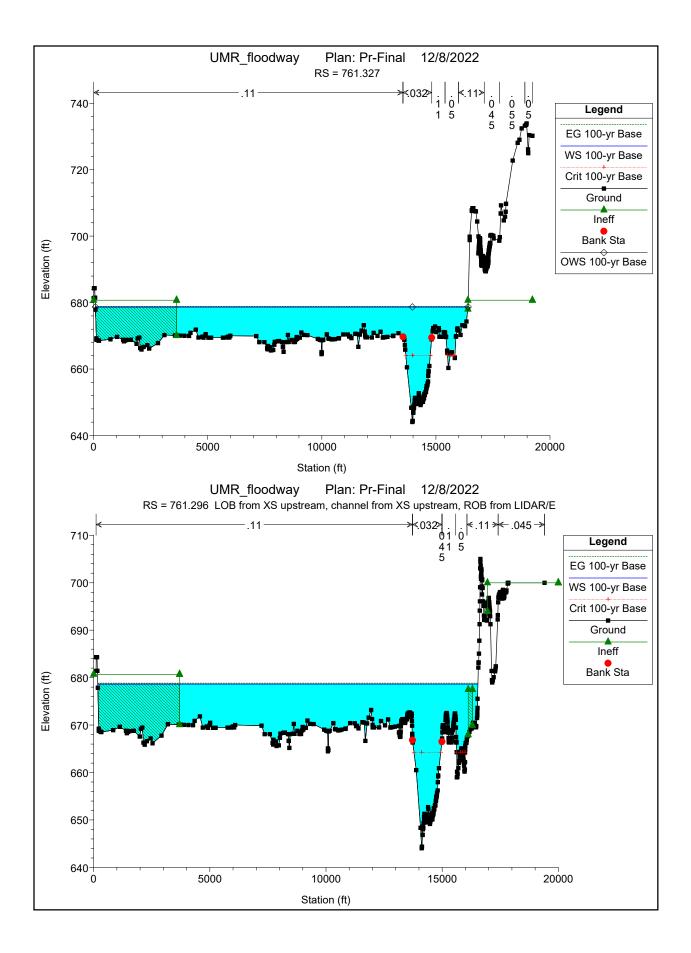


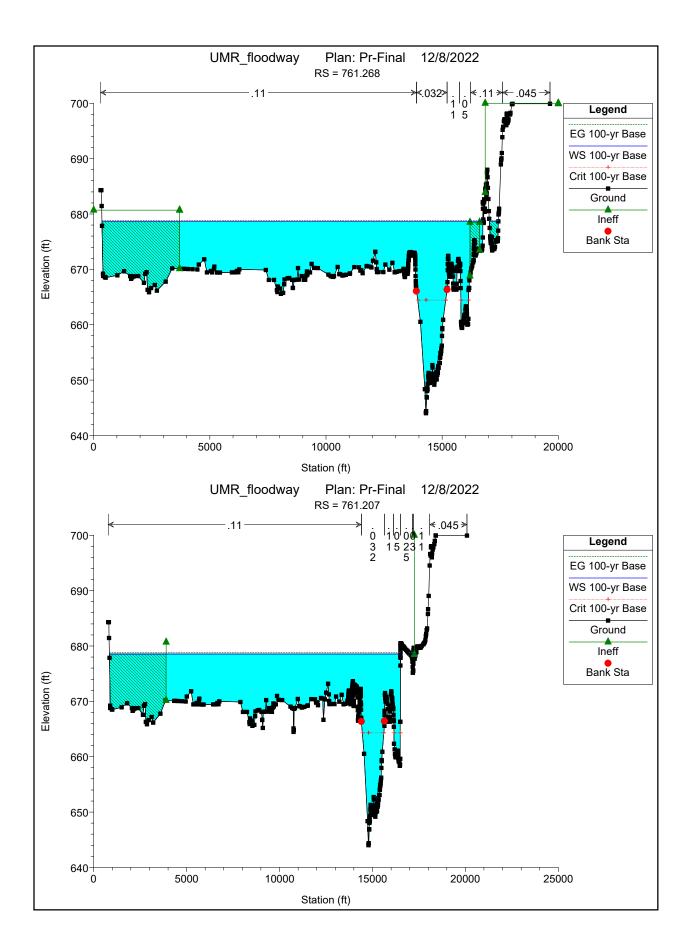


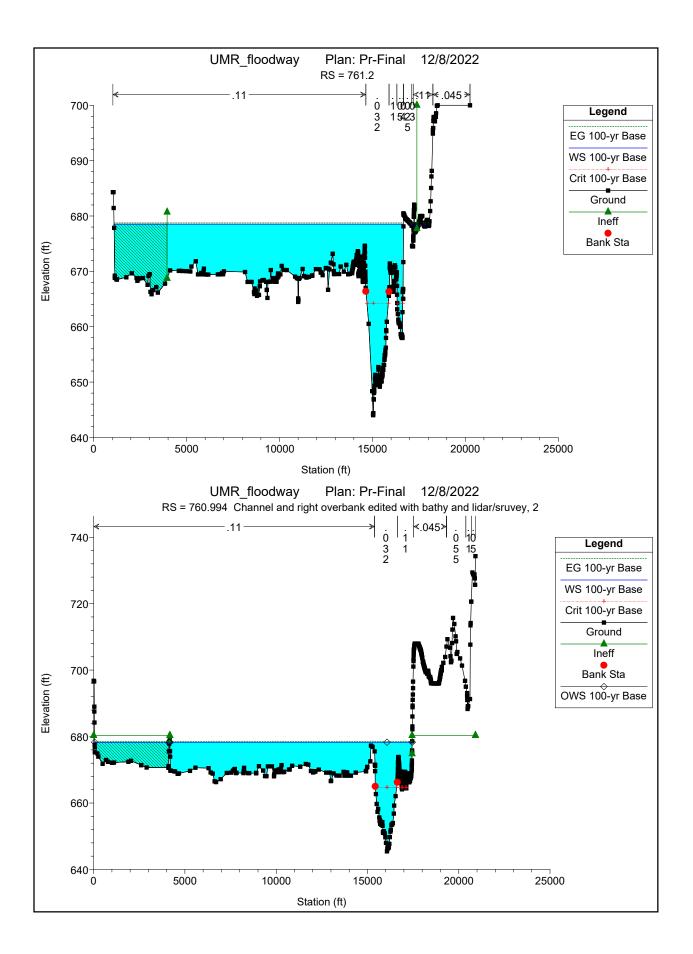


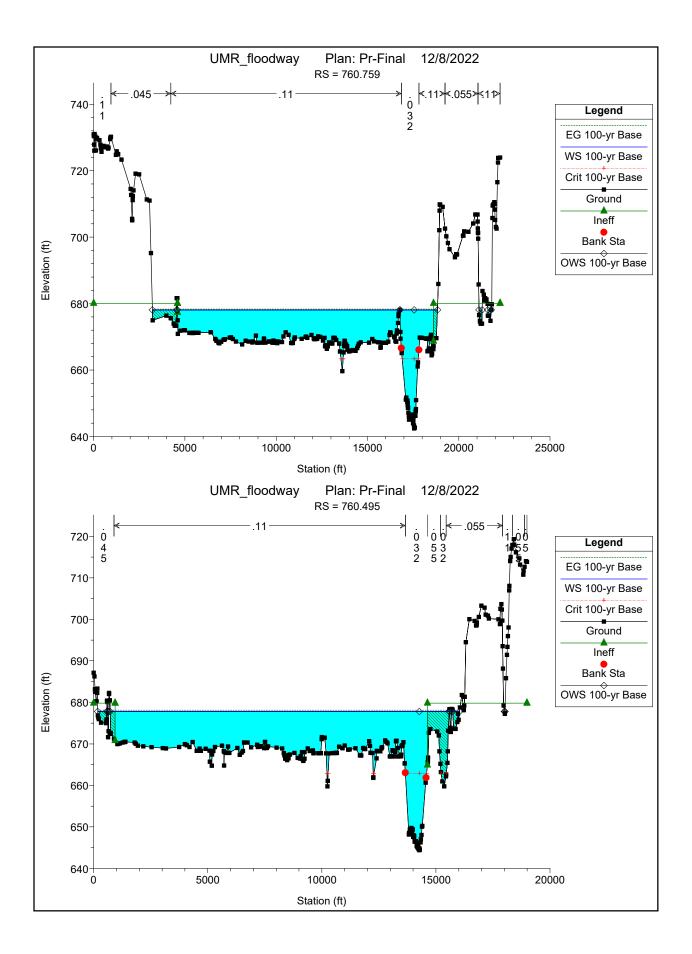


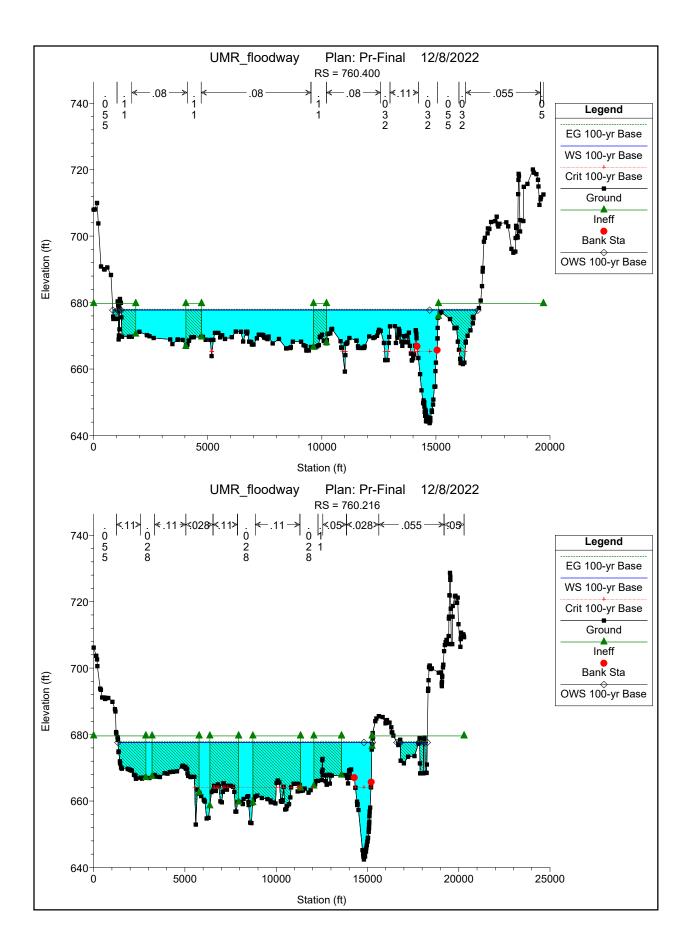


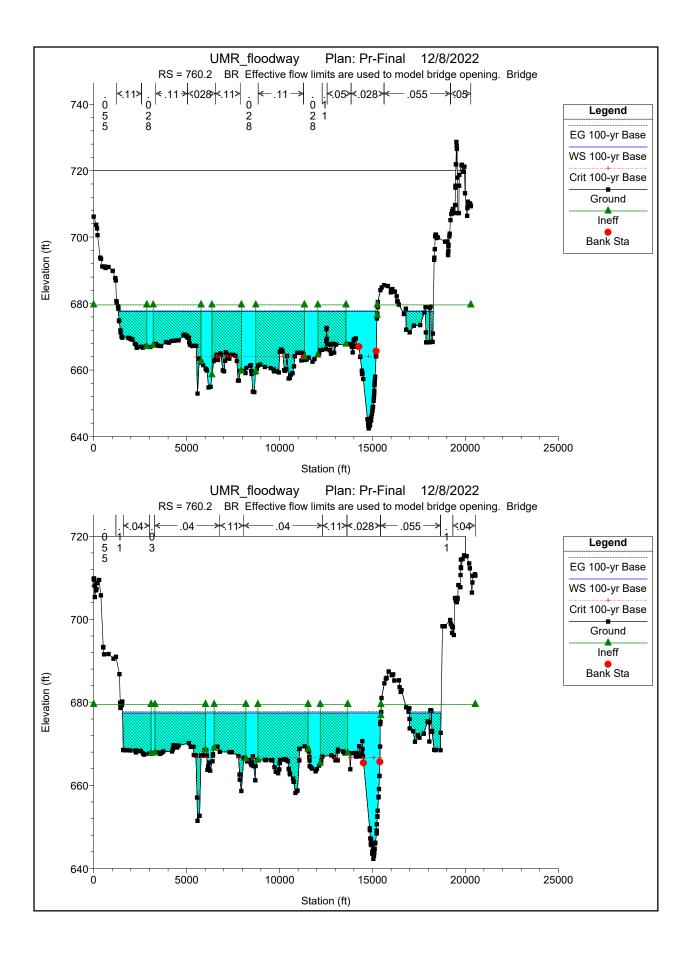




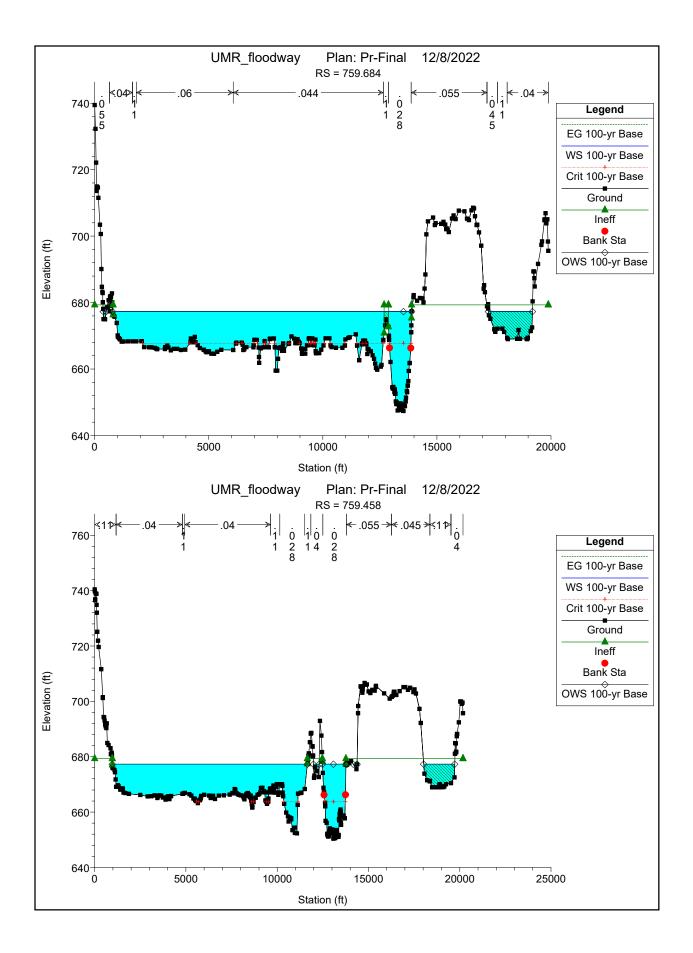


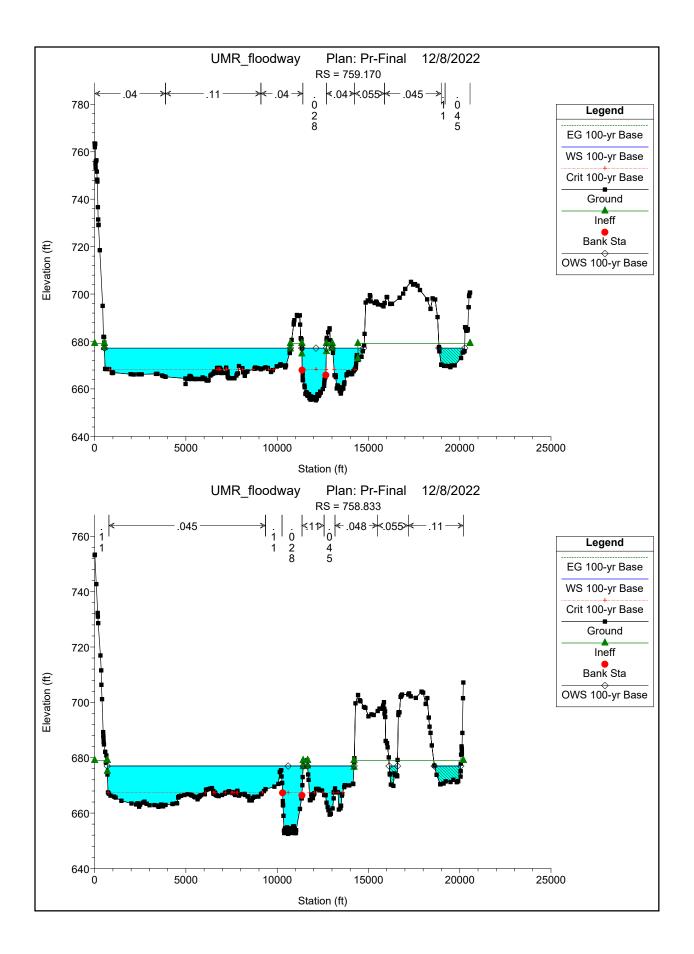


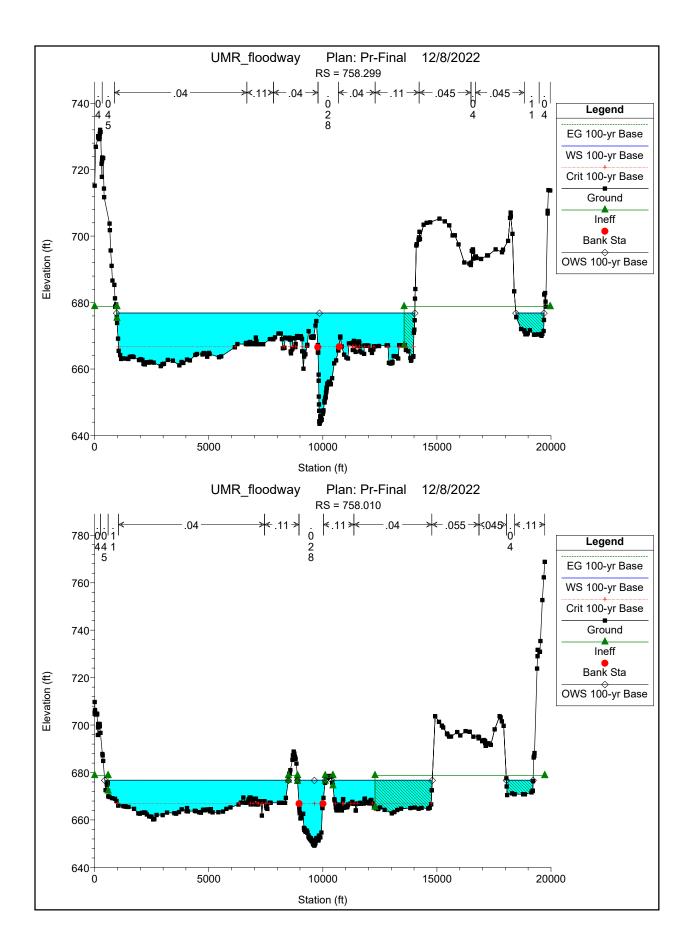


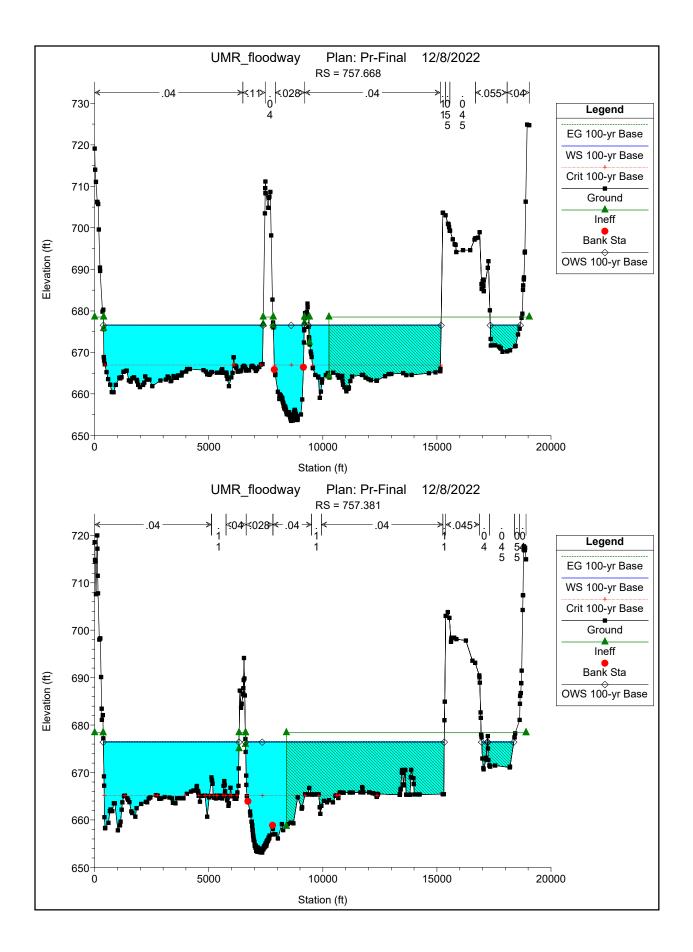


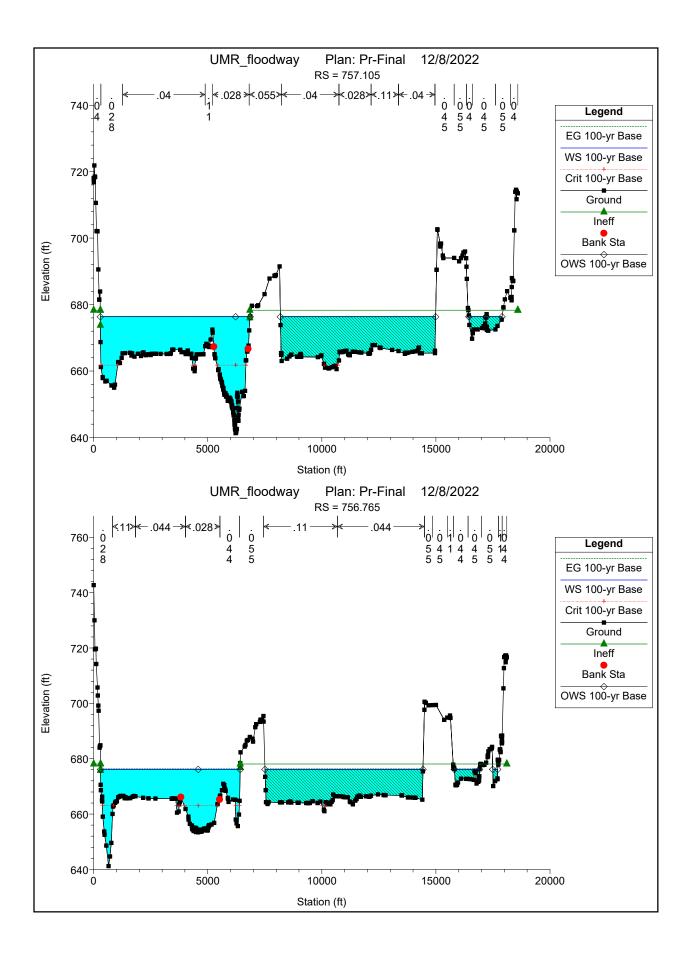


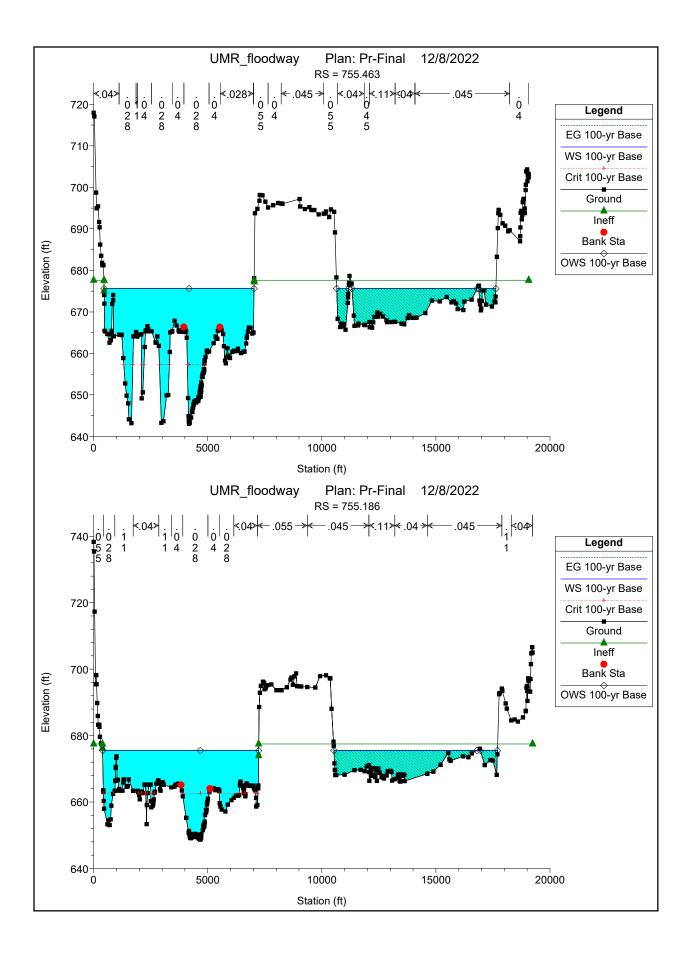


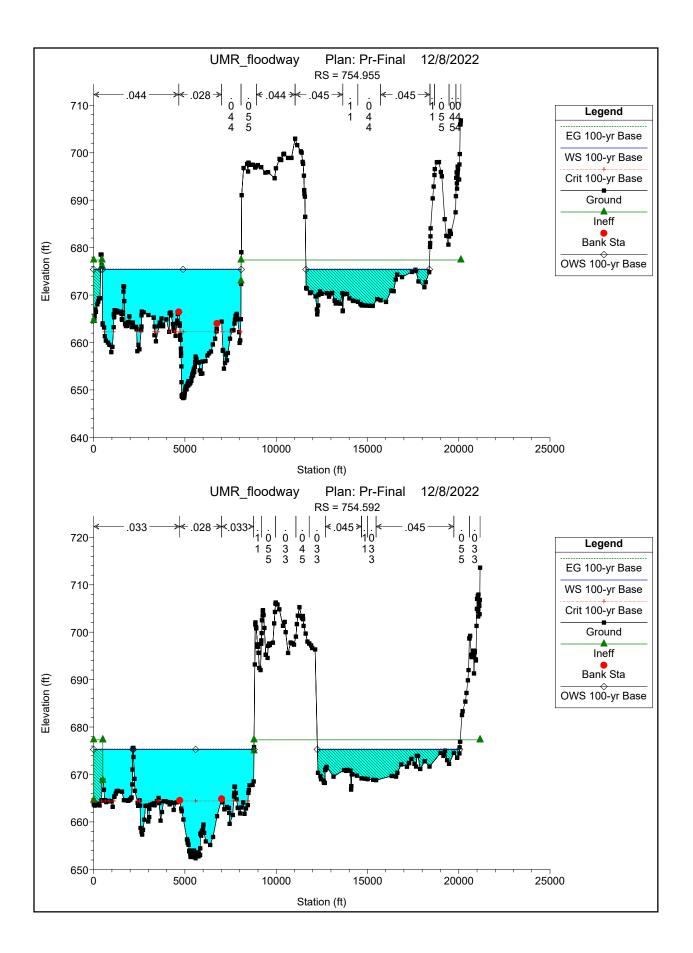


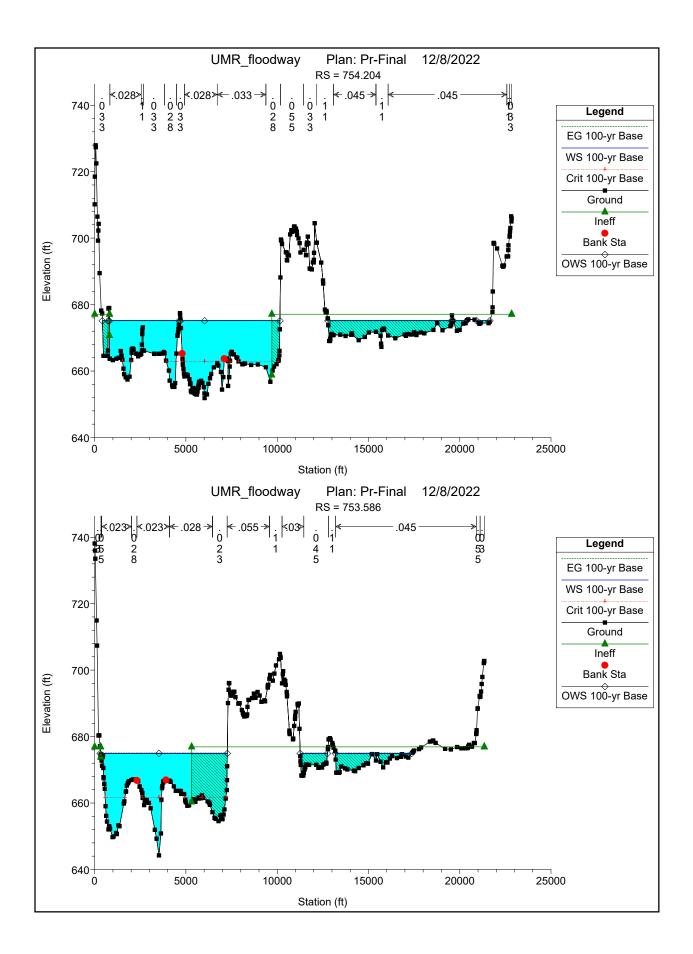


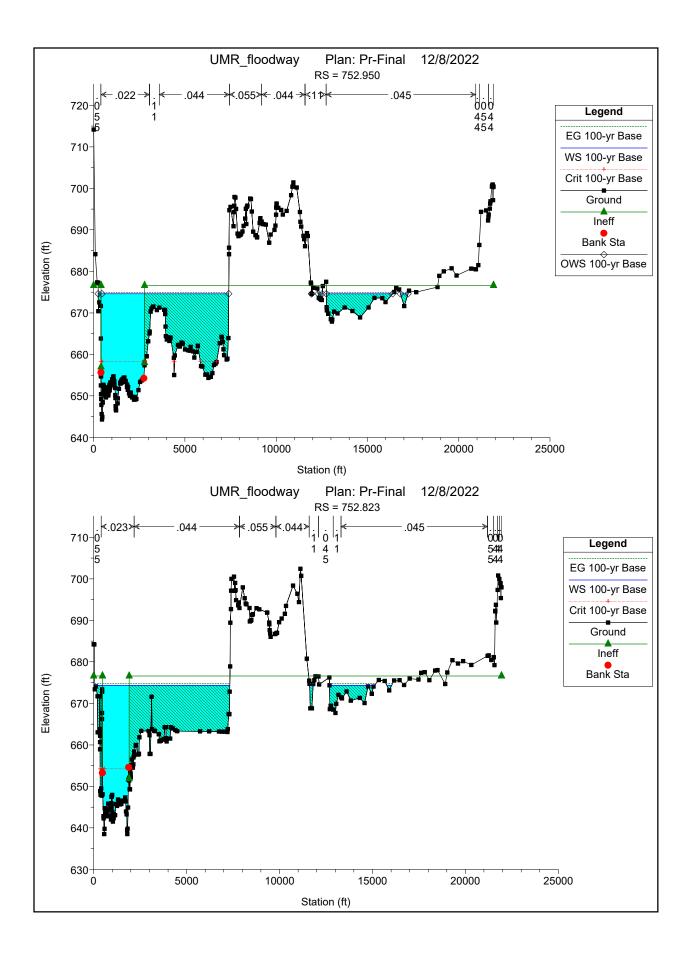


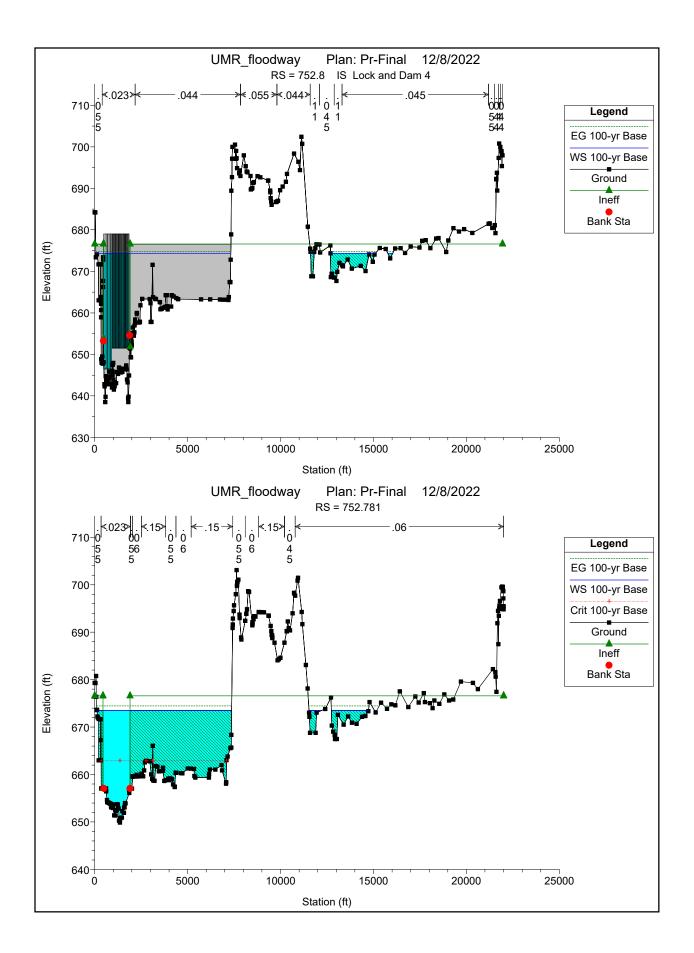


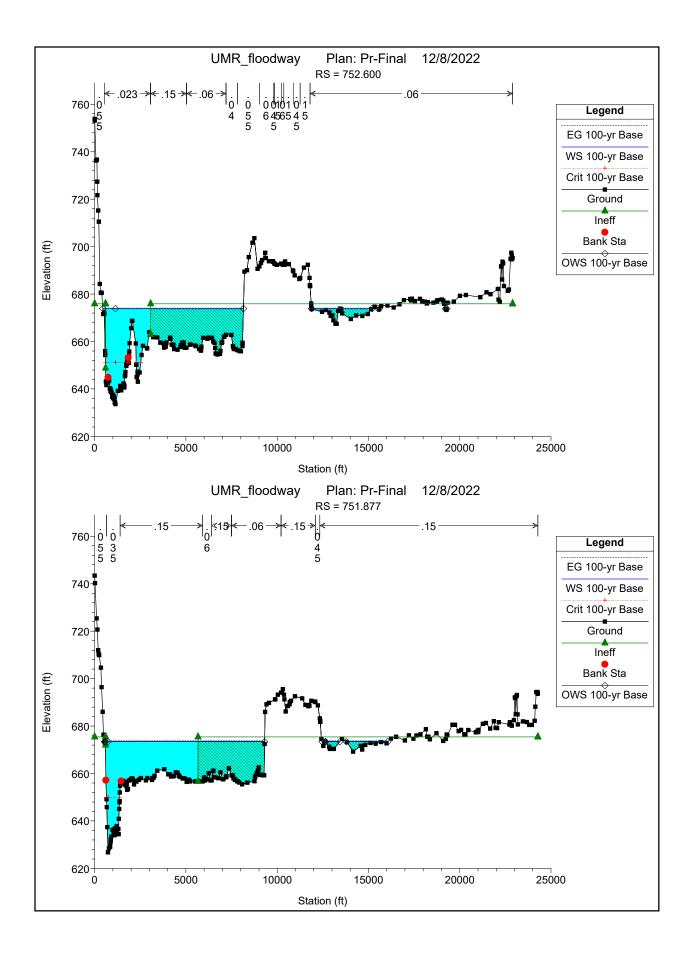


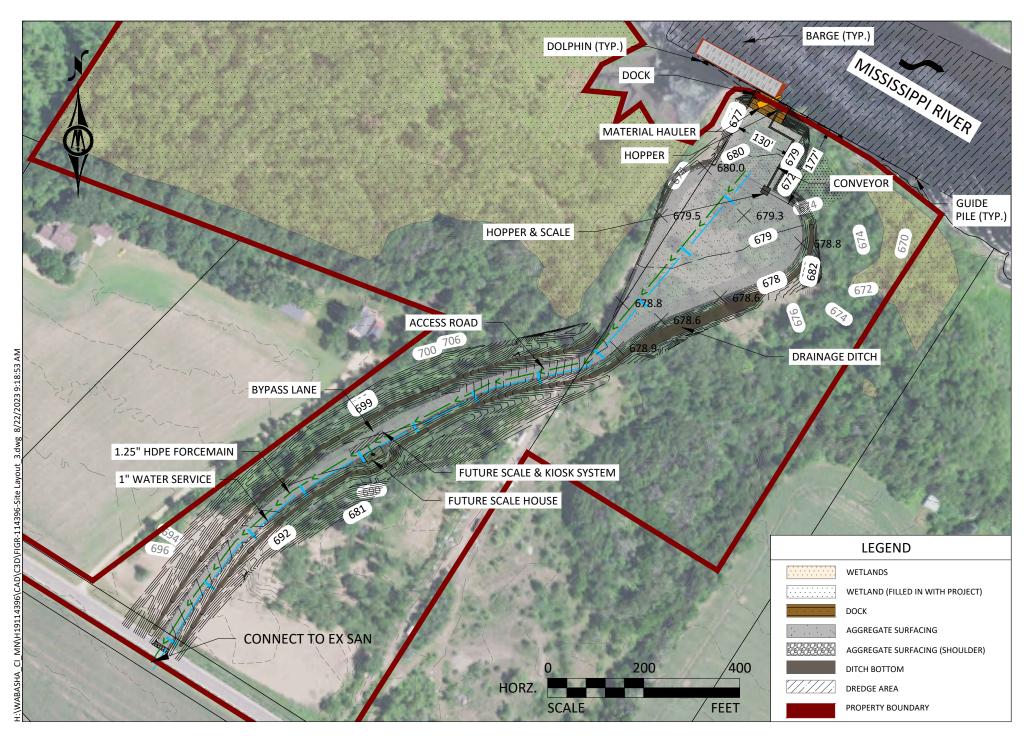












Appendix F: Preliminary Site Layout

USACE Dredge Material Management Plan

City of Wabasha, MN

Appendix G: DVD of Digital Files DIGITAL FILES PENDING FINAL REPORT

APPENDIX D

Wetlands

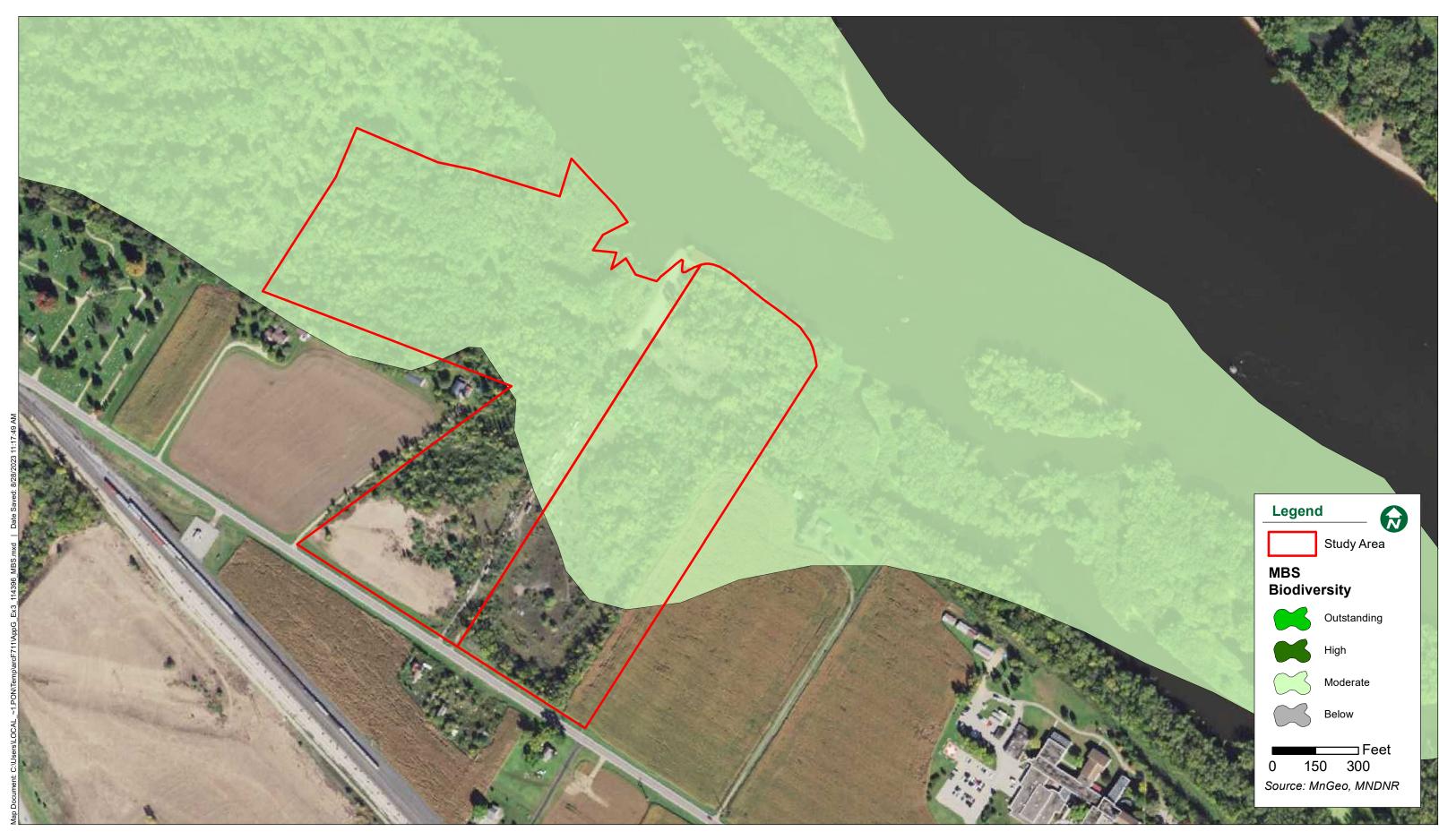
City of Wabasha, MN

Appendix G, Exhitit 1: Approved Wetland Map

August 2023

Real People. Real Solutions.

ABASHA


Appendix G, Exhibit 2: Wetland Impacts Map

Real People. Real Solutions.

City of Wabasha, MN

August 2023

Real People. Real Solutions.

BOARD OF WATER AND SOIL RESOURCES

Minnesota Wetland Conservation Act Notice of Decision

Local Government Unit: Wabasha SWCD County: Wabasha
Applicant Name: Chad Springer Applicant Representative: Brandon Bohks (Bolton & Menk)
Project Name: Khoner Property Wetland Delineation LGU Project No. (if any): 20-4
Date Complete Application Received by LGU: 8/26/2020
Date of LGU Decision: 9/4/2020
Date this Notice was Sent: 9/15/2020
WCA Decision Type - check all that apply
🕼 Wetland Boundary/Type 🛛 Sequencing 🖓 Replacement Plan 🔅 🖓 Bank Plan (not credit purchase)
□ No-Loss (8420.0415) □ Exemption (8420.0420)
Part: A B C D E F G H Subpart: 2 3 4 5 6 7 8 9
Replacement Plan Impacts (replacement plan decisions only)
Total WCA Wetland Impact Area: No impact, delineation only
Wetland Replacement Type: 🛛 Project Specific Credits:
Bank Credits:
Bank Account Number(s):
Technical Evaluation Panel Findings and Recommendations (attach if any)
Approve Approve w/Conditions Deny No TEP Recommendation
LGU Decision
\Box Approved with Conditions (specify below) ¹ \Box Approved ¹ \Box Denied
List Conditions:
Desirion Maker for this Application, A Staff, Coverning Beard/Council C Other:
Decision-Maker for this Application: Staff Governing Board/Council Other:
Decision is valid for: 🗹 5 years (default) 🛛 Other (specify):
¹ <u>Wetland Replacement Plan</u> approval is not valid until BWSR confirms the withdrawal of any required wetland bank credits. For project-
specific replacement a financial assurance per MN Rule 8420.0522, Subp. 9 and evidence that all required forms have been recorded on
the title of the property on which the replacement wetland is located must be provided to the LGU for the approval to be valid.
LGU Findings – Attach document(s) and/or insert narrative providing the basis for the LGU decision ¹ .
Attachment(s) (specify):
☑ Summary:
This plan determination is for the plan orginally known as USACE Dredge Material Management Plan (NOA sent 8/19/2020 ammended and redistributed 9/15/2020). The plan was resubmitted as a delineation concurrence only with no impacts planned at this time. After a TEP discussion 8/20/2020 and site visit 9/4/2020 the TEP agreed with the delineations made.

¹ Findings must consider any TEP recommendations.

Attached Project Documents

Appeals of LGU Decisions

If you wish to <u>appeal</u> this decision, you must provide a written request <u>within 30 calendar days of the date you</u> <u>received the notice</u>. All appeals must be submitted to the Board of Water and Soil Resources Executive Director along with a check payable to BWSR for \$500 *unless* the LGU has adopted a local appeal process as identified below. The check must be sent by mail and the written request to appeal can be submitted by mail or e-mail. The appeal should include a copy of this notice, name and contact information of appellant(s) and their representatives (if applicable), a statement clarifying the intent to appeal and supporting information as to why the decision is in error. Send to:

Appeals & Regulatory Compliance Coordinator Minnesota Board of Water & Soils Resources 520 Lafayette Road North St. Paul, MN 55155 travis.germundson@state.mn.us

Does the LGU have a local appeal process applicable to this decision?

 \Box Yes¹ \checkmark No

¹If yes, all appeals must first be considered via the local appeals process.

Local Appeals Submittal Requirements (LGU must describe how to appeal, submittal requirements, fees, etc. as applicable)

Notice Distribution (include name)

 Required on all notices:

 SWCD TEP Member:
 Terri Peters

 LGU TEP Member (if different than LGU contact):
 Matt Kempinger & Darrin Thompson

 DNR Representative:
 Taylor Huinker

 Watershed District or Watershed Mgmt. Org.:
 Agent/Consultant:

 Brandon Bohks
 Matt Kenter Brandon Bohks

Optional or As Applicable:

Corps of Engineers: David Studenski and Meghan Brown		
BWSR Wetland Mitigation Coordinator (required for bank plan applications only):		
□ Members of the Public (notice only):	□ Other:	

Signature:

Mathew & Kempinger Date:

This notice and accompanying application materials may be sent electronically or by mail. The LGU may opt to send a summary of the application to members of the public upon request per 8420.0255, Subp. 3.

9/15/2020

Real People. Real Solutions.

Type and Boundary Application/Jurisdictional Status Kohner Property Wetland Delineation

Wabasha, Minnesota

July 6, 2020

Submitted by:

Bolton & Menk, Inc. 12224 Nicollet Ave Burnsville, MN 55337 P: 952-890-0509

Table Of Contents

PART ONE: APPLICANT INFORMATION	1
PART TWO: SITE LOCATION INFORMATION	
PART THREE: GENERAL PROJECT/SITE INFORMATION	1
PART FOUR: AQUATIC RESOURCE IMPACT SUMMARY	2
PART FIVE: APPLICANT SIGNATURE	2
ATTACHMENT A	3
ATTACHMENT B	4
ATTACHMENT B	4

Appendix

WETLAND DELINEATION REPORT

PART ONE: Applicant Information

If applicant is an entity (company, government entity, partnership, etc.), an authorized contact person must be identified. If the applicant is using an agent (consultant, lawyer, or other third party) and has authorized them to act on their behalf, the agent's contact information must also be provided.

Applicant/Landowner Name:		vner Name:	Chad Springer City Administrator
Mailing Address: 900 Hiawatha Drive, East PO Box 268 Wabasha, MN 55981			ha Drive, East PO Box 268 Wabasha, MN 55981
Phone: 651-565-4568		5-4568	
E-mail A	ddress:	cityadmin@	wabasha.org

Authorized Contact (do not complete if same as above):					
Mailing Address:					
Phone:					
E-mail Address:					

Agent Na	ame:	Brandon Bohks – Natural Resource Specialist				
Mailing /	Mailing Address: 12224 Nicollet Avenue Burnsville, MN 55337					
Phone: 952-890-0509 ext. 3244						
E-mail Address:		brandon.bohks(@bolton-menk.com			

PART TWO: Site Location Information

County:	County: Wabasha		City/Township:	City of Wabasha	
Parcel ID and/or Address: 27.00004.03 & 27.00005.03					
Legal Des	Legal Description (Section, Township, Range): 30, 111N, 10W				
Lat/Long	Lat/Long (decimal degrees):				
Attach a map showing the location of the site in relation to local streets, roads, highways.					
Approximate size of site (acres) or if a linear project, length (feet): 48.3 acres					

If you know that your proposal will require an individual Permit from the U.S. Army Corps of Engineers, you must provide the names and addresses of all property owners adjacent to the project site. This information may be provided by attaching a list to your application or by using block 25 of the Application for Department of the Army permit which can be obtained at:

http://www.mvp.usace.army.mil/Portals/57/docs/regulatory/RegulatoryDocs/engform 4345 2012oct.pdf

PART THREE: General Project/Site Information

If this application is related to a delineation approval, exemption determination, jurisdictional determination, or other correspondence submitted **prior to** this application then describe that here and provide the Corps of Engineers project number.

N/A

Describe the project that is being proposed, the project purpose and need, and schedule for implementation and completion. The project description must fully describe the nature and scope of the proposed activity including a description of all project elements that effect aquatic resources (wetland, lake, tributary, etc.) and must also include plans and cross section or profile drawings showing the location, character, and dimensions of all proposed activities and aquatic resource impacts.

PART FOUR: Aquatic Resource Impact¹ Summary

If your proposed project involves a direct or indirect impact to an aquatic resource (wetland, lake, tributary, etc.) identify each impact in the table below. Include all anticipated impacts, including those expected to be temporary. Attach an overhead view map, aerial photo, and/or drawing showing all of the aquatic resources in the project area and the location(s) of the proposed impacts. Label each aquatic resource on the map with a reference number or letter and identify the impacts in the following table.

Aquatic Resource ID (as noted on overhead view)	Aquatic Resource Type (wetland, lake, tributary etc.)	drain.or	Impact	Size of Impact ²	Overall Size of Aquatic Resource ³	Community Type(s) in	County, Major Watershed #, and Bank Service Area # of Impact Area ⁵
	7						

¹If impacts are temporary; enter the duration of the impacts in days next to the "T". For example, a project with a temporary access fill that would be removed after 220 days would be entered "T (220)".

. 8, otherwise enter "N/A".

Check here if you are requesting a <u>pre-application</u> consultation with the Corps and LGU based on the information you have provided. Regulatory entities will not initiate a formal application review if this box is checked.

By signature below, I attest that the information in this application is complete and accurate. I further attest that I possess the authority to undertake the work described herein.

Date: Signature:

I hereby authorize **Bolton & Menk, Inc.** to act on my behalf as my agent in the processing of this application and to furnish, upon request, supplemental information in support of this application.

¹ The term "impact" as used in this joint application form is a generic term used for disclosure purposes to identify

Attachment A

Request for Delineation Review, Wetland Type Determination, or Jurisdictional Determination

By submission of the enclosed wetland delineation report, I am requesting that the U.S. Army Corps of Engineers, St. Paul District (Corps) and/or the Wetland Conservation Act Local Government Unit (LGU) provide me with the following (check all that apply):

Wetland Type Confirmation

Delineation Concurrence. Concurrence with a delineation is a written notification from the Corps and a decision from the LGU concurring, not concurring, or commenting on the boundaries of the aquatic resources delineated on the property. Delineation concurrences are generally valid for five years unless site conditions change. Under this request alone, the Corps will not address the jurisdictional status of the aquatic resources on the property, only the boundaries of the resources within the review area (including wetlands, tributaries, lakes, etc.).

Preliminary Jurisdictional Determination. A preliminary jurisdictional determination (PJD) is a non-binding written indication from the Corps that waters, including wetlands, identified on a parcel may be waters of the United States. For purposes of computation of impacts and compensatory mitigation requirements, a permit decision made on the basis of a PJD will treat all waters and wetlands in the review area as if they are jurisdictional waters of the U.S. PJDs are advisory in nature and may not be appealed.

Approved Jurisdictional Determination. An approved jurisdictional determination (AJD) is an official Corps determination that jurisdictional waters of the United States are either present or absent on the property. AJDs can generally be relied upon by the affected party for five years. An AJD may be appealed through the Corps administrative appeal process.

In order for the Corps and LGU to process your request, the wetland delineation must be prepared in accordance with the 1987 Corps of Engineers Wetland Delineation Manual, any approved Regional Supplements to the 1987 Manual, and the *Guidelines for Submitting Wetland Delineations in Minnesota* (2013).

http://www.mvp.usace.army.mil/Missions/Regulatory/DelineationJDGuidance.aspx

Attachment B

Supporting Information for Applications Involving Exemptions, No Loss Determinations, and Activities Not Requiring Mitigation

Complete this part **if** you maintain that the identified aquatic resource impacts in Part Four do not require wetland replacement/compensatory mitigation OR **if** you are seeking verification that the proposed water resource impacts are either exempt from replacement or are not under CWA/WCA jurisdiction.

Identify the specific exemption or no-loss provision for which you believe your project or site qualifies:

Provide a detailed explanation of how your project or site qualifies for the above. Be specific and provide and refer to attachments and exhibits that support your contention. Applicants should refer to rules (e.g. WCA rules), guidance documents (e.g. BWSR guidance, Corps guidance letters/public notices), and permit conditions (e.g. Corps General Permit conditions) to determine the necessary information to support the application. Applicants are strongly encouraged to contact the WCA LGU and Corps Project Manager prior to submitting an application if they are unsure of what type of information to provide:

Appendix

Real People. Real Solutions.

Wetland Delineation Report Kohner Property Wetland Delineation

Wabasha, Minnesota

July 6, 2020

Submitted by:

Bolton & Menk, Inc. 12224 Nicollet Avenue Burnsville, MN 55337 P: 952-890-0509

Table of Contents

I.	INTRODUCTION	1
١١.	WETLAND DELINEATION METHODOLOGY	1
III.	BACKGROUND INFORMATION	2
IV.	CLIMATE DATA	3
	FINDINGS	
	CONCLUSION	

Tables

WETLAND SUMMARY	 5

Exhibits

MONTHLY TEMPERATURE RANGE	. 3
ANTECEDENT PRECIPITATION CONDITIONS	. 3

Appendix

Exhibit A: Site Location Map Exhibit B: Site Topography – 2 Foot LiDAR Contours Exhibit C: National Wetlands Inventory Exhibit D: Public Waters Inventory Exhibit E: Wabasha County Soil Survey Exhibit F: Delineated Aquatic Resources Exhibit G: Delineation Data Sheets Exhibit H: Off-Site Hydrology Assessment

I. INTRODUCTION

The City of Wabasha requested a wetland delineation on two parcels (27.00004.00 & 27.00005.03) owned by the Kohner Sand & Gravel Company. The delineation was conducted to determine the limits of all aquatic resources within the study parcels.

The sites are considered significantly disturbed due to a large sand mining operation that began in the 1930s and was in service for many decades to come. The undisturbed landcover is dominated by deciduous floodplain forest. It is apparent that the aquatic resources with this study corridor have been heavily influenced, if not created by excavation.

The project is found in Section 19 in Township 109 North of Range 9 West.

II. WETLAND DELINEATION METHODOLOGY

The wetland boundaries were delineated and staked in the field on June 18, 2020 and June 25, 2020, using methods described in the "Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Midwest Region (Version 2.0)". Wetlands identified were classified using "Classification of Wetlands and Deepwater Habitats of the United States (Cowardin, et al., 1979)", "Wetlands of the United States (United States Fish and Wildlife Service Circular No. 39, 1971 edition)" and "Wetland Plants and Plant Communities of Minnesota and Wisconsin" (Eggers and Reed Third Edition). Subsequently, the three mandatory technical criteria for wetland determinations are as follows:

Hydrophytic Vegetation. A hydrophytic plant community is present when the dominant plant species present can endure prolonged inundation and/or soil saturation during the growing season. A plant's Wetland Indicator Status is determined using the 2016 National Wetland Plant List for Minnesota, published by the Army Corp of Engineers.

Hydric Soils. A hydric soil is defined as a soil that is formed under conditions of saturation, flooding or ponding long enough during the growing season (the portion of the year when there is above ground growth and development of vascular plants and/or soil temperature at 12 inches below the soil surface is above 41 degrees Fahrenheit or higher) to develop anaerobic conditions in the upper part.

Wetland Hydrology. An area has wetland hydrology if it experiences 14 or more consecutive days of flooding, ponding or a water table within 12 inches of the surface during the growing season at a minimum frequency of five out of ten years. This is determined by using both primary and secondary Wetland Hydrology indicators.

III. BACKGROUND INFORMATION

Prior to conducting a field investigation of this site, Exhibits A through E were used to complete a preliminary evaluation. The data gathered during the preliminary investigation was used as described below:

Exhibit A is a location map of the study area.

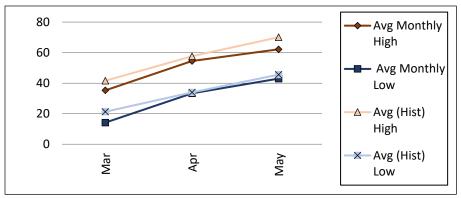
Exhibits B is an aerial photo with topographic information overlaid on it. This provides information regarding topography of the site, helping to identify areas that may have wetland characteristics.

Exhibit C is the National Wetlands Inventory of the site and surrounding properties. This information is used to complete a preliminary investigation of the wetlands that may or may not exist on the site.

Exhibit D is used to identify waters that are regulated by the DNR. This exhibit shows where there are DNR public waters relative to the site.

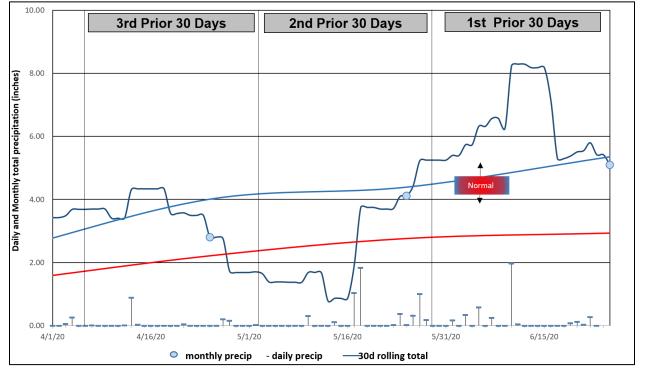
Exhibit E is the Wabasha County Soil Survey and is used to identify hydric soils that may lie within the study area.

Exhibit F is the site map showing the delineated aquatic resources.


Exhibit G includes the wetland delineation data sheets.

Exhibits F and G were prepared from the information gathered at the site.

Exhibit H is the Off-Site Hydrology Assessment.


IV. CLIMATE DATA

The monthly temperature table below shows the average high and low temperatures for the three months prior to the field delineation, along with the historical averages for these months. The average monthly highs were well below the historical averages, while the average monthly lows have also been below the historic averages over the past three months.

MONTHLY TEMPERATURE RANGE

Antecedent precipitation was evaluated using a combination of the NRCS Method and the Rolling Totals Method. The analysis found that precipitation totals were above at the time of the delineation.

ANTECEDENT PRECIPITATION CONDITIONS

This climatic data was gathered using the Climatology Working Group Website, <u>http://climate.umn.edu/</u> and the National Weather Service Forecast Office, <u>http://w2.weather.gov/climate/</u>. The information for the investigation was retrieved from the WETS Station: Wabasha–Minneiska-Weaver (County–City-Township).

V. FINDINGS

On June 18 and 25, of 2020, a field investigation was performed to evaluate and verify the existence and boundary of any aquatic resources located within the proposed study corridor. The field investigation found that a total of four wetlands were found to exist within the study corridor. The following describes the aquatic resources identified, together with a brief description of wetland types and observations made during the field investigation.

Along with a field investigation, an off-site hydrology assessment was performed to identify locations within agricultural field that may possess wetland signatures. Eight years of aerial imagery was reviewed, of which five years were considered to have normal precipitation. Only one site was identified and reviewed. According to the off-site hydrology decision matrix, the site was not considered wetland.

Wetland 1 (W1): NWI Cowardin: PFO1Cx PWI (Hydro) ID: None Field Observation Circular 39: Type 1 Field Observation Eggers and Reed: Seasonally Flooded Basin Soil Mapping Unit(s): Kalmarville complex, frequently flooded

Wetland 1 is located along the northern boundary of the study area, close to the bank of the Mississippi River. Wetland 1 appears to have been excavated while sand mining operations took place beginning in the 1930s.

The field investigation found that W1 has met all three wetland indicators and should be considered a palustrine forested broad-leaved deciduous seasonally flooded excavated (PFO1Cx) wetland. One transect and several sample points were taken to determine the wetland boundary. Soils, hydrology and topography aided in determining the wetland boundary.

At the wetland pit location, the plant community is dominated by American elm, box elder, buckthorn, and jewel weed. At the upland pit location, the plant community is dominated by buckthorn, creeping jenny, and poison ivy. Both plant communities are considered hydrophytic.

Soils at the wetland pit location were dug to a depth of 12-inches and met hydric soil indicator A11 – Depleted Below Dark Surface. Soils at the upland pit location were dug to a depth of 12-inches and failed to meet any of the hydric soil indicators.

Wetland 1

Soils at the wetland pit location were saturated within 10-inches of the soil surface. Soils at the wetland pit location also met primary wetland indicators B8 – Sparsely Vegetated Concave Surface and B9 – Water Stained Leaves. Secondary hydrology indicators D2 – Geomorphic Position and D5 – FAC Neutral Test were also present. Soils at the upland pit location only met secondary hydrology indicator D5, therefore failing to meet wetland hydrology criteria.

The determining factor for this delineation was the lack of hydric soils and wetland hydrology at the upland pit location. The boundary was determined by following the topographic breaks.

Wetland 2 (W2): NWI Cowardin: PFO1C PWI (Hydro) ID: None Field Observation Circular 39: Type 1 Field Observation Eggers and Reed: Seasonally Flooded Wetland Soil Mapping Unit(s): Kalmarville complex, frequently flooded

Wetland 2 is a large floodplain wetland that begins along the northeast corner of the study area and extends to the southeast. Although there was no surface water present at the time of the site visit, several other primary wetland indicators were identified.

The field investigation found that W2 has met all three wetland indicators and should be considered a PFO1C. One transect and several sample points were taken to determine the wetland boundary. Soils, hydrology and topography aided in determining the wetland boundary.

At the wetland pit locations, the plant community is dominated by silver maple and buckthorn. At the upland pit location, the plant community is dominated by buckthorn, prickly ash, white vervain. Both plant communities are considered hydrophytic.

Soils at wetland pit location were dug to a depth of 12-inches and met hydric soil indicator A11. Soils at the upland pit location were dug to 13inches and failed to meet any of the hydric soil indicators.

Soils at the wetland pit location were not saturated. Soils at the wetland pit location did meet primary hydrology indicators B3 – Drift Deposits and B9. Soils at the wetland pit location also met secondary hydrology indicators D2 and D5. Soils at the upland pit location were not saturated and failed to meet any secondary hydrology indicators, therefore failing to meet wetland hydrology criteria.

The determining factor for this delineation was the lack of hydric soils and wetland hydrology at the upland pit locations. The boundary was determined by following the topographic breaks.

Wetland 3 (W3): NWI Cowardin: PEM1C/PSS1C PWI (Hydro) ID: 52296 Field Observation Circular 39: Type 1 Field Observation Eggers and Reed: Seasonally Flooded Wetland Soil Mapping Unit(s): Kalmarville complex, frequently flooded

Wetland 3 makes up a large floodplain wetland complex beginning in the northcentral portion of the study area and extending to the northwest. Wetland 3 appears to be a very active floodplain and is fed by a channel inlet. Although there was no surface water present at the time of the site visit, several other primary wetland indicators were identified.

The field investigation found that wetland W3 has met all three wetland indicators and should be considered a PFO1C wetland. One transects and several sample points were taken to determine the wetland boundary. Soils, hydrology and topography aided in determining the wetland boundary.

At the wetland pit location, the plant communities are dominated silver maple, white vervain, and clear weed. At the upland pit location, the plant communities are dominated by green ash, buckthorn, and wood nettle. Both plant communities are considered hydrophytic.

Soils at wetland pit location were dug to a depth of 15-inches and met hydric soil indicator A11. Soils at the upland pit location were dug to 18-inches and failed to meet any of the hydric soil indicators.

Soils at the wetland pit location were saturated within 7-inches of the soil surface, with the water table present at 10-inches. Soils at the wetland pit location also met primary wetland indicators B3, B4 – Algal Mat or Crust, and B9. Secondary hydrology indicator D5 was also present. Soils at the upland pit location only met secondary hydrology indicator D5, therefore failing to meet wetland hydrology criteria.

Wetland 2

Wetland 3

The determining factor for this delineation was the lack of hydric soils and wetland hydrology at the upland pit location. The boundary was determined by following the topographic breaks.

Wetland 4 (W4):

NWI Cowardin: None PWI (Hydro) ID: None Field Observation Circular 39: Type 1 Field Observation Eggers and Reed: Seasonally Flooded Wetland Soil Mapping Unit(s): Pits, gravel-Udispsammetents

Wetland 4 is a small basin/depression located close to the southeastern boarder of the study area. It appears W4 was created as the result of sand mining activity which began in the 1930s.

The field investigation found that wetland (W4) has met all three wetland indicators and should be considered a PFO1A. One transect and several sample points were taken to determine the wetland boundary. Soils, hydrology and topography aided in determining the wetland boundary.

At the wetland pit location, the plant community is dominated by bebb's willow and green ash. At the upland pit location, the plant community is dominated by cottonwood, buckthorn, and creeping jenny. Both plant communities are considered hydrophytic.

Soils at the wetland pit location were dug to a depth of 14-inches and met hydric soil indicator A11. Soils at the upland pit location were dug to a depth of 16-inches and failed to meet any of the hydric soil indicators.

Soils at the wetland pit location were saturated within 7-inches of the soil surface, with the water table present at 11-inches. Soils at the wetland pit location also met primary wetland indicators B8, B8 and B9. Secondary hydrology indicators D2 and D5 were also present. Soils at the upland pit location only met secondary hydrology indicator D5, therefore failing to meet wetland hydrology criteria.

The determining factor for this delineation was the hydric soils and wetland hydrology indicators at the upland pit location. The boundary was determined by following the topographic breaks.

Sample Point (SP-1):

NWI Cowardin: None PWI (Hydro) ID: None Field Observation Circular 39: Upland Field Observation Eggers and Reed: Upland Soil Mapping Unit(s): Pits, gravel-Udispsammetents

Sample point 1 (SP-1) was taken to investigate the presence of potential wetland indicators. Vegetation at the sample pit location is dominated by American elm, buckthorn, and jewel weed, therefore hydrophytic vegetation is considered present. Soils at SP-1 were dug to a depth of 5-inches before a restrictive layer was observed. Hydric soils were not encountered within the upper 5-inches. Soils at SP-1 did meet secondary wetland hydrology indicator D2 and D5. The determining factor for this investigation was the lack of hydric soils at the sample pit location, therefore this area is considered upland.

Sample Point (SP-2):

NWI Cowardin: None PWI (Hydro) ID: None Field Observation Circular 39: Upland Field Observation Eggers and Reed: Upland Soil Mapping Unit(s): Pits, gravel-Udispsammetents

Sample point 2 (SP-2 was taken to investigate the presence of potential wetland indicators. Vegetation at the sample pit location is dominated by Siberian elm and switch grass, therefore hydrophytic vegetation is considered absent. Soils at SP-2 were dug to a depth of 3-inches before a

Prepared by: Bolton & Menk, Inc. Kohner Property Wetland Delineation | H19.114396 restrictive layer was observed. Hydric soils were not encountered within the upper 3-inches. Soils at SP-2 only met secondary wetland hydrology indicator D2. The determining factor for this investigation was the lack of all three wetland indicators at the sample pit location, therefore this area is considered upland.

Sample Point (SP-3):

NWI Cowardin: None PWI (Hydro) ID: None Field Observation Circular 39: Upland Field Observation Eggers and Reed: Upland Soil Mapping Unit(s): Pits, gravel-Udispsammetents

Sample point 3 (SP-3) was taken to investigate the presence of potential wetland indicators. Vegetation at the sample pit location is dominated by cottonwood, green ash, American germander, and Canada thistle, therefore hydrophytic vegetation is considered present. Soils at SP-3 were dug to a depth of 15-inches and failed to meet any hydric soil indicators. Soils at SP-3 only met secondary wetland hydrology indicator D5. The determining factor for this investigation was the lack of hydric soils and wetland hydrology at the sample pit location, therefore this area is considered upland.

Sample Point (SP-4):

NWI Cowardin: None PWI (Hydro) ID: None Field Observation Circular 39: Upland Field Observation Eggers and Reed: Upland Soil Mapping Unit(s): Pits, gravel-Udispsammetents

Sample point 4 (SP-4) was taken to investigate the presence of potential wetland indicators. Vegetation at the sample pit location is dominated by American elm, green ash, buckthorn, and poison ivy, therefore hydrophytic vegetation is considered present. Soils at SP-4 were dug to a depth of 4-inches before a restrictive layer was observed. Hydric soils were not encountered within the upper 4-inches. Soils at SP-4 did meet secondary wetland hydrology indicators D2 and D5. The determining factor for this investigation was the lack of hydric soils at the sample pit location, therefore this area is considered upland.

Sample Point (SP-5):

NWI Cowardin: None PWI (Hydro) ID: None Field Observation Circular 39: Upland Field Observation Eggers and Reed: Upland Soil Mapping Unit(s): Pits, gravel-Udispsammetents

Sample point 5 (SP-5) was taken to investigate the presence of potential wetland indicators. Vegetation at the sample pit location is dominated by pin oak, buckthorn, green ash, and Virginia creeper, therefore hydrophytic vegetation is considered present. Soils at SP-5 were dug to a depth of 14-inches and failed to meet any hydric soil indicators. Soils at SP-5 did meet secondary wetland hydrology indicators D2 and D5. The determining factor for this investigation was the lack of hydric soils at the sample pit location, therefore this area is considered upland.

Sample Point (SP-6):

NWI Cowardin: None PWI (Hydro) ID: None Field Observation Circular 39: Upland Field Observation Eggers and Reed: Upland Soil Mapping Unit(s): Pits, gravel-Udispsammetents

Sample point 6 (SP-6) was taken to investigate the presence of potential wetland indicators.

Vegetation at the sample pit location is dominated by black walnut, prickly ash, black snakeroot, and wood nettle, therefore hydrophytic vegetation is considered absent. Soils at SP-6 were dug to a depth of 17-inches and failed to meet any hydric soil indicators. Soils at SP-6 only met secondary wetland hydrology indicators D2. The determining factor for this investigation was the lack of all three wetland indicators at the sample pit location, therefore this area is considered upland.

Sample Point (SP-7): NWI Cowardin: None PWI (Hydro) ID: None Field Observation Circular 39: Upland Field Observation Eggers and Reed: Upland Soil Mapping Unit(s): Pits, gravel-Udispsammetents

Sample point 7 (SP-7) was taken to investigate the presence of potential wetland indicators. Vegetation at the sample pit location is dominated by box elder, green ash, cottonwood, buckthorn, wood nettle and jumpseed, therefore hydrophytic vegetation is considered present. Soils at SP-7 were dug to a depth of 20-inches and failed to meet any hydric soil indicators. Soils at SP-7 did meet secondary wetland hydrology indicators D2 and D5. The determining factor for this investigation was the lack of hydric soils at the sample pit location, therefore this area is considered upland.

VI. CONCLUSION

This delineation was performed on June 18, 2020 and June 25, 2020. The boundaries of the wetlands were staked in the field with three foot "Wetland Delineation" pin flags. The location of the pin flags were surveyed by Bolton & Menk, Inc. using a Trimble Geo-XH GPS Data Collector and tied to the Wabasha County coordinate system. The delineated limits are believed to be the upper limits of where all three of the required wetland criteria were present.

Bolton & Menk, Inc., was asked to determine the boundaries of those jurisdictional wetlands that exist upon this property as defined by the Wetland Conservation Act.

Based upon all available information, the existing conditions that currently prevail, and the on-site investigation, evidence supports the presence of four wetlands within the boundaries of the study corridor.

Id #	Wetland Type^	Size*		
W1	Type 1	0.40 ac		
W2	Type 1	0.92 ac		
W3	Type 1	14.8 ac		
W4	Type 1	0.02 ac		

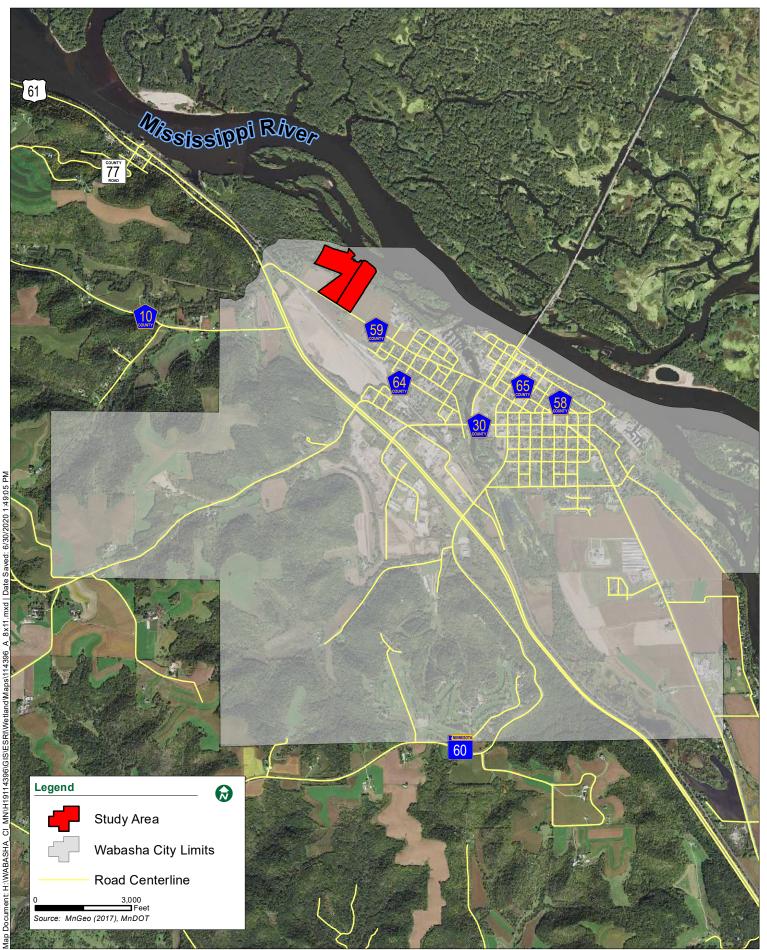
WETLAND SUMMARY

**size measured within study area. ^wetland type within study area*

Sincerely, BOLTON & MENK, INC.

Brandon Bohks Certified Wetland Delineator, No. 1341

APPENDIX


Kohner Property Wetland Delineation

July 2020

Exhibit A: Location Map



WABASHA

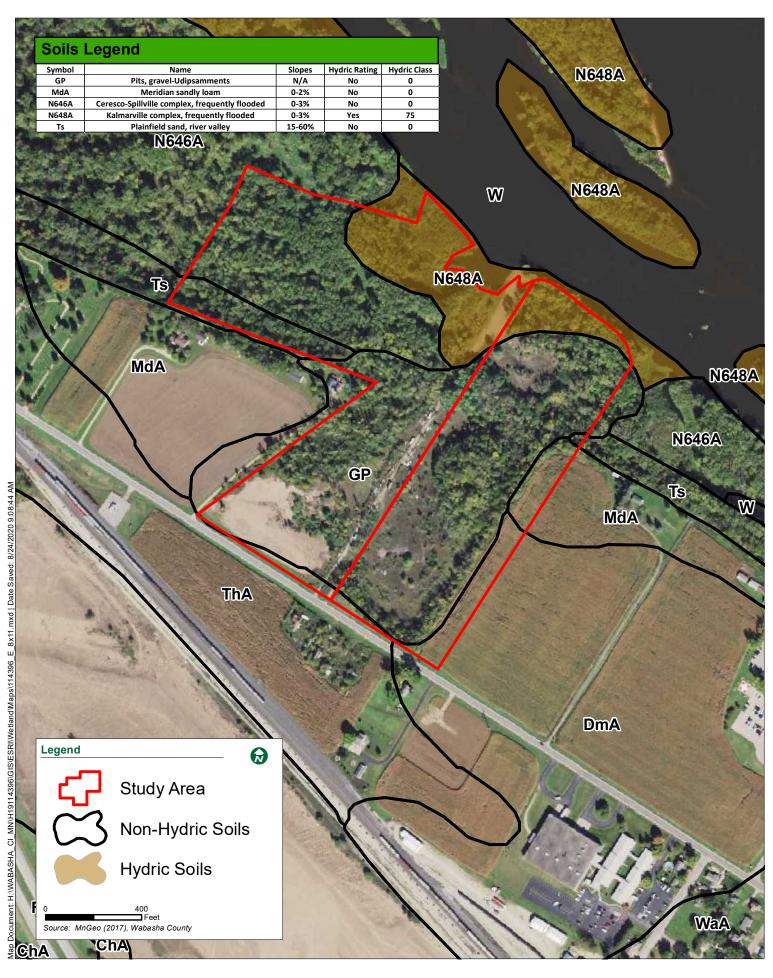
Kohner Propety Wetland Delineation July 2020

Kohner Property Wetland Delineation

July 2020

Kohner Property Wetland Delineation July 2020

WABASHA



WABASHA

Real People. Real Solutions.

WABASHA

Real People. Real Solutions.

Real People. Real Solutions.	((Midwest Region)			
Project/Site: Kohner Property Wetland Delineation		City/County: Waba	sha County	S	ampling Date: 6/18/2020
Applicant/Owner: City of Wabasha		State	: MN		Sample Point: W1-A
Investigator(s): Brandon Bohks		Section, Town	ship, Range: 30), 111N, 10W	
Landforms (hillside, terrace, etc.): Toeslope/Depression		Local Relief (concave, conve	x, none): Concave	
Slope (%): 0-2 Latitude:		Longitude:		Datum:	
Soil Map Unit Name: Kalmarville complex, frequently floo	ded	NWI Classi	fication: PFO1	Cx	
Are climatic/hydrologic conditions of the site typical for this t		r?	(If no,	explain in remarks)	
Are vegetation \mathbf{X} , soils \mathbf{X} , or hydro	-		cantly disturbed	-	nstances present? No
Are vegetation , soils , or hydro			lly problematic		any answers in Remarks)
		ARY OF FIND	• •	(in the provide t	
Hydrophytic vegetation present?	Yes				
Hydric soils present?	Yes		Is the same	oled area within a wetla	and? Yes
Wetland hydrology present?	Yes		15 the sum		
	165				
<u>Remarks:</u> Very likely the site was previously excavated	d du eto m	ining practices.			
VEG	ETATIO	ON - Use scientific	names of plants	3	
	Absolut	e Dominant	Indicator	Dominanc	e Test Worksheet
Tree Stratum (Plot size: 30 feet)	% Cove	er Species	Status	Number of domin	ant species
1 Ulmus americana	35	Yes	FACW	that are OBL, FACV	W, or FAC: 3 (A)
2 Acer negundo	15	Yes	FAC	Total number of	f dominant
3				species acros	s all strata: 3 (B)
4				Percent of dominant s	pecies that
5				are OBL, FAC	-
	50	=Total Cover			
Sapling/Shrub stratum (Plot size: 15 feet)		_		Prevalence	e Index Worksheet
1 Rhamnus cathartica	25	Yes	FAC	Total % cover of:	
2				OBL Species: () $x 1 = 0$
3				FACW Species: 3	8 x 2 = 76
4				FAC Species: 4	0 x 3 = 120
5					a $x 4 = 0$
	25	=Total Cover		· · ·) $x 5 = 0$
Herb stratum: (Plot size: 5 feet)		_		Totals: 7	
1 Impatiens capensis	3	No	FACW		dex (B/A): 2.51
2				r ie valence in	
3				Hydrophytic	Vegetation Indicators
4					hydrophytic vegetation
5				X Dominance tes	
5 6				X Prevalence ind	
7					
8				Morphological supporting dat	adaptations* (Provide a in remarks)
° 9					
·				Problematic hy (Explain in rer	drophytic vegetation*
10		-Total Carry			11a1 NS)
Woody wine stratum (Dist size 15.6)	3	=Total Cover		*Indicators of hydrid	c soil and wetland hydrology
Woody vine stratum: (Plot size: 15 feet)					ess disturbed or problematic
1					
2				Hydrophytic vege	
	0	=Total Cover		present?	Yes
Remarks:					

Real People. Real Solutions.

(Midwest Region)

Depth	Matrix			Redo	x Features				
(inches)	Color (moist)	%	Color (moist)	%	Type*	Loc**	Textu	re	Remarks
0-3	10YR 2/1	100					Mucky 3	Mod	
3-12+	10YR 5/1	100					Sano	ł	
	*Type: C = Concentra	ation, D =	= Depletion, RM	= Redu	ced Matrix, M	S = Masked Sa	nd Grains. **	Location	a: PL = Pore Lining, M = Matrix
ydric Soil l	Indicators:						Indi	cators fo	or Problematic Hydric Soils*:
Histis	ol (A1)			Sandy	Gleyed Matrix	x (S4)		Coast	Prairie Redox (A16)(LRR K,L,R)
Histic	Epipedon (A2)			Sandy	Redox (S5)			Dark S	Surface (S7)(LRR K, L)
Black	Histic (A3)		,	Stripp	ed Matrix (S6)		1	Iron-N	fanganese Masses (F12)(LRR K, L, R)
Hydro	gen Sulfide (A4)			Loamy	Mucky Mater	rial (F1)		Very S	Shallow Dark Surface (TF12)
Stratif	fied Layers (A5)			Loamy	Gleyed Matri	x (F2)		Other	(Explain in remarks)
2 cm 1	Muck (A10)			Deplet	ted Matrix (F3))		_	
X Deple	ted Below Dark Surfa	ce (A11)		Redox	Dark Surface	(F6)			
Thick	Dark Surface (A12)			Deplet	ed Dark Surfa	ce (F7)	*In	dicators of	of hydrophytic vegetation and wetland
THICK					D • (
	Mucky Material (S1)			Redox	Depressions (F8)	11	ydrology	must be present, unless disturbed or
Sandy	Mucky Material (S1) Mucky Peat or Peat (S			Redox	Depressions (F8)	II <u>y</u>	ydrology	problematic
Sandy 5 cm 1	Mucky Peat or Peat (S			Redox	Depressions (.	F8)	11 <u>-</u>	ydrology	-
Sandy 5 cm 1 Restrictive I	-			Redox	Depressions (.				problematic
Sandy 5 cm 1 Restrictive L Type:	Mucky Peat or Peat (S Layer (if observed):			Redox	Depressions (dric Soils Pre		-
Sandy 5 cm 1 Restrictive I	Mucky Peat or Peat (S Layer (if observed):			Redox					problematic
Sandy 5 cm 1 Restrictive L Type:	Mucky Peat or Peat (S Layer (if observed):	3)	 hes	Redox					problematic
Sandy 5 cm l Restrictive L Yype: Depth (inches	Mucky Peat or Peat (S Layer (if observed):	3)	hes		HYDROL	Нус			problematic
Sandy 5 cm 1 Sestrictive I Sype: Depth (inchest Remark	Mucky Peat or Peat (S Layer (if observed):	3)	hes			Нус			problematic
Sandy 5 cm 1 Sestrictive L Sype: Depth (inchest Remark	Mucky Peat or Peat (S Layer (if observed): (S)	3) to 12 inc			HYDROL	Нус		esent?	problematic
Sandy 5 cm 1 estrictive I ype: epth (inches <u>Remark</u> fetland Hyd rimary Indic	Mucky Peat or Peat (S Layer (if observed): (S):	3) to 12 inc			HYDROL	Hyo OGY		esent?	problematicYes
Sandy 5 cm 1 estrictive L ype: vepth (inches <u>Remark</u> fetland Hyd rimary Indic Surfac	Mucky Peat or Peat (S .ayer (if observed): s): Soik pit dug Irology Indicators: eators (minimum of on	3) to 12 inc	red; check all that	t apply Water	HYDROL	Hyo OGY ss (B9)		esent?	groblematic Yes
Sandy 5 cm 1 estrictive I ype: epth (inches Remark retland Hyd rimary Indic Surfac High ¹	Mucky Peat or Peat (S Layer (if observed): s): Soik pit dug Irology Indicators: eators (minimum of on the Water (A1)	3) to 12 inc	red; check all that	t apply Water Aquati	HYDROL) -Stained Leave	Hyo OGY (B9)		esent?	yes dary Indicators (minimum of two required Surface Soil Crack (B6)
Sandy 5 cm 1 Sestrictive L Sype: Depth (inches Remark Zetland Hyd rimary Indic Surfac High ' X Satura	Mucky Peat or Peat (S Layer (if observed): s): Soik pit dug Brology Indicators: cators (minimum of on ce Water (A1) Water Table (A2)	3) to 12 inc	red; check all that	<u>it apply</u> Water Aquati True A	HYDROL) -Stained Leave ic Fauna (B13)	Hye OGY (B14)		sent?	yes
Sandy 5 cm 1 5 cm 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Mucky Peat or Peat (S Layer (if observed): (S)	3) to 12 inc	red; check all that	tt apply Water Aquati True A Hydro	HYDROL) -Stained Leave ic Fauna (B13) Aquatic Plants gen Sulfide Oc	Hye OGY (B14)	dric Soils Pre	sent?	problematic Yes dary Indicators (minimum of two required Surface Soil Crack (B6) Drainage Patterns (B10) Dry-Season Water Table (C2)
Sandy 5 cm 1 strictive I ype: epth (inches <u>Remark</u> Yetland Hyd rimary Indic Surfac High ¹ X Satura Water Sedim	Mucky Peat or Peat (S Layer (if observed): s): Soik pit dug Brology Indicators: Cators (minimum of on the Water (A1) Water Table (A2) ation (A3) Marks (B1)	3) to 12 inc	red; check all that	tt apply Water Aquati True A Hydro Oxidiz	HYDROL) -Stained Leave ic Fauna (B13) Aquatic Plants gen Sulfide Oc	Hyo OGY (B14) dor (C1) res on Living R	dric Soils Pre	sent?	ves <u>Yes</u> dary Indicators (minimum of two required Surface Soil Crack (B6) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8)
Sandy 5 cm 1 5 cm 1 2estrictive L 2ype: Depth (inchest Remark 7etland Hyd rimary Indic Surfac High V X Satura Water Sedim Drift 1	Mucky Peat or Peat (S Layer (if observed): s): Soik pit dug rology Indicators: cators (minimum of on ce Water (A1) Water Table (A2) ation (A3) Marks (B1) ment Deposits (B2)	3) to 12 inc	red; check all that	tt apply Water Aquati True A Hydro Oxidiz Presen	HYDROL -Stained Leave ic Fauna (B13) Aquatic Plants (gen Sulfide Oc ted Rhizospher ice or Reduced	Hyo OGY (B14) dor (C1) res on Living R	dric Soils Pre	ssent?	yes dary Indicators (minimum of two required Surface Soil Crack (B6) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9)
Sandy 5 cm 1 2estrictive I ype: Depth (inchest Remark Zetland Hyd rimary Indic Surfac High V X Satura Water Sedim Drift I Algal	Mucky Peat or Peat (S Layer (if observed): s): Soik pit dug Soik pit dug Irology Indicators: cators (minimum of on ce Water (A1) Water Table (A2) ation (A3) Marks (B1) nent Deposits (B2) Deposits (B3)	3) to 12 inc	red; check all that	tt apply Water Aquati True A Hydro Oxidiz Presen Recent	HYDROL -Stained Leave ic Fauna (B13) Aquatic Plants (gen Sulfide Oc ted Rhizospher ice or Reduced	Hyd OGY (B14) dor (C1) res on Living R Iron (C4) on in Tilled Soi	dric Soils Pre	ssent?	Yes
Sandy 5 cm l 5 cm l 7 ype: Depth (inchest Remark Vetland Hyd Primary Indic Surfac High V X Satura Water Sedim Drift l Algal Iron D	Mucky Peat or Peat (S Layer (if observed): (S): (S): (S): (S): (S): (S): (S): (S	3) to 12 inc e is requi	ired; check all tha 	tt apply Water Aquati True A Hydro Oxidiz Presen Recem Thin M	HYDROL () -Stained Leave ic Fauna (B13) Aquatic Plants gen Sulfide Oc gen Sulfide Oc red Rhizospher ice or Reduced t Iron Reductio	Hye OGY (B14) (B14) (or (C1) res on Living R Iron (C4) on in Tilled Soi (C7)	dric Soils Pre	ssent?	Yes dary Indicators (minimum of two required Surface Soil Crack (B6) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Stunted or Stressed Plants (D1) Geomorphic Position (D2)
Sandy 5 cm 1 5 cm 1 Vype: Depth (inchest Remark Vetland Hyd Primary Indic Surfac Yata Mater Sedim Drift 1 Algal Iron D Inunda	Mucky Peat or Peat (S Layer (if observed): (S)	3) to 12 inc e is requi	red; check all tha	tt apply Water Aquati True A Hydro Oxidiz Presen Recent Thin M Gauge	HYDROL -Stained Leave ic Fauna (B13) Aquatic Plants gen Sulfide Oc zed Rhizospher ice or Reduced t Iron Reduction Auck Surface (Hyd OGY (B14) lor (C1) res on Living R Iron (C4) on in Tilled Soi (C7) (C7)	dric Soils Pre	ssent?	Yes dary Indicators (minimum of two required Surface Soil Crack (B6) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Stunted or Stressed Plants (D1) Geomorphic Position (D2)
Sandy 5 cm I Sestrictive I Cype: Depth (inchest Remark Vetland Hyd Primary Indic Surfac High V X Satura Water Sedim Drift I Algal Iron D Inunda X Sparse	Mucky Peat or Peat (S Layer (if observed): (S)	3) to 12 inc e is requi	red; check all tha	tt apply Water Aquati True A Hydro Oxidiz Presen Recent Thin M Gauge	HYDROLA) -Stained Leave ic Fauna (B13) Aquatic Plants gen Sulfide Oc ted Rhizospher ace or Reduced t Iron Reduction Auck Surface (or Well Data	Hyd OGY (B14) lor (C1) res on Living R Iron (C4) on in Tilled Soi (C7) (C7)	dric Soils Pre	ssent?	Yes dary Indicators (minimum of two required Surface Soil Crack (B6) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Stunted or Stressed Plants (D1) Geomorphic Position (D2)
Sandy 5 cm 1 Sype: Depth (inches Remark Vetland Hyd Primary Indic Surfac High X Satura Water Sedim Algal Iron D Inunda X Sparse	Mucky Peat or Peat (S Layer (if observed): (S)	3) to 12 inc e is requi	red; check all tha	tt apply Water Aquati True A Hydro Oxidiz Presen Recent Thin N Gauge Other	HYDROLA) -Stained Leave ic Fauna (B13) Aquatic Plants gen Sulfide Oc ted Rhizospher ace or Reduced t Iron Reduction Auck Surface (or Well Data	Hyd OGY (B14) (B14) dor (C1) res on Living R Iron (C4) on in Tilled Soi (C7) (C7) (C7) marks)	dric Soils Pre	ssent?	Yes dary Indicators (minimum of two required Surface Soil Crack (B6) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Stunted or Stressed Plants (D1) Geomorphic Position (D2) FAC-Neutral Test (D5)
Sandy 5 cm 1 7 Second	Mucky Peat or Peat (S Layer (if observed): (S)	3) to 12 inc e is requi	red; check all tha	tt apply Water Aquati True A Hydro Oxidiz Presen Recent Thin M Gauge Other	HYDROL () -Stained Leave ic Fauna (B13) Aquatic Plants (gen Sulfide Oc red Rhizospher ice or Reduced t Iron Reductio Auck Surface (cor Well Data ((Explain in Re	Hye OGY (B14) (B14) (or (C1) (cr) (cr) (cr) (cr) (cr) (cr) (cr) (cr	dric Soils Pre	ssent?	Yes dary Indicators (minimum of two required Surface Soil Crack (B6) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Stunted or Stressed Plants (D1) Geomorphic Position (D2)

Real People. Real Solutions.	(Midwest Regio	n)		
Project/Site: Kohner Property Wetland Delineation	City/County: Wa	abasha County	Sampling Date: 6/1	8/2020
Applicant/Owner: City of Wabasha	S	tate: MN	Sample Point: W1	- B
Investigator(s): Brandon Bohks	Section, To	ownship, Range: 30,	111N, 10W	
Landforms (hillside, terrace, etc.): Terrace	Local Rel	ief (concave, convex	, none): Linear	
Slope (%): 1-3 Latitude:	Longitude	:	Datum:	
Soil Map Unit Name: Kalmarville complex, frequently flooded	NWI Cla	assification:		
Are climatic/hydrologic conditions of the site typical for this time of	year?	(If no, e	xplain in remarks)	
Are vegetation \mathbf{X} , soils \mathbf{X} , or hydrology	X sig	mificantly disturbed	Are normal circumstances present?	No
Are vegetation , soils , or hydrology	nat	turally problematic?	(If needed, explain any answers in Re	emarks)
SUM	MARY OF FI	NDINGS		
Hydrophytic vegetation present? Yes				
Hydric soils present? No	-	Is the samp	ed area within a wetland? No	
Wetland hydrology present? No	-			
<u>Remarks:</u> Very likely the site was previously excavated due to) mining practices.			
VEGETAT	TON Use scient	ific names of plants		
		*	Dominance Test Worksheet	ł
Abso <u>Tree Stratum</u> (Plot size: 30 feet) % Cu		t Indicator Status		,
1 (100 Share) // Ch	over species	Status	Number of dominant species that are OBL, FACW, or FAC: 3	(A)
2				(A)
3			Total number of dominant species across all strata: 3	(B)
2				(B)
* 5			Percent of dominant species that are OBL, FACW or FAC: 100%	∕₀ (A/B)
	=Total Cover			• (A/D)
Sapling/Shrub stratum (Plot size: 15 feet)			Prevalence Index Workshee	t
1 Rhamnus cathartica	0 Yes	FAC	Total % cover of:	ι
2 Zanthoxylum americanum 10		FACU		0
			FACW Species: 83 $x 2 = 16$	
3				85
5			- <u> </u>	0
	0 =Total Cover			0
Herb stratum: (Plot size: 5 feet)				91 (B)
1 Lysimachia nummularia 6	0 Yes	FACW	Prevalence Index (B/A): 2.61	<u> </u>
2 Toxicodendron radicans		FACW	Fievalence index (B/A). 2.01	
3 Rhamnus cathartica		FAC FAC	Hydrophytic Vegetation Indica	tors
4 Euthamia graminifolia		FACW	Rapid test for hydrophytic vegeta	
		TACW	X Dominance test >50%	tion
5 6			$\overline{\mathbf{X}}$ Prevalence index is $\leq 3.0^*$	
7				
8			Morphological adaptations* (Pro- supporting data in remarks)	vide
9				
· · · · · · · · · · · · · · · · · · ·			Problematic hydrophytic vegetation (Explain in remarks)	on*
109	8 =Total Cover			
Woody vine stratum: (Plot size: 15 feet)			*Indicators of hydric soil and wetland h	
·			must be present, unless disturbed or pre-	oblematic
1				
2			Hydrophytic vegetation	
	=Total Cover		present? Yes	
<u>Remarks:</u>				

Real People. Real Solutions.

(Midwest Region)

Profile Descr	ription: (Describe to	the dep	th needed to docu			or confirm the	absence of indic	ators.)
Depth	Matrix			r –	x Features	т —		
(inches)	Color (moist)	%	Color (moist)	%	Type*	Loc**	Texture	Remarks
0-12+	10YR 4/4	100					Sand	
		ation, D	= Depletion, RM	= Redu	ced Matrix, M	IS = Masked Sa		ation: PL = Pore Lining, M = Matrix
Hydric Soil I								ors for Problematic Hydric Soils*:
	ol (A1)				Gleyed Matri	x (S4)		oast Prairie Redox (A16)(LRR K,L,R)
Histic	Epipedon (A2)				Redox (S5)		D	ark Surface (S7)(LRR K, L)
Black	Histic (A3)			Stripp	ed Matrix (S6))	Ir	on-Manganese Masses (F12)(LRR K, L, R)
	gen Sulfide (A4)			•	y Mucky Mate			ery Shallow Dark Surface (TF12)
Stratif	ied Layers (A5)			Loamy	y Gleyed Matr	ix (F2)	0	ther (Explain in remarks)
2 cm l	Muck (A10)			Deplet	ted Matrix (F3)		
Deple	ted Below Dark Surfa	ace (A11)	-	Dark Surface			
	Dark Surface (A12)			-	ted Dark Surfa			tors of hydrophytic vegetation and wetland
	Mucky Material (S1)			Redox	Depressions ((F8)	hydro	logy must be present, unless disturbed or
5 cm l	Mucky Peat or Peat (S	53)						problematic
Restrictive L	ayer (if observed):							
Type:				-		Hye	dric Soils Presen	t? No
Depth (inches	s):			-				
Remark	<u>s:</u> Soil pit dug	to 12 inc	enes.					
					HYDROL	OGY		
-	rology Indicators:				、 、			
-	ators (minimum of or	ne is requ	ired; check all that				<u>S</u>	econdary Indicators (minimum of two required)
	e Water (A1)				-Stained Leave		_	Surface Soil Crack (B6)
	Water Table (A2)			-	ic Fauna (B13			Drainage Patterns (B10)
	tion (A3)			-	Aquatic Plants			Dry-Season Water Table (C2)
	Marks (B1)				gen Sulfide O			Crayfish Burrows (C8)
	ent Deposits (B2)			-	-	res on Living R	loots (C3)	Saturation Visible on Aerial Imagery (C9)
	Deposits (B3)			-	ice or Reduced			Stunted or Stressed Plants (D1)
	Mat or Crust (B4)			-		on in Tilled Soi	ls (C6)	Geomorphic Position (D2)
	eposits (B5)	1 Trees			Auck Surface			X FAC-Neutral Test (D5)
	ation Visible on Aeria	-			or Well Data			
	ely Vegetated Concav	e Surfac	e (B8)	Other	(Explain in Re	emarks)		
Field Observa								
Surface Wate					Depth (inches)		-	Indicators of Wetland
Water Table					Depth (inches)		-	Hydrology Present? No
Saturation Pro	esent?			I	Depth (inches)	:	_	
Remark	s:							

	(M	e,		
Project/Site: Kohner Property Wetland Delineation	Ci	ty/County: Waba	sha County	Sampling Date: 6/18/2020
Applicant/Owner: City of Wabasha		State	: MN	Sample Point: W2-A
Investigator(s): Brandon Bohks		Section, Town	ship, Range: 30), 111N, 10W
Landforms (hillside, terrace, etc.): Floodplain		Local Relief (concave, conve	x, none): Linear
Slope (%): 1-3 Latitude:		Longitude:		Datum:
Soil Map Unit Name: Kalmarville complex, frequently f	looded	NWI Classi	fication: PEM1	<u> </u>
Are climatic/hydrologic conditions of the site typical for the	is time of year?		(If no,	explain in remarks)
Are vegetation , soils , or hy	drology	signifi	cantly disturbed	Are normal circumstances present? Yes
Are vegetation , soils , or hy	drology	natura	lly problematic	? (If needed, explain any answers in Remarks)
	SUMMA	RY OF FIND	DINGS	
Hydrophytic vegetation present?	Yes			
Hydric soils present?	Yes		Is the sam	oled area within a wetland? Yes
Wetland hydrology present?	Yes			
Remarks:				
VF	GETATIO	N - Use scientific	names of plants	
				Dominance Test Worksheet
Tree Stratum (Plot size: 30 feet)	Absolute % Cover	Dominant Species	Indicator Status	
1 Acer saccharinum	75	Yes	FACW	Number of dominant species that are OBL, FACW, or FAC: 3 (A)
2 Salix nigra	15	No	FACW	
3 Fraxinus pennsylvanica	10	No	FACW	Total number of dominant species across all strata: 3 (B)
4				
5		·		Percent of dominant species that are OBL, FACW or FAC: 100% (A/B)
	100	=Total Cover		
Sapling/Shrub stratum (Plot size: 15 feet)	100			Prevalence Index Worksheet
1 Rhamnus cathartica	55	Yes	FAC	Total % cover of:
2		103		OBL Species: $0 = \mathbf{x} 1 = 0$
3		·		FACW Species: 111 $x = 222$
	_	·		FAC Species: 58 $x_3 = 174$
4		·		
5		Tatal Game		
Usek stratume (Dist size) 5 (()	55	=Total Cover		UPL Species: 0 x 5 = 0 Totals: 169 (A) 396 (B)
Herb stratum: (Plot size: 5 feet)	0	X 7	EACW	
1 Acer saccharinum		Yes	FACW	Prevalence Index (B/A): 2.34
2 Toxicodendron radicans	3	No	FAC	
3 Impatiens capensis	3	No	FACW	Hydrophytic Vegetation Indicators
4		·		Rapid test for hydrophytic vegetation
5				X Dominance test >50%
6				$\underline{\mathbf{X}} Prevalence index is \leq 3.0^*$
7		·		Morphological adaptations* (Provide
8				supporting data in remarks)
9		·		Problematic hydrophytic vegetation*
10				(Explain in remarks)
	14	=Total Cover		*Indicators of hydric soil and wetland hydrology
Woody vine stratum: (Plot size: 15 feet)				must be present, unless disturbed or problematic
1				
2				Hydrophytic vegetation
2		=Total Cover		present? Yes

Real People. Real Solutions.

(Midwest Region)

Depth	Matrix			Redo	K Features				
(inches)	Color (moist)	%	Color (moist)	%	Type*	Loc**	Texture		Remarks
0-3	10YR 2/2	100					Mucky Mo	od	
3-12+	10YR 4/1	90					Sand		
		ation, D	= Depletion, RM	= Redu	ed Matrix, M	S = Masked Sa	nd Grains. **Lo	cation: F	PL = Pore Lining, M = Matrix
Hydric Soil I	indicators:						Indica	tors for 1	Problematic Hydric Soils*:
Histis	ol (A1)			Sandy	Gleyed Matrix	x (S4)		Coast Pra	airie Redox (A16)(LRR K,L,R)
Histic	Epipedon (A2)			Sandy	Redox (S5)]	Dark Sur	face (S7)(LRR K, L)
Black	Histic (A3)			Strippe	d Matrix (S6)]	ron-Man	nganese Masses (F12)(LRR K, L, R)
Hydro	gen Sulfide (A4)			Loamy	Mucky Mater	rial (F1)		Very Sha	llow Dark Surface (TF12)
Stratif	ied Layers (A5)			Loamy	Gleyed Matri	x (F2)		Other (Ex	xplain in remarks)
2 cm 1	Muck (A10)			Deplet	ed Matrix (F3))			
X Deple	ted Below Dark Surfa	ce (A11)		Redox	Dark Surface	(F6)			
Thick	Dark Surface (A12)			Deplet	ed Dark Surfa	ce (F7)	*Indic	ators of l	hydrophytic vegetation and wetland
Sandy	Mucky Material (S1))		Redox	Depressions (F8)			ust be present, unless disturbed or
Salidy	•								
	Mucky Peat or Peat (S	33)							problematic
5 cm 1	-	33)							problematic
5 cm 1	Mucky Peat or Peat (S	33)				Hyd	Iric Soils Prese	nt?	Yes
5 cm l Restrictive I	Mucky Peat or Peat (S ayer (if observed):	33)				Hyd	Iric Soils Prese	nt?	
5 cm l Restrictive L Type: Depth (inches	Mucky Peat or Peat (S ayer (if observed):					Hyd	lric Soils Prese	nt?	
5 cm l Restrictive I Type:	Mucky Peat or Peat (S ayer (if observed):		ches	-		Hyd	lric Soils Prese	nt?	
5 cm l Restrictive I Type: Depth (inches	Mucky Peat or Peat (S ayer (if observed):		ches		HYDROL		lric Soils Prese	nt?	
5 cm I Restrictive I Type: Depth (inches <u>Remark</u>	Mucky Peat or Peat (S ayer (if observed):		ches		HYDROL		lric Soils Prese	nt?	
5 cm l Restrictive L Type: Depth (inches <u>Remark</u> Vetland Hyd	Mucky Peat or Peat (S ayer (if observed):	to 12 inc							Yes
5 cm I Restrictive I Type: Depth (inches Remark Vetland Hyd Primary Indic	Mucky Peat or Peat (S ayer (if observed):): Si: Soik pit dug rology Indicators:	to 12 inc	ired; check all that	t apply		OGY		Secondar	Yes
5 cm l Restrictive L Type: Depth (inches <u>Remark</u> Vetland Hyd Primary Indic Surfac	Mucky Peat or Peat (S ayer (if observed): (S): (S): (S): (S): (S): (S): (S): (S	to 12 inc	ired; check all that	ut apply Water-	<u>)</u>	OGY (B9)		Secondar	Yes
5 cm I Restrictive I Type: Depth (inches Remark Vetland Hyd Primary Indic Surfac High	Mucky Peat or Peat (S ayer (if observed): <u>ayer</u> (if observed): <u>a</u>	to 12 inc	ired; check all that	tt apply Water- Aquati	<u>)</u> Stained Leave	OGY (B9)		Secondar Su Di	Yes Yes y Indicators (minimum of two required urface Soil Crack (B6)
5 cm I Restrictive I Type: Depth (inches <u>Remark</u> Wetland Hyd Primary Indic Surfac High Satura Water	Mucky Peat or Peat (S ayer (if observed): <u>s</u> : <u>Soik pit dug</u> <u>rology Indicators:</u> <u>ators (minimum of or</u> te Water (A1) Water Table (A2) tion (A3) Marks (B1)	to 12 inc	ired; check all that	ut apply Water- Aquati True A	<u>)</u> Stained Leave c Fauna (B13)	OGY ss (B9) (B14)		Secondar Su Di Di	Yes <u>Y</u> Indicators (minimum of two required urface Soil Crack (B6) rainage Patterns (B10)
5 cm I Restrictive I Type: Depth (inchest Remark Wetland Hyd Primary Indic Surfac High V Satura Water Sedim	Mucky Peat or Peat (S ayer (if observed): <u>s</u> : <u>Soik pit dug</u> <u>rology Indicators:</u> ators (minimum of or re Water (A1) Water Table (A2) tion (A3) Marks (B1) ent Deposits (B2)	to 12 inc	ired; check all that	t apply Water- Aquati True A Hydrog) Stained Leave c Fauna (B13) quatic Plants (gen Sulfide Oc	OGY ss (B9) (B14)		Secondar Su Di Di Ci	Yes Yes y Indicators (minimum of two required urface Soil Crack (B6) rainage Patterns (B10) ry-Season Water Table (C2) rayfish Burrows (C8)
5 cm l Restrictive I Type: Depth (inchest Remark Wetland Hyd Primary Indic Surfac High Satura Water Sedim X Drift I	Mucky Peat or Peat (S ayer (if observed): <u>ayer (if observed):</u> <u>s</u> : <u>s</u> :	to 12 inc	ired; check all that	tt apply Water- Aquati True A Hydrog Oxidiz Presen) Stained Leave c Fauna (B13) quatic Plants (gen Sulfide Oc ed Rhizospher ce or Reduced	OGY (B9) (B14) dor (C1) res on Living Re Iron (C4)		Secondar Su Di Di Ci Sa St	Yes Yes Yes Ty Indicators (minimum of two required urface Soil Crack (B6) rainage Patterns (B10) ry-Season Water Table (C2) rayfish Burrows (C8) aturation Visible on Aerial Imagery (C9 unted or Stressed Plants (D1)
5 cm l Restrictive I Type: Depth (inchest Remark Wetland Hyd Primary Indic Surfac High V Satura Water Sedim X Drift I Algal	Mucky Peat or Peat (S ayer (if observed): age: Soik pit dug rology Indicators: ators (minimum of or we Water (A1) Water Table (A2) tion (A3) Marks (B1) ent Deposits (B2) Deposits (B3) Mat or Crust (B4)	to 12 inc	ired; check all that	tt apply Water- Aquati True A Hydrog Oxidiz Presen) Stained Leave c Fauna (B13) quatic Plants (gen Sulfide Oc ed Rhizospher ce or Reduced	OGY (B9) (B14) lor (C1) res on Living Re		Secondar Su Di Di Ci Sa St	Yes Yes y Indicators (minimum of two required) urface Soil Crack (B6) rainage Patterns (B10) ry-Season Water Table (C2) rayfish Burrows (C8) aturation Visible on Aerial Imagery (C9
5 cm l Restrictive I Type: Depth (inchest Remark Wetland Hyd Primary Indic Surfac High Satura Water Sedim X Drift I Algal Iron D	Mucky Peat or Peat (S ayer (if observed): a): Soik pit dug rology Indicators: ators (minimum of or the Water (A1) Water Table (A2) tion (A3) Marks (B1) ent Deposits (B2) Deposits (B3) Mat or Crust (B4) reposits (B5)	to 12 inc	ired; check all tha	tt apply Water- Aquati True A Hydrog Oxidiz Presen Recent Thin M) Stained Leave c Fauna (B13) quatic Plants (gen Sulfide Oc ed Rhizospher ce or Reduced Iron Reductic Iuck Surface (OGY (B14) (B14) (or (C1) res on Living Ra Iron (C4) on in Tilled Soil (C7)		Secondar Su Di Ci Sa St X G	Yes Yes Yes Ty Indicators (minimum of two required) Inface Soil Crack (B6) rainage Patterns (B10) ry-Season Water Table (C2) rayfish Burrows (C8) aturation Visible on Aerial Imagery (C9 unted or Stressed Plants (D1)
5 cm l Restrictive I Type: Depth (inchest Remark Wetland Hyd Primary Indic Surfac High Satura Water Sedim X Drift I Algal Iron D Inunda	Mucky Peat or Peat (S ayer (if observed): <u>a</u> : <u>Soik pit dug</u> <u>rology Indicators:</u> <u>ators (minimum of or</u> te Water (A1) Water Table (A2) tion (A3) Marks (B1) ent Deposits (B2) Deposits (B3) Mat or Crust (B4) eposits (B5) ation Visible on Aeria	to 12 inc ne is requ ll Imager	ired; check all tha 	tt apply Water- Aquati True A Hydrog Oxidiz Presen Recent Thin M) Stained Leave c Fauna (B13) quatic Plants gen Sulfide Oc ed Rhizospher ce or Reduced Iron Reductio	OGY (B14) (B14) (or (C1) res on Living Ra Iron (C4) on in Tilled Soil (C7)		Secondar Su Di Ci Sa St X G	Yes Yes Yes Yundicators (minimum of two required) urface Soil Crack (B6) rainage Patterns (B10) ry-Season Water Table (C2) rayfish Burrows (C8) aturation Visible on Aerial Imagery (C9) unted or Stressed Plants (D1) eomorphic Position (D2)
5 cm l Restrictive I Type: Depth (inchest Remark Wetland Hyd Primary Indic Surfac High Satura Water Sedim X Drift I Algal Iron D Inunda	Mucky Peat or Peat (S ayer (if observed): a): Soik pit dug rology Indicators: ators (minimum of or the Water (A1) Water Table (A2) tion (A3) Marks (B1) ent Deposits (B2) Deposits (B3) Mat or Crust (B4) reposits (B5)	to 12 inc ne is requ ll Imager	ired; check all tha 	tt apply Water- Aquati True A Hydrog Oxidiz Presen Recent Thin M Gauge) Stained Leave c Fauna (B13) quatic Plants (gen Sulfide Oc ed Rhizospher ce or Reduced Iron Reductic Iuck Surface (OGY (B14) (B14) (or (C1) ves on Living Ro Iron (C4) on in Tilled Soil (C7) (C7)		Secondar Su Di Ci Sa St X G	Yes Yes Yes Yes Yes Yes Yes You Indicators (minimum of two required) Inface Soil Crack (B6) rainage Patterns (B10) ry-Season Water Table (C2) rayfish Burrows (C8) Aturation Visible on Aerial Imagery (C9 unted or Stressed Plants (D1) eomorphic Position (D2)
5 cm l Restrictive I Type: Depth (inchest Remark Wetland Hyd Primary Indic Surfac High Satura Water Sedim X Drift I Algal Iron D Inunda	Mucky Peat or Peat (S ayer (if observed): S: Soik pit dug rology Indicators: ators (minimum of or te Water (A1) Water Table (A2) tion (A3) Marks (B1) ent Deposits (B2) Deposits (B3) Mat or Crust (B4) reposits (B5) ation Visible on Aeria ely Vegetated Concave	to 12 inc ne is requ ll Imager	ired; check all tha 	tt apply Water- Aquati True A Hydrog Oxidiz Presen Recent Thin M Gauge) Stained Leave c Fauna (B13) quatic Plants (gen Sulfide Oc ed Rhizospher ce or Reduced Iron Reductio luck Surface (or Well Data (OGY (B14) (B14) (or (C1) ves on Living Ro Iron (C4) on in Tilled Soil (C7) (C7)		Secondar Su Di Ci Sa St X G	Yes Yes Yes Yes Yes Yes Yes You Indicators (minimum of two required) Inface Soil Crack (B6) rainage Patterns (B10) ry-Season Water Table (C2) rayfish Burrows (C8) Aturation Visible on Aerial Imagery (C9 unted or Stressed Plants (D1) eomorphic Position (D2)
5 cm l Restrictive I Type: Depth (inchest Remark Wetland Hyd Primary Indic Surfac High Satura Water Sedim X Drift I Algal Iron D Inunda Sparse	Mucky Peat or Peat (S ayer (if observed): <u>s</u> : Soik pit dug rology Indicators: ators (minimum of or re Water (A1) Water Table (A2) tion (A3) Marks (B1) ent Deposits (B2) Deposits (B3) Mat or Crust (B4) reposits (B5) ation Visible on Aeria ely Vegetated Concave ations:	to 12 inc ne is requ ll Imager	ired; check all tha 	tt apply Water- Aquati True A Hydrog Oxidiz Presen Recent Thin N Gauge Other () Stained Leave c Fauna (B13) quatic Plants (gen Sulfide Oc ed Rhizospher ce or Reduced Iron Reductio luck Surface (or Well Data (OGY (B14) (B14) (or (C1) (cr) (cr) (cr) (cr) (cr) (cr) (cr) (cr		Secondar Su Di Di Ci Sa St X Gu F/	Yes Yes Yes Yes Yes Yes Yes You Indicators (minimum of two required) Inface Soil Crack (B6) rainage Patterns (B10) ry-Season Water Table (C2) rayfish Burrows (C8) Aturation Visible on Aerial Imagery (C9 unted or Stressed Plants (D1) eomorphic Position (D2)
5 cm I Restrictive I Type: Depth (inchest Remark Wetland Hyd Primary Indic Surfac High V Satura Water Sedim X Drift I Algal Iron E Inunda Sparse Field Observa	Mucky Peat or Peat (S ayer (if observed): a): Soik pit dug rology Indicators: ators (minimum of or the Water (A1) Water Table (A2) tion (A3) Marks (B1) ent Deposits (B2) Deposits (B3) Mat or Crust (B4) teposits (B5) ation Visible on Aeria ely Vegetated Concave ations: r Present?	to 12 inc ne is requ ll Imager	ired; check all tha 	tt apply Water- Aquati True A Hydrog Oxidiz Presen Recent Thin M Gauge Other () Stained Leave c Fauna (B13) quatic Plants (gen Sulfide Od ed Rhizospher ce or Reduced Iron Reductic Iuck Surface (or Well Data (Explain in Re	OGY (B14) (B14) (or (C1) res on Living Re Iron (C4) on in Tilled Soil (C7) (C7) marks)		Secondar Su Di Ci Sa St X Ga F/	Yes Yes y Indicators (minimum of two required) urface Soil Crack (B6) rainage Patterns (B10) ry-Season Water Table (C2) rayfish Burrows (C8) aturation Visible on Aerial Imagery (C9 unted or Stressed Plants (D1) eomorphic Position (D2) AC-Neutral Test (D5)

Real People. Real Solutions.	(101)	dwest Region)		
Project/Site: Kohner Property Wetland Delineation	Cit	y/County: Waba	sha County	Sampling Date: 6/18/2020
Applicant/Owner: City of Wabasha		State	: MN	Sample Point: W2-B
Investigator(s): Brandon Bohks		Section, Town	ship, Range: 30), 111N, 10W
Landforms (hillside, terrace, etc.): Terrace		Local Relief (concave, conve	x, none): Linear
Slope (%): 1-3 Latitude:		Longitude:		Datum:
Soil Map Unit Name: Kalmarville complex, frequently f	flooded	NWI Classi	fication:	
Are climatic/hydrologic conditions of the site typical for th	nis time of year?		(If no,	explain in remarks)
Are vegetation , soils , or hy	ydrology	signifi	cantly disturbed	Are normal circumstances present? No
Are vegetation , soils , or hy	ydrology	natura	lly problematic	? (If needed, explain any answers in Remarks)
	SUMMAI	RY OF FIND	DINGS	
Hydrophytic vegetation present?	Yes			
Hydric soils present?	No		Is the samp	oled area within a wetland? No
Wetland hydrology present?	No			
		•		
Remarks:				
VF	GETATION	J - Use scientific	names of plants	S
				Dominance Test Worksheet
<u>Tree Stratum</u> (Plot size: 30 feet)	Absolute % Cover	Dominant Species	Indicator Status	
1		Species	Status	Number of dominant species that are OBL, FACW, or FAC: 2 (A)
2				
3				Total number of dominant species across all strata: 3 (B)
4				
5				Percent of dominant species that are OBL, FACW or FAC: 67% (A/B)
		=Total Cover		
Sapling/Shrub stratum (Plot size: 15 feet)				Prevalence Index Worksheet
1 Rhamnus cathartica	65	Yes	FAC	Total % cover of:
2 Zanthoxylum americanum	$-\frac{00}{20}$	Yes	FACU	OBL Species: $0 \mathbf{x} 1 = 0$
		105	TACU	FACW Species: 0 $\mathbf{x} 1 = 0$
5				FAC Species: $118 x 3 = 354$
5				FACU species: $40 x 4 = 160$
5	85	=Total Cover		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Herb stratum: (Plot size: 5 feet)				$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
´	35	Yes	FAC	
1 Verbena urticifolia 2 Carex pensylvanica	$-\frac{35}{10}$	No	FAC	Prevalence Index (B/A): 3.25
3 Parthenocissus quinquefolia	$-\frac{10}{10}$	No	FACU	Hydrophytic Vegetation Indicators
4 Rhamnus cathartica		No	FAC	Rapid test for hydrophytic vegetation
4 Knamnus cathartica 5 Viola sororia		No	FAC	X Dominance test >50%
6 Toxicodendron radicans	$-\frac{7}{3}$	No	FAC	Prevalence index is $\leq 3.0^*$
	3	110	TAU	
/				Morphological adaptations* (Provide supporting data in remarks)
8				
				Problematic hydrophytic vegetation* (Explain in remarks)
10		=Total Cover		
Woody vine stratum: (Plot size: 15 fact.)	73	=1 otal Cover		*Indicators of hydric soil and wetland hydrology
Woody vine stratum: (Plot size: 15 feet)				must be present, unless disturbed or problematic
1				
				Hudnonbutic resolution
2		=Total Cover		Hydrophytic vegetation present? Yes

Real People. Real Solutions.

(Midwest Region)

Depth	Matrix			Redo	x Features	•			
(inches)	Color (moist)	%	Color (moist)	%	Type*	Loc**	Texture	•	Remarks
0-6	10YR 2/2	100					Sandy Lo	am	
6-13+	10YR 4/1	95	7.5YR 4/6	5	С	М	Sand		
	*Type: C = Concentr	ation, D	= Depletion, RM	= Redu	ed Matrix, M	S = Masked Sa	nd Grains. **L	ocation	: PL = Pore Lining, M = Matrix
Hydric Soil I	indicators:						Indica	ators fo	or Problematic Hydric Soils*:
Histise	ol (A1)			Sandy	Gleyed Matrix	x (S4)		Coast	Prairie Redox (A16)(LRR K,L,R)
Histic	Epipedon (A2)			Sandy	Redox (S5)			Dark S	Surface (S7)(LRR K, L)
Black	Histic (A3)			- Strippe	d Matrix (S6)			Iron-M	fanganese Masses (F12)(LRR K, L, R)
Hydro	gen Sulfide (A4)			•	Mucky Mater				Shallow Dark Surface (TF12)
	ied Layers (A5)			•	Gleyed Matri				(Explain in remarks)
	Muck (A10)			•	ed Matrix (F3)			•	
Deplet	ted Below Dark Surfa	ce (A11))	Redox	Dark Surface	(F6)			
Thick	Dark Surface (A12)			Deplet	ed Dark Surfa	ce (F7)	*Indi	cators o	of hydrophytic vegetation and wetland
	M 1 M (1 (01)			Redox	Depressions (F8)			must be present, unless disturbed or
Sandy	Mucky Material (S1)								
	Mucky Material (S1) Mucky Peat or Peat (S			•					problematic
5 cm 1	Mucky Peat or Peat (S			-					problematic
5 cm M Restrictive L	-			-		Hve	Iric Soils Pres	ent?	
5 cm M Restrictive L Type:	Mucky Peat or Peat (S ayer (if observed):					Нус	lric Soils Pres	ent?	problematic <u>No</u>
5 cm M Restrictive L	Mucky Peat or Peat (S ayer (if observed):			- - -		Нус	lric Soils Pres	ent?	
5 cm M Restrictive L Type:	Mucky Peat or Peat (S ayer (if observed):	;3)		-		Нус	lric Soils Pres	ent?	
5 cm M Restrictive L Type: Depth (inches	Mucky Peat or Peat (S ayer (if observed):	;3)		-	HYDROL		lric Soils Pres	ent?	
5 cm M Restrictive L Type: Depth (inches <u>Remark</u>	Mucky Peat or Peat (S ayer (if observed):	;3)		-	HYDROL		lric Soils Pres	ent?	
5 cm M Restrictive L Type: Depth (inches <u>Remark</u> Wetland Hyd	Mucky Peat or Peat (S ayer (if observed): (3): (3): (3): (3): (3): (3): (3): (3	:3) to 13 inc		-			lric Soils Pres		No
5 cm N Restrictive L Type: Depth (inches <u>Remark</u> Wetland Hyd Primary Indic	Mucky Peat or Peat (S .ayer (if observed): 	:3) to 13 inc		t apply		OGY	lric Soils Pres		No
5 cm N Restrictive L Type: Depth (inches <u>Remark</u> Wetland Hyd Primary Indic Surfac	Mucky Peat or Peat (S ayer (if observed): (S): (S): (S): (S): (S): (S): (S): (S	:3) to 13 inc		tt apply Water-)	OGY s (B9)	lric Soils Pres	Second	No dary Indicators (minimum of two required
5 cm N Restrictive L Type: Depth (inches <u>Remark</u> Wetland Hyd Primary Indic Surfac High V	Mucky Peat or Peat (S .ayer (if observed): 	:3) to 13 inc		ut apply Water- Aquati	<u>)</u> Stained Leave	OGY s (B9)	lric Soils Pres	Second	No dary Indicators (minimum of two required Surface Soil Crack (B6)
5 cm N Restrictive L Type: Depth (inches Remark Wetland Hyd Primary Indic Surfac High V Satura	Mucky Peat or Peat (S .ayer (if observed): 	:3) to 13 inc		tt apply Water- Aquati True A	<u>)</u> Stained Leave c Fauna (B13)	OGY s (B9) (B14)	lric Soils Pres	Second	No
5 cm N Restrictive L Type: Depth (inches Remark Wetland Hyd Primary Indic Surfac High V Satura Water	Mucky Peat or Peat (S .ayer (if observed): 	:3) to 13 inc		ut apply Water- Aquati True A Hydrog) Stained Leave c Fauna (B13) quatic Plants (gen Sulfide Oc	OGY s (B9) (B14)		Second	 dary Indicators (minimum of two required Surface Soil Crack (B6) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8)
5 cm N Restrictive L Type: Depth (inches Remark Wetland Hyd Primary Indic Surfac High V Satura Water Sedim	Mucky Peat or Peat (S .ayer (if observed): 	:3) to 13 inc		tt apply Water- Aquati True A Hydrog Oxidiz) Stained Leave c Fauna (B13) quatic Plants (gen Sulfide Oc	OGY s (B9) (B14) lor (C1) es on Living R		Second	 dary Indicators (minimum of two required Surface Soil Crack (B6) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8)
5 cm N Restrictive L Type: Depth (inches Remark Wetland Hyd Primary Indic Surfac High V Satura Water Sedim Drift I	Mucky Peat or Peat (S ayer (if observed): (S): (S): (S): (S): (S): (S): (S): (S	:3) to 13 inc		tt apply Water- Aquati True A Hydrog Oxidiz Presen) Stained Leave c Fauna (B13) quatic Plants (gen Sulfide Oc ed Rhizospher ce or Reduced	OGY s (B9) (B14) lor (C1) es on Living R	oots (C3)	Second	No
5 cm N Restrictive L Type: Depth (inches Remark Wetland Hyd Primary Indic Surfac High V Satura Water Sedim Drift I Algal	Mucky Peat or Peat (S .ayer (if observed): 	:3) to 13 inc		at apply Water- Aquati True A Hydrog Oxidiz Presen Recent) Stained Leave c Fauna (B13) quatic Plants (gen Sulfide Oc ed Rhizospher ce or Reduced	OGY s (B9) (B14) lor (C1) es on Living R Iron (C4) on in Tilled Soi	oots (C3)	Second	<u>No</u> dary Indicators (minimum of two required) Surface Soil Crack (B6) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9 Stunted or Stressed Plants (D1)
5 cm N Restrictive L Type: Depth (inches Remark Wetland Hyd Primary Indic Surfac High V Satura Water Sedim Drift I Algal Iron D	Mucky Peat or Peat (S .ayer (if observed): 	to 13 inc	iired; check all the	at apply Water- Aquati True A Hydrog Oxidiz Presen Recent Thin M) Stained Leave c Fauna (B13) quatic Plants gen Sulfide Oc ed Rhizospher ce or Reduced Iron Reductic	OGY s (B9) (B14) lor (C1) es on Living R Iron (C4) on in Tilled Soi C7)	oots (C3)	Second	 dary Indicators (minimum of two required) Surface Soil Crack (B6) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9 Stunted or Stressed Plants (D1) Geomorphic Position (D2)
5 cm N Restrictive L Type: Depth (inches Remark Wetland Hyd Primary Indic Surfac High V Satura Water Sedim Drift I Algal Iron D Inunda	Mucky Peat or Peat (S .ayer (if observed): 	to 13 inc	ired; check all tha	at apply Water- Aquati True A Hydrog Oxidiz Presen Recent Thin M Gauge) Stained Leave c Fauna (B13) quatic Plants (gen Sulfide Oc ed Rhizospher ce or Reduced Iron Reductic fuck Surface (OGY s (B9) (B14) lor (C1) es on Living R Iron (C4) on in Tilled Soi (C7) (C7)	oots (C3)	Second	 dary Indicators (minimum of two required Surface Soil Crack (B6) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9 Stunted or Stressed Plants (D1) Geomorphic Position (D2)
5 cm N Restrictive L Type: Depth (inches Remark Wetland Hyd Primary Indic Surfac High V Satura Water Sedim Drift I Algal Iron D Inunda	Mucky Peat or Peat (S .ayer (if observed): 	to 13 inc	ired; check all tha	at apply Water- Aquati True A Hydrog Oxidiz Presen Recent Thin M Gauge) Stained Leave c Fauna (B13) quatic Plants gen Sulfide Oc ed Rhizospher ce or Reduced Iron Reductio Iuck Surface (or Well Data	OGY s (B9) (B14) lor (C1) es on Living R Iron (C4) on in Tilled Soi (C7) (C7)	oots (C3)	Second	<u>No</u> dary Indicators (minimum of two required) Surface Soil Crack (B6) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9 Stunted or Stressed Plants (D1) Geomorphic Position (D2)
5 cm N Restrictive L Type: Depth (inches Remark Wetland Hyd Primary Indic Surfac High V Satura Water Sedim Drift I Algal Iron D Inunda Sparse	Mucky Peat or Peat (S .ayer (if observed): 	to 13 inc	ired; check all tha	at apply Water- Aquati True A Hydrog Oxidiz Presen Recent Thin M Gauge Other) Stained Leave c Fauna (B13) quatic Plants gen Sulfide Oc ed Rhizospher ce or Reduced Iron Reductio Iuck Surface (or Well Data	OGY s (B9) (B14) lor (C1) es on Living R Iron (C4) on in Tilled Soi (C7) (C7) (C7) marks)	oots (C3)	Second	<u>No</u> dary Indicators (minimum of two required) Surface Soil Crack (B6) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9 Stunted or Stressed Plants (D1) Geomorphic Position (D2)
5 cm N Restrictive L Type: Depth (inches Remark Wetland Hyd Primary Indic Surfac High V Satura Water Sedim Drift I Algal Iron D Inunda Sparse Field Observa	Mucky Peat or Peat (S .ayer (if observed): 	to 13 inc	ired; check all tha	at apply Water- Aquati True A Hydrog Oxidiz Presen Recent Thin M Gauge Other () Stained Leave c Fauna (B13) quatic Plants (gen Sulfide Oc ed Rhizospher ce or Reduced Iron Reductic Iuck Surface (or Well Data (Explain in Re	OGY s (B9) (B14) lor (C1) res on Living R Iron (C4) on in Tilled Soi (C7) (C7) marks)	oots (C3)	Second	<u>No</u> dary Indicators (minimum of two required) Surface Soil Crack (B6) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9 Stunted or Stressed Plants (D1) Geomorphic Position (D2) FAC-Neutral Test (D5)

Real People. Real Solutions.	((Midwest Region)			
Project/Site: Kohner Property Wetland Delineation		City/County: Waba	sha County		Sampling Date: 6/18/2020
Applicant/Owner: City of Wabasha		State	: MN		Sample Point: W3-A
Investigator(s): Brandon Bohks		Section, Town	ship, Range: 30), 111N, 10W	
Landforms (hillside, terrace, etc.): Floodplain		Local Relief (concave, conve	ex, none): Linear	
Slope (%): 1-3 Latitude:		Longitude:		Datum:	
Soil Map Unit Name: Kalmarville complex, frequently	flooded	NWI Classi	fication: PEM1		
Are climatic/hydrologic conditions of the site typical for	this time of yea	ur?	(If no,	explain in remarks)	
Are vegetation , soils , or l	hydrology	signifi	_ cantly disturbed	d? Are normal ci	rcumstances present? Yes
Are vegetation , soils , or l	hydrology	natura	lly problematic	? (If needed, exp	plain any answers in Remarks)
	SUMM	ARY OF FIND	INGS		
Hydrophytic vegetation present?	Yes				
Hydric soils present?	Yes		Is the samp	pled area within a v	vetland? Yes
Wetland hydrology present?	Yes				
<u>Remarks:</u>					
V	EGETATIO	\mathbf{ON} - Use scientific	names of plants	s	
	Absolut	te Dominant	Indicator	Domir	nance Test Worksheet
Tree Stratum (Plot size: 30 feet)	% Cove	er Species	Status	Number of do	minant species
1 Acer saccharinum	85	Yes	FACW	that are OBL, F.	ACW, or FAC: 3 (A)
2				Total numb	er of dominant
3				species a	cross all strata: 3 (B)
4				Percent of domina	ant species that
5				are OBL, F	FACW or FAC: 100% (A/B)
	85	=Total Cover			
Sapling/Shrub stratum (Plot size: 15 feet)				Preval	ence Index Worksheet
1				Total % cover of:	
2				OBL Species:	0 x 1 = 0
3				FACW Species:	96 x 2 = 192
4				FAC Species:	10 x 3 = 30
5				FACU species:	0 x 4 = 0
	0	=Total Cover		UPL Species:	0 x 5 = 0
Herb stratum: (Plot size: 5 feet)		_		Totals:	106 (A) 222 (B)
1 Verbena urticifolia	10	Yes	FAC	Prevalence	e Index (B/A): 2.09
2 Pilea pumila	5	Yes	FACW		
3 Lysimachia nummularia	3	No	FACW	Hydrophy	tic Vegetation Indicators
4 Impatiens capensis	3	No	FACW	Rapid test	for hydrophytic vegetation
5				X Dominanc	e test >50%
6				X Prevalence	e index is $\leq 3.0^*$
7				Morpholog	gical adaptations* (Provide
8					(data in remarks)
9				Problemat	ic hydrophytic vegetation*
10				(Explain in	
	21	=Total Cover			
Woody vine stratum: (Plot size: 15 feet)		—			ydric soil and wetland hydrology , unless disturbed or problematic
1				must de present.	, unless disturbed of problematic
2				Hydrophytic	vegetation
	0	=Total Cover		prese	-
		_		· ·	

Real People. Real Solutions.

(Midwest Region)

Depth	Matrix			Redo	x Features				
(inches)	Color (moist)	%	Color (moist)	%	Type*	Loc**	Textu	re	Remarks
0-6	10YR 2/2	100					Mucky 1	Mod	
6-15+	10YR 5/1	100					Sand	1	
	*Type: C = Concentr	ation, D =	Depletion, RM	= Redu	ced Matrix, M	S = Masked Sa	nd Grains. **	Location	n: PL = Pore Lining, M = Matrix
Iydric Soil 1			•						or Problematic Hydric Soils*:
-	ol (A1)			Sandy	Gleyed Matrix	(S4)			Prairie Redox (A16)(LRR K,L,R)
	Epipedon (A2)				Redox (S5)				Surface (S7)(LRR K, L)
	Histic (A3)			•	ed Matrix (S6)				Ianganese Masses (F12)(LRR K, L, R)
	ogen Sulfide (A4)				Mucky Mater			_	Shallow Dark Surface (TF12)
	fied Layers (A5)				Gleyed Matri			_	(Explain in remarks)
	Muck (A10)				ed Matrix (F3)			_	(I
	ted Below Dark Surfa	CP (A11)		•	Dark Surface				
	Dark Surface (A12)				ed Dark Surface	. ,			
				Depict			*Inc	licators of	of hydrophytic vegetation and wetland
				Dodov	Doproceione (EQ)	h	drology	must be present uplace disturbed or
Sandy	Mucky Material (S1)			Redox	Depressions (F8)	hy	/drology	must be present, unless disturbed or problematic
Sandy 5 cm 1	Mucky Material (S1) Mucky Peat or Peat (S			Redox	Depressions ()	F8)	hy	/drology	
Sandy 5 cm 1 Restrictive I	Mucky Material (S1)			Redox	Depressions ()				
Sandy 5 cm 1 Restrictive L Type:	Mucky Material (S1) Mucky Peat or Peat (S Layer (if observed):			Redox	Depressions ()		hy dric Soils Pre		
Sandy 5 cm 1 Restrictive I	Mucky Material (S1) Mucky Peat or Peat (S Layer (if observed):			Redox	Depressions ()				problematic
Sandy 5 cm 1 Restrictive I Fype: Depth (inches	Mucky Material (S1) Mucky Peat or Peat (S Layer (if observed):	3)		Redox	Depressions ()				problematic
Sandy 5 cm 1 Restrictive L Type:	Mucky Material (S1) Mucky Peat or Peat (S Layer (if observed):	3)	 hes			Нус			problematic
Sandy 5 cm 1 Restrictive I Type: Depth (inches <u>Remark</u>	Mucky Material (S1) Mucky Peat or Peat (S Layer (if observed): S): Soik pit dug	3)	hes		Depressions ()	Нус			problematic
Sandy 5 cm 1 Sype: Depth (inches Remark	Mucky Material (S1) Mucky Peat or Peat (S ayer (if observed): S): Soik pit dug Irology Indicators:	(3) to 15 incl			HYDROL	Нус		sent?	problematic <u>Yes</u>
Sandy 5 cm 1 5 cm 1 Fype: Depth (inches <u>Remark</u> Vetland Hyd Primary Indic	Mucky Material (S1) Mucky Peat or Peat (S Layer (if observed): S): Soik pit dug Irology Indicators: eators (minimum of or	(3) to 15 incl		.t apply	HYDROL	Hyo OGY		sent?	problematic <u>Yes</u> dary Indicators (minimum of two required
Sandy 5 cm 1 Sestrictive I Type: Depth (inches Remark Vetland Hyd Primary Indic Surfac	Mucky Material (S1) Mucky Peat or Peat (S ayer (if observed): s): Soik pit dug rology Indicators: cators (minimum of or ce Water (A1)	(3) to 15 incl		t apply Water-	HYDROL Stained Leave	Нус ОGY s (B9)		sent?	problematic <u>Yes</u>
Sandy 5 cm 1 5 cm 1 Fype: Depth (inches Remark Vetland Hyd Primary Indic Surfac X High V	Mucky Material (S1) Mucky Peat or Peat (S Layer (if observed): (S):	(3) to 15 incl	red; check all that	tt apply Water- Aquati	HYDROL) Stained Leave c Fauna (B13)	Hyo OGY s (B9)		sent?	problematic <u>Yes</u> dary Indicators (minimum of two required Surface Soil Crack (B6) Drainage Patterns (B10)
Sandy 5 cm 1 7 Som 1 7	Mucky Material (S1) Mucky Peat or Peat (S Layer (if observed): S): Soik pit dug Brology Indicators: Eators (minimum of or ce Water (A1) Water Table (A2) ation (A3)	(3) to 15 incl	red; check all that	t apply Water- Aquati True A	HYDROL) Stained Leave c Fauna (B13) quatic Plants (Hyo OGY s (B9) (B14)		sent?	problematic <u>Yes</u> dary Indicators (minimum of two required Surface Soil Crack (B6) Drainage Patterns (B10) Dry-Season Water Table (C2)
Sandy 5 cm 1 5 cm 1 Fype: Depth (inchest Remark Remark Vetland Hyd Primary Indic Surfac X High V X Satura Water	Mucky Material (S1) Mucky Peat or Peat (S Layer (if observed): (S):	(3) to 15 incl	red; check all that	t apply Water- Aquati True A	HYDROL) Stained Leave c Fauna (B13)	Hyo OGY s (B9) (B14)		sent?	problematic <u>Yes</u> dary Indicators (minimum of two required Surface Soil Crack (B6) Drainage Patterns (B10)
Sandy 5 cm 1 7 Son 1 7	Mucky Material (S1) Mucky Peat or Peat (S Layer (if observed): S): Soik pit dug Irology Indicators: Cators (minimum of or Cators (Mater Table (A2) Ation (A3) Marks (B1) ment Deposits (B2)	(3) to 15 incl	red; check all that	t apply Water- Aquati True A Hydrog	HYDROLO) Stained Leave c Fauna (B13)	Hyo OGY s (B9) (B14)	lric Soils Pre	sent?	problematic <u>Yes</u> dary Indicators (minimum of two required Surface Soil Crack (B6) Drainage Patterns (B10) Dry-Season Water Table (C2)
Sandy 5 cm 1 5 cm 1 Fype: Depth (inchest Remark Remark Vetland Hyd Primary Indic Surfac X High ' X Satura Water Sedim	Mucky Material (S1) Mucky Peat or Peat (S Layer (if observed): (S):	(3) to 15 incl	red; check all that	t apply Water- Aquati True A Hydrog Oxidiz	HYDROLO) Stained Leave c Fauna (B13)	Hyd OGY s (B9) (B14) lor (C1) es on Living R	lric Soils Pre	sent?	problematic <u>Yes</u> dary Indicators (minimum of two required Surface Soil Crack (B6) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8)
Sandy 5 cm 1 5 cm 1 Fype: Depth (inchest Remark Remark Vetland Hyd Primary Indic Surfac X High V X Satura Water Sedim X Drift 1	Mucky Material (S1) Mucky Peat or Peat (S Layer (if observed): S): Soik pit dug Irology Indicators: Cators (minimum of or Cators (Mater Table (A2) Ation (A3) Marks (B1) ment Deposits (B2)	(3) to 15 incl	red; check all that	t apply Water- Aquati True A Hydrog Oxidiz Presen	HYDROLO Stained Leave c Fauna (B13) quatic Plants (gen Sulfide Od ed Rhizospher ce or Reduced	Hyd OGY s (B9) (B14) lor (C1) es on Living R	Iric Soils Pre	sent?	yes dary Indicators (minimum of two required Surface Soil Crack (B6) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9)
Sandy 5 cm 1 Source I Restrictive I Type: Depth (inchest Remark Remark Remark Remark Remark Remark Surfac Surfac X High X Satura Water Sedim X Drift I X Algal	Mucky Material (S1) Mucky Peat or Peat (S Layer (if observed): (S): Soik pit dug Comparison Soik pit dug Comparison Co	(3) to 15 incl	red; check all that	tt apply Water- Aquati True A Hydrog Oxidiz Presen Recent	HYDROLO Stained Leave c Fauna (B13) quatic Plants (gen Sulfide Od ed Rhizospher ce or Reduced	Hyd OGY s (B9) (B14) lor (C1) es on Living R Iron (C4) on in Tilled Soi	Iric Soils Pre	sent?	Yes
Sandy 5 cm 1 7ype: Depth (inches Remark Vetland Hyd Primary Indic Surfac X High X Satura Water Sedim X Drift I X Algal Iron D	Mucky Material (S1) Mucky Peat or Peat (S Layer (if observed): S): Soik pit dug Comparison Soik pit dug Soik pit	to 15 incl	red; check all tha	tt apply Water- Aquati True A Hydrog Oxidiz Presen Recent Thin M	HYDROLO) Stained Leave c Fauna (B13) quatic Plants (gen Sulfide Od ed Rhizospher ce or Reduced Iron Reductio	Hyd OGY s (B9) (B14) lor (C1) es on Living R Iron (C4) m in Tilled Soi C7)	Iric Soils Pre	sent?	yes
Sandy 5 cm 1 5 cm 1 Restrictive I Type: Depth (inchest Remark Remark Vetland Hyd Primary Indic Surfac X High X Satura Water Sedim X Drift 1 X Algal Iron D Inunda	Mucky Material (S1) Mucky Peat or Peat (S Layer (if observed): S): Soik pit dug Brology Indicators: eators (minimum of or ce Water (A1) Water Table (A2) ation (A3) Marks (B1) ment Deposits (B2) Deposits (B3) Mat or Crust (B4) Deposits (B5)	to 15 incl ne is requi	red; check all tha 	tt apply Water- Aquati True A Hydrog Oxidiz Presen Recent Thin M Gauge	HYDROL Stained Leave c Fauna (B13) quatic Plants (gen Sulfide Od ed Rhizospher ce or Reduced Iron Reductio fuck Surface (Hyd OGY s (B9) (B14) lor (C1) es on Living R Iron (C4) on in Tilled Soi C7) (C7)	Iric Soils Pre	sent?	yes
Sandy 5 cm 1 5 cm 1 Restrictive I Type: Depth (inchest Remark Remark Vetland Hyd Primary Indic Surfac X High X Satura Water Sedim X Drift 1 X Algal Iron D Inunda	Mucky Material (S1) Mucky Peat or Peat (S Layer (if observed): S): Soik pit dug Soik pit dug Contrology Indicators: Eators (minimum of or Ce Water (A1) Water Table (A2) Ation (A3) Marks (B1) Marks (B1) Marks (B1) Marks (B1) Deposits (B2) Deposits (B3) Mat or Crust (B4) Deposits (B5) ation Visible on Aeria ely Vegetated Concave	to 15 incl ne is requi	red; check all tha 	tt apply Water- Aquati True A Hydrog Oxidiz Presen Recent Thin M Gauge	HYDROLO) Stained Leave c Fauna (B13) quatic Plants (gen Sulfide Od ed Rhizospher ce or Reduced Iron Reductio fuck Surface (or Well Data (Hyd OGY s (B9) (B14) lor (C1) es on Living R Iron (C4) on in Tilled Soi C7) (C7)	Iric Soils Pre	sent?	yes
Sandy 5 cm 1 5 cm 1 Restrictive I Type: Depth (inchest Remark Remark Vetland Hyd Primary Indic Surfac X High X Satura Water Sedim X Drift I X Algal Iron E Inunda Sparse	Mucky Material (S1) Mucky Peat or Peat (S Layer (if observed): S): Soik pit dug Irology Indicators: Cators (minimum of or Ce Water (A1) Water Table (A2) ation (A3) Marks (B1) Marks (B1) Mat or Crust (B4) Deposits (B3) Mat or Crust (B4) Deposits (B5) ation Visible on Aeria ely Vegetated Concave ations:	to 15 incl ne is requi	red; check all tha 	t apply Water- Aquati True A Hydrog Oxidiz Presen Recent Thin M Gauge Other (HYDROLO) Stained Leave c Fauna (B13) quatic Plants (gen Sulfide Od ed Rhizospher ce or Reduced Iron Reductio fuck Surface (or Well Data (Hyd OGY s (B9) (B14) lor (C1) es on Living R Iron (C4) on in Tilled Soi (C7) (C7) (C7) marks)	Iric Soils Pre	sent?	yes
Sandy 5 cm 1 Second Restrictive I Type: Depth (inchest Remark Remark Vetland Hyd Primary Indic Surfac X High X Satura Water Sedim X Drift I X Algal Iron E Inunda Sparse	Mucky Material (S1) Mucky Peat or Peat (S Layer (if observed): S): Soik pit dug rology Indicators: eators (minimum of or ce Water (A1) Water Table (A2) ation (A3) Marks (B1) ment Deposits (B2) Deposits (B3) Mat or Crust (B4) Deposits (B5) ation Visible on Aeria ely Vegetated Concave ations: pr Present?	to 15 incl ne is requi	red; check all tha X (B7) (B8)	t apply Water- Aquati True A Hydrog Oxidiz Presen Recent Thin M Gauge Other (HYDROLO Stained Leave c Fauna (B13) quatic Plants (gen Sulfide Od ed Rhizospher ce or Reduced Iron Reductio fuck Surface (or Well Data (Explain in Re	Hyd OGY s (B9) (B14) lor (C1) es on Living R Iron (C4) on in Tilled Soi C7) (C7) marks)	Iric Soils Pre	sent?	Yes dary Indicators (minimum of two required Surface Soil Crack (B6) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Stunted or Stressed Plants (D1) Geomorphic Position (D2) FAC-Neutral Test (D5)

Real People. Real Solutions.	(M	lidwest Region)			
Project/Site: Kohner Property Wetland Delineation	Ci	ty/County: Waba	isha County		Sampling Date: 6/18/2020
Applicant/Owner: City of Wabasha		State	e: MN		Sample Point: W3-B
Investigator(s): Brandon Bohks		Section, Town	ship, Range: 30), 111N, 10W	
Landforms (hillside, terrace, etc.): Backslope		Local Relief	(concave, conve	ex, none): Convex	
Slope (%): 6-8 Latitude:		Longitude:		Datum:	
Soil Map Unit Name: Ceresco-Spillville complex, freque	ntly flooded	NWI Classi	fication:		
Are climatic/hydrologic conditions of the site typical for th	is time of year?		(If no,	explain in remarks)	
Are vegetation , soils , or hy	drology	signif	icantly disturbed	1? Are normal circu	umstances present? No
Are vegetation , soils , or hy	drology	natura	ally problematic	? (If needed, explai	in any answers in Remarks)
	SUMMA	RY OF FINI	DINGS		
Hydrophytic vegetation present?	Yes				
Hydric soils present?	No		Is the sam	oled area within a wet	land? No
Wetland hydrology present?	No				
Remarks:					
VF	GETATIO	N - Use scientific	names of plant	e	
V L					ce Test Worksheet
Tree Stratum (Plot size: 30 feet)	Absolute % Cover	Dominant Species	Indicator Status		
1 Fraxinus pennsylvanica	% Cover 20	Yes	FACW	Number of domi that are OBL, FAC	
2 Ulmus americana		Yes	FACW		
		105	FACW	Total number	
3				species acro	
4				Percent of dominant	-
5				are OBL, FAC	CW or FAC: 100% (A/B)
Genting (Chards standards (Distained 15.6)	30	=Total Cover			T
Sapling/Shrub stratum (Plot size: 15 feet)	10	X 7	EAC		ce Index Worksheet
1 Rhamnus cathartica	10	Yes	FAC	Total % cover of:	
2				OBL Species:	0 x 1 = 0
3				· · ·	$\frac{90}{10}$ x 2 = 180
4		·		· · ·	$\frac{10}{2}$ x 3 = $\frac{30}{2}$
5				FACU species:	0 x 4 = 0
	10	=Total Cover		UPL Species:	$\frac{0}{0} \mathbf{x} 5 = 0$
Herb stratum: (Plot size: 5 feet)				Totals:	
1 Laportea canadensis	55	Yes	FACW	Prevalence I	ndex (B/A): 2.10
2 Pilea fontana	5	No	FACW		
3					Vegetation Indicators
4					hydrophytic vegetation
5				X Dominance te	
6				X Prevalence in	dex is ≤3.0*
78					al adaptations* (Provide tta in remarks)
9					
10				Problematic l (Explain in re	nydrophytic vegetation* emarks)
	60	=Total Cover			
Woody vine stratum: (Plot size: 15 feet)					ic soil and wetland hydrology less disturbed or problematic
1				musi de present, ul	ness disturbed of problematic
2				Hydrophytic ve	retation
	0	=Total Cover		present?	-
				<u> </u>	

Real People. Real Solutions.

(Midwest Region)

Depth	Matrix			Redo	x Features	•			
(inches)	Color (moist)	%	Color (moist)	%	Type*	Loc**	Texture	;	Remarks
0-10	10YR 2/1	100					Sandy Lo	am	
10-18	10YR 4/2	100					Sand		
	*Type: C = Concentration	ation, D	= Depletion, RM	= Redu	ced Matrix, M	S = Masked Sa	nd Grains. **L	ocation	: PL = Pore Lining, M = Matrix
Hydric Soil l	Indicators:						Indic	ators fo	r Problematic Hydric Soils*:
Histis	ol (A1)			Sandy	Gleyed Matrix	x (S4)		Coast I	Prairie Redox (A16)(LRR K,L,R)
Histic	Epipedon (A2)			Sandy	Redox (S5)			Dark S	urface (S7)(LRR K, L)
Black	Histic (A3)			Strippe	ed Matrix (S6)			Iron-M	anganese Masses (F12)(LRR K, L, R)
Hydro	ogen Sulfide (A4)			Loamy	Mucky Mater	rial (F1)		Very S	hallow Dark Surface (TF12)
Stratif	fied Layers (A5)			Loamy	Gleyed Matri	x (F2)		Other (Explain in remarks)
2 cm 1	Muck (A10)			Deplet	ed Matrix (F3))			
Deple	ted Below Dark Surfa	ce (A11)		Redox	Dark Surface	(F6)			
Thick	Dark Surface (A12)			Deplet	ed Dark Surfa	ce (F7)	*Indi	cators o	f hydrophytic vegetation and wetland
Sandy	Mucky Material (S1)			Redox	Depressions (I	F8)			must be present, unless disturbed or
Sanuy									11
	Mucky Peat or Peat (S	3)							problematic
5 cm 1		3)							problematic
5 cm l Restrictive I	Mucky Peat or Peat (S Layer (if observed):	3)				Hvo	Iric Soils Pres	ent?	
5 cm I Restrictive I Type:	Layer (if observed):	3)				Нус	lric Soils Pres	ent?	No
5 cm l Restrictive I	Layer (if observed):	3)				Нус	lric Soils Pres	ent?	
5 cm I Restrictive I Type:	cayer (if observed): s):		hes.			Нус	lric Soils Pres	ent?	
5 cm l Restrictive L Type: Depth (inches	Layer (if observed):		hes.		HYDROL		lric Soils Pres	ent?	
5 cm I Restrictive I Type: Depth (inches Remark	Layer (if observed):		hes.		HYDROL		lric Soils Pres	ent?	
5 cm l Restrictive L Type: Depth (inches <u>Remark</u> Vetland Hyd	Layer (if observed): (s):	to 18 inc					lric Soils Pres		
5 cm I Restrictive I Type: Depth (inches Remark Vetland Hyd Primary Indic	Layer (if observed): s): s): Soil pit dug to the second se	to 18 inc		t apply		OGY	lric Soils Pres	Second	
5 cm 1 Restrictive L Type: Depth (inches Remark Vetland Hyd Primary Indic Surfac	Layer (if observed): (s):	to 18 inc		t apply Water-)	OGY s (B9)	lric Soils Pres	Second	No
5 cm I Restrictive I Type: Depth (inches Remark Vetland Hyd Primary Indic Surfac High V	Layer (if observed): s): ss: Soil pit dug to the second se	to 18 inc		t apply Water- Aquati) Stained Leave	OGY s (B9)	lric Soils Pres	Second	No
5 cm I Restrictive I Type: Depth (inches Remark Vetland Hyd Primary Indic Surfac High V Satura	Layer (if observed): s): ss: Soil pit dug to the second se	to 18 inc		<u>it apply</u> Water- Aquati True A	<u>)</u> Stained Leave c Fauna (B13)	OGY s (B9) (B14)	lric Soils Pres	Second	No
5 cm I Restrictive I Type: Depth (inches Remark Vetland Hyd Primary Indic Surfac High Satura Water	Layer (if observed):	to 18 inc		t apply Water- Aquati True A Hydrog	<u>)</u> Stained Leave c Fauna (B13) quatic Plants (gen Sulfide Od	OGY s (B9) (B14)		Second	
5 cm I Restrictive I Type: Depth (inchest Remark Vetland Hyd Primary Indic Surfac High V Satura Satura Sedim	Layer (if observed): Layer (if observed): s): Soil pit dug to the second	to 18 inc		tt apply Water- Aquati True A Hydrog Oxidiz	<u>)</u> Stained Leave c Fauna (B13) quatic Plants (gen Sulfide Od	OGY s (B9) (B14) lor (C1) es on Living R		Second	
5 cm l Restrictive I Type: Depth (inchest Remark Remark Vetland Hyd Primary Indic Surfac High Satura Water Sedim Drift I	Layer (if observed): Layer (if observed): (s): Soil pit dug to Isology Indicators: cators (minimum of or Ce Water (A1) Water Table (A2) ation (A3) Marks (B1) nent Deposits (B2)	to 18 inc		<u>it apply</u> Water- Aquati True A Hydrog Oxidiz Presen) Stained Leave c Fauna (B13) quatic Plants (gen Sulfide Od ed Rhizospher ce or Reduced	OGY s (B9) (B14) lor (C1) es on Living R	oots (C3)	Second	<u>No</u> lary Indicators (minimum of two required Surface Soil Crack (B6) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9
5 cm l Restrictive I Type: Depth (inchest Remark Wetland Hyd Primary Indic Surfac High V Satura Water Sedim Drift I Algal	Layer (if observed): Layer (if observed): (a) (a) (b) (c) (c) </td <td>to 18 inc</td> <td></td> <td>tt apply Water- Aquati True A Hydrog Oxidiz Presen Recent</td> <td>) Stained Leave c Fauna (B13) quatic Plants (gen Sulfide Od ed Rhizospher ce or Reduced</td> <td>OGY s (B9) (B14) lor (C1) es on Living R Iron (C4) on in Tilled Soi</td> <td>oots (C3)</td> <td>Second</td> <td><u>No</u> <u>Iary Indicators (minimum of two required)</u> Surface Soil Crack (B6) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9 Stunted or Stressed Plants (D1)</td>	to 18 inc		tt apply Water- Aquati True A Hydrog Oxidiz Presen Recent) Stained Leave c Fauna (B13) quatic Plants (gen Sulfide Od ed Rhizospher ce or Reduced	OGY s (B9) (B14) lor (C1) es on Living R Iron (C4) on in Tilled Soi	oots (C3)	Second	<u>No</u> <u>Iary Indicators (minimum of two required)</u> Surface Soil Crack (B6) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9 Stunted or Stressed Plants (D1)
5 cm l Restrictive I Type: Depth (inchest Remark Vetland Hyd Primary Indic Surfac High Satura Water Sedim Drift I Algal Iron D	Layer (if observed): Layer (if observed): (s): Soil pit dug to Isology Indicators: cators (minimum of or ce Water (A1) Water Table (A2) ation (A3) Marks (B1) nent Deposits (B2) Deposits (B3) Mat or Crust (B4)	to 18 inc	ired; check all the	t apply Water- Aquati True A Hydrog Oxidiz Presen Recent Thin M) Stained Leave c Fauna (B13) quatic Plants (gen Sulfide Od ed Rhizospher ce or Reduced i Iron Reductio	OGY s (B9) (B14) lor (C1) es on Living R Iron (C4) on in Tilled Soit C7)	oots (C3)	Second	<u>No</u> <u>Iary Indicators (minimum of two required)</u> Surface Soil Crack (B6) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Stunted or Stressed Plants (D1) Geomorphic Position (D2)
5 cm l Restrictive I Type: Depth (inchest Remark Wetland Hyd Primary Indic Surfac High V Satura Water Sedim Drift I Algal Iron D Inunda	Layer (if observed): Layer (if observed): (s): Soil pit dug to (s): (s): </td <td>to 18 inc</td> <td>ired; check all the</td> <td>t apply Water- Aquati True A Hydrog Oxidiz Presen Recent Thin M Gauge</td> <td>) Stained Leave c Fauna (B13) quatic Plants (gen Sulfide Od ed Rhizospher ce or Reduced Firon Reductio fuck Surface (</td> <td>OGY s (B9) (B14) lor (C1) es on Living R Iron (C4) on in Tilled Soi (C7) (C7)</td> <td>oots (C3)</td> <td>Second</td> <td><u>No</u> <u>Iary Indicators (minimum of two required</u> Surface Soil Crack (B6) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9 Stunted or Stressed Plants (D1) Geomorphic Position (D2)</td>	to 18 inc	ired; check all the	t apply Water- Aquati True A Hydrog Oxidiz Presen Recent Thin M Gauge) Stained Leave c Fauna (B13) quatic Plants (gen Sulfide Od ed Rhizospher ce or Reduced Firon Reductio fuck Surface (OGY s (B9) (B14) lor (C1) es on Living R Iron (C4) on in Tilled Soi (C7) (C7)	oots (C3)	Second	<u>No</u> <u>Iary Indicators (minimum of two required</u> Surface Soil Crack (B6) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9 Stunted or Stressed Plants (D1) Geomorphic Position (D2)
5 cm I Restrictive I Type: Depth (inches Remark Vetland Hyd Primary Indic Surfac High Satura Water Sedim Drift I Algal Iron E Inunda Sparse	Layer (if observed): as: Soil pit dug to ss: Soil pit dug to cators (minimum of or or cators (minimum of or	to 18 inc	ired; check all the	t apply Water- Aquati True A Hydrog Oxidiz Presen Recent Thin M Gauge) Stained Leave c Fauna (B13) Aquatic Plants (gen Sulfide Od ed Rhizospher ce or Reduced : Iron Reductio fuck Surface (or Well Data (OGY s (B9) (B14) lor (C1) es on Living R Iron (C4) on in Tilled Soi (C7) (C7)	oots (C3)	Second	<u>No</u> <u>Iary Indicators (minimum of two required</u> Surface Soil Crack (B6) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9 Stunted or Stressed Plants (D1) Geomorphic Position (D2)
5 cm l Restrictive I Type: Depth (inches Remark Wetland Hyd Primary Indic Surfac High V Satura Water Sedim Drift I Algal Iron D Inunda	Layer (if observed): Layer (if observed): (a) (b) (c) (c) </td <td>to 18 inc</td> <td>ired; check all the</td> <td>t apply Water- Aquati True A Hydrog Oxidiz Presen Recent Thin M Gauge Other (</td> <td>) Stained Leave c Fauna (B13) Aquatic Plants (gen Sulfide Od ed Rhizospher ce or Reduced : Iron Reductio fuck Surface (or Well Data (</td> <td>OGY s (B9) (B14) lor (C1) es on Living R Iron (C4) on in Tilled Soi (C7) (C7) (C7) marks)</td> <td>oots (C3)</td> <td>Second </td> <td><u>No</u> <u>Iary Indicators (minimum of two required)</u> Surface Soil Crack (B6) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Stunted or Stressed Plants (D1) Geomorphic Position (D2) FAC-Neutral Test (D5)</td>	to 18 inc	ired; check all the	t apply Water- Aquati True A Hydrog Oxidiz Presen Recent Thin M Gauge Other () Stained Leave c Fauna (B13) Aquatic Plants (gen Sulfide Od ed Rhizospher ce or Reduced : Iron Reductio fuck Surface (or Well Data (OGY s (B9) (B14) lor (C1) es on Living R Iron (C4) on in Tilled Soi (C7) (C7) (C7) marks)	oots (C3)	Second 	<u>No</u> <u>Iary Indicators (minimum of two required)</u> Surface Soil Crack (B6) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Stunted or Stressed Plants (D1) Geomorphic Position (D2) FAC-Neutral Test (D5)
5 cm I Restrictive I Type: Depth (inchest Remark Vetland Hyd Primary Indic Surfac High V Satura Water Sedim Drift I Algal Iron E Inunda Sparse Field Observa	Layer (if observed): Layer (if observed): (s): Soil pit dug to (s): (s): <td>to 18 inc</td> <td>ired; check all the</td> <td>tt apply Water- Aquati True A Hydrog Oxidiz Presen Recent Thin M Gauge Other (</td> <td>) Stained Leave c Fauna (B13) quatic Plants (gen Sulfide Od ed Rhizospher ce or Reduced : Iron Reductio fuck Surface (or Well Data ((Explain in Re</td> <td>OGY s (B9) (B14) lor (C1) ves on Living R Iron (C4) on in Tilled Soit (C7) (C7) marks)</td> <td>oots (C3)</td> <td>Second </td> <td><u>No</u> <u>Iary Indicators (minimum of two required)</u> Surface Soil Crack (B6) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9 Stunted or Stressed Plants (D1) Geomorphic Position (D2)</td>	to 18 inc	ired; check all the	tt apply Water- Aquati True A Hydrog Oxidiz Presen Recent Thin M Gauge Other () Stained Leave c Fauna (B13) quatic Plants (gen Sulfide Od ed Rhizospher ce or Reduced : Iron Reductio fuck Surface (or Well Data ((Explain in Re	OGY s (B9) (B14) lor (C1) ves on Living R Iron (C4) on in Tilled Soit (C7) (C7) marks)	oots (C3)	Second 	<u>No</u> <u>Iary Indicators (minimum of two required)</u> Surface Soil Crack (B6) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9 Stunted or Stressed Plants (D1) Geomorphic Position (D2)

Real People. Real Solutions.		(Midwest Region)			
Project/Site: Kohner Property Wetland Delineation		City/County: Waba	sha County		Sampling Date: 6/25/2020
Applicant/Owner: City of Wabasha		State	: MN		Sample Point: W4-A
Investigator(s): Brandon Bohks		Section, Town	ship, Range: 30), 111N, 10W	
Landforms (hillside, terrace, etc.): Toeslope/Depression		Local Relief ((concave, conve	x, none): Concave	
Slope (%): 0-2 Latitude:		Longitude:		Datum:	
Soil Map Unit Name: Pits, gravel-Udipsamments		NWI Classi	fication:		
Are climatic/hydrologic conditions of the site typical for this	time of yea	ur?	(If no,	explain in remarks)	
Are vegetation \mathbf{X} , soils \mathbf{X} , or hydr	rology	X signifi	cantly disturbed		cumstances present? No
Are vegetation , soils , or hydr			lly problematic		lain any answers in Remarks)
		ARY OF FIND			•
Hydrophytic vegetation present?	Yes				
Hydric soils present?	Yes		Is the same	oled area within a w	etland? Yes
Wetland hydrology present?	Yes				
<u>Remarks:</u> Very likely the site was previously excavate	ed du eto n	nining practices.			
VEG	FLAII	ON - Use scientific	names of plants	1	
	Absolut		Indicator	Domin	ance Test Worksheet
Tree Stratum (Plot size: 30 feet)	% Cove	er Species	Status	Number of dor	1
1				that are OBL, FA	ACW, or FAC: 2 (A)
2					er of dominant
3				species ac	ross all strata: 2 (B)
4				Percent of dominat	nt species that
5				are OBL, F.	ACW or FAC: 100% (A/B)
	0	=Total Cover			
Sapling/Shrub stratum (Plot size: 15 feet)				Prevale	nce Index Worksheet
1 Salix bebbiana	10	Yes	FACW	Total % cover of:	
2 Fraxinus pennsylvanica	5	Yes	FACW	OBL Species:	0 $x 1 = 0$
3				FACW Species:	15 x 2 = 30
4				FAC Species:	0 $x 3 = 0$
5				FACU species:	0 $x 4 = 0$
	15	=Total Cover		UPL Species:	0 $x 5 = 0$
Herb stratum: (Plot size: 5 feet)		_		Totals:	15 (A) 30 (B)
1				Prevalence	e Index (B/A): 2.00
2					
3				Hydrophy	tic Vegetation Indicators
4				X Rapid test f	or hydrophytic vegetation
5				Dominance	test >50%
6				Prevalence	index is $\leq 3.0^*$
7					ical adaptations* (Provide
8					data in remarks)
9					c hydrophytic vegetation*
10				(Explain in	
	0	=Total Cover			
Woody vine stratum: (Plot size: 15 feet)					dric soil and wetland hydrology
1 (******* <u>*****</u>)				must be present,	unless disturbed or problematic
2				T 1 1 4	
2	0	=Total Cover		Hydrophytic y presen	
				Presen	100
Remarks:	0	=Total Cover		presen	

Real People. Real Solutions.

(Midwest Region) SOILS

	ription: (Describe to						1	
Depth	Matrix	-		Redo	x Features	-		
(inches)	Color (moist)	%	Color (moist)	%	Type*	Loc**	Texture	Remarks
0-8	10YR 2/1	100					Mucky Mod	
8-14+	10YR 5/1	100					Sand	
	*Type: C = Concentr	ation, D	= Depletion, RM	= Redu	ced Matrix, M	S = Masked Sa	and Grains. **Loca	tion: PL = Pore Lining, M = Matrix
Hydric Soil I	Indicators:						Indicato	rs for Problematic Hydric Soils*:
Histis	ol (A1)			Sandy	Gleyed Matrix	x (S4)	Co	ast Prairie Redox (A16)(LRR K,L,R)
Histic	Epipedon (A2)			Sandy	Redox (S5)		Da	rk Surface (S7)(LRR K, L)
Black	Histic (A3)			Stripp	ed Matrix (S6)		Irc	n-Manganese Masses (F12)(LRR K, L, R)
Hydro	ogen Sulfide (A4)			Loamy	Mucky Mater	rial (F1)	Ve	ry Shallow Dark Surface (TF12)
Stratif	fied Layers (A5)			Loamy	Gleyed Matri	x (F2)	Ot	her (Explain in remarks)
2 cm 1	Muck (A10)			Deplet	ted Matrix (F3))		
X Deple	ted Below Dark Surfa	ce (A11))	Redox	Dark Surface	(F6)		
	Dark Surface (A12)			Deplet	ted Dark Surfa	ce (F7)	*Indicat	ors of hydrophytic vegetation and wetland
Thick	Dark Surface (A12)			-				
	Mucky Material (S1)	1		Redox	Depressions (F8)	hydrol	ogy must be present, unless disturbed or
Sandy				Redox	Depressions (F8)	hydrol	ogy must be present, unless disturbed or problematic
Sandy	Mucky Material (S1) Mucky Peat or Peat (S			Redox	Depressions (F8)	hydrol	
Sandy 5 cm 1 Restrictive I	Mucky Material (S1)			Redox	Depressions (problematic
Sandy 5 cm 1 Restrictive L Type:	Mucky Material (S1) Mucky Peat or Peat (S Layer (if observed):			Redox	Depressions (hydrol dric Soils Present	problematic
Sandy 5 cm 1 Restrictive I	Mucky Material (S1) Mucky Peat or Peat (S Layer (if observed):			Redox	Depressions (problematic
Sandy 5 cm 1 Restrictive I Type:	Mucky Material (S1) Mucky Peat or Peat (S Layer (if observed): s):	3)		Redox	Depressions (problematic
Sandy 5 cm 1 Restrictive I Type: Depth (inches	Mucky Material (S1) Mucky Peat or Peat (S Layer (if observed): s):	3)	ches	-	Depressions (Hy		problematic
Sandy 5 cm I Restrictive I Type: Depth (inches Remark	Mucky Material (S1) Mucky Peat or Peat (S Layer (if observed): s):	3)	thes	-		Hy		problematic
Sandy 5 cm 1 Restrictive I Type: Depth (inches <u>Remark</u>	Mucky Material (S1) Mucky Peat or Peat (S Layer (if observed): S): Soil pit dug	3) to 14 inc		-	HYDROL	Hy	dric Soils Present	problematic
Sandy 5 cm 1 7 Sector	Mucky Material (S1) Mucky Peat or Peat (S ayer (if observed): s): Soil pit dug lrology Indicators:	3) to 14 inc		- - at apply	HYDROL	Hy OGY	dric Soils Present	problematic ? <u>Yes</u>
Sandy 5 cm 1 Restrictive I Type: Depth (inchest Remark Wetland Hyd Primary Indic Surfac	Mucky Material (S1) Mucky Peat or Peat (S Layer (if observed): S): Soil pit dug Irology Indicators: eators (minimum of or	3) to 14 inc	iired; check all that	at apply	HYDROL	Ну(ОGY s (B9)	dric Soils Present	problematic
Sandy 5 cm 1 Restrictive I Type: Depth (inches Remark Wetland Hyd Primary Indic Surfac X High V	Mucky Material (S1) Mucky Peat or Peat (S ayer (if observed): s): Soil pit dug Rology Indicators: eators (minimum of or ce Water (A1)	3) to 14 inc	iired; check all that	at apply Water Aquati	HYDROL	Hy(OGY s (B9)	dric Soils Present	problematic Yes Condary Indicators (minimum of two required) Surface Soil Crack (B6)
Sandy 5 cm 1 7 spe: Depth (inchest Remark Wetland Hyd Primary Indic Surfac X High X Satura	Mucky Material (S1) Mucky Peat or Peat (S Layer (if observed): S S Soil pit dug Irology Indicators: Cators (minimum of or Cators (A1) Water Table (A2)	3) to 14 inc	iired; check all that	at apply Water Aquati True A	HYDROL	Hya OGY s (B9) (B14)	dric Soils Present	problematic Yes Condary Indicators (minimum of two required) Surface Soil Crack (B6) Drainage Patterns (B10)
Sandy 5 cm 1 7 spe: Depth (inchest Remark Wetland Hyd Primary Indic Surfac X High X Satura Water	Mucky Material (S1) Mucky Peat or Peat (S ayer (if observed): (a) (a) (if observed): (a) (a) (a) (a) (a) (b) (b) (b) (b) (b) (b) (b) (b) (b) (b	3) to 14 inc	iired; check all that	at apply Water Aquati True A Hydro	HYDROL) -Stained Leave ic Fauna (B13) Aquatic Plants	Hyd OGY s (B9) (B14) lor (C1)	dric Soils Present	
Sandy 5 cm 1 7 spe: Depth (inchest Remark Netland Hyd Primary Indic Surfac X High X Satura Water Sedim	Mucky Material (S1) Mucky Peat or Peat (S Layer (if observed): (S):	3) to 14 inc	iired; check all that	at apply Water Aquati True A Hydro Oxidiz	HYDROL) -Stained Leave ic Fauna (B13) Aquatic Plants gen Sulfide Oc	Hy OGY s (B9) (B14) lor (C1) es on Living R	dric Soils Present	problematic Yes Yes condary Indicators (minimum of two required) Surface Soil Crack (B6) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8)
Sandy 5 cm 1 7 spe: Depth (inchest Remark Wetland Hyd Primary Indic Surfac Y High X Satura Water Sedim Drift 1	Mucky Material (S1) Mucky Peat or Peat (S ayer (if observed): (S): Soil pit dug brology Indicators: cators (minimum of or ce Water (A1) Water Table (A2) ution (A3) Marks (B1) hent Deposits (B2)	3) to 14 inc	iired; check all that	at apply Water Aquati True A Hydro Oxidiz Presen	HYDROL -Stained Leave ic Fauna (B13) Aquatic Plants gen Sulfide Oc red Rhizospher	Hyd OGY s (B9) (B14) lor (C1) es on Living R Iron (C4)	dric Soils Present	problematic Yes Ves ondary Indicators (minimum of two required) Surface Soil Crack (B6) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9)
Sandy 5 cm 1 Restrictive I Type: Depth (inchest Remark Wetland Hyd Primary Indic Surfac X High X Satura Water Sedim Drift I Algal	Mucky Material (S1) Mucky Peat or Peat (S ayer (if observed): (a) (if observed): (a) (a) (a) (a) (b) (c) (c) (c) (c) (c) (c) (c) (c	3) to 14 inc	iired; check all that	at apply Water Aquati True A Hydro Oxidiz Presen Recent	HYDROL -Stained Leave ic Fauna (B13) Aquatic Plants gen Sulfide Oc ted Rhizospher icce or Reduced	Hyd OGY s (B9) (B14) lor (C1) es on Living R Iron (C4) on in Tilled Soi	dric Soils Present	
Sandy 5 cm 1 7 ype: Depth (inchest Remark Wetland Hyd Primary Indic Surfac Y High X Satura Water Sedim Drift 1 Algal Iron D	Mucky Material (S1) Mucky Peat or Peat (S Layer (if observed): (S):	to 14 inc	iired; check all tha	at apply Water Aquati True A Hydro Oxidiz Presen Recem Thin M	HYDROL () -Stained Leave ic Fauna (B13) Aquatic Plants gen Sulfide Oc zed Rhizospher ice or Reduced t Iron Reductio	Hyd OGY s (B9) (B14) lor (C1) es on Living R Iron (C4) m in Tilled Soi C7)	dric Soils Present	problematic Problematic
Sandy 5 cm 1 7 ype: Depth (inchest Remark Wetland Hyd Primary Indic X High X Satura Water Sedim Drift 1 Algal Iron D Inunda	Mucky Material (S1) Mucky Peat or Peat (S ayer (if observed): (a) (a) (a) (a) (a) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c	13)	ired; check all tha	at apply Water Aquati True A Hydro Oxidiz Presen Recent Thin M Gauge	HYDROL -Stained Leave ic Fauna (B13) Aquatic Plants gen Sulfide Oc zed Rhizospher ice or Reduced t Iron Reduction Auck Surface (Hyd OGY s (B9) (B14) lor (C1) es on Living R Iron (C4) on in Tilled Soi (C7) (C7)	dric Soils Present	problematic Problematic
Sandy 5 cm 1 7 ype: Depth (inchest Remark Wetland Hyd Primary Indic X High X Satura Water Sedim Drift 1 Algal Iron D Inunda	Mucky Material (S1) Mucky Peat or Peat (S ayer (if observed): (ayer (if observed): (a) (a) (a) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c	13)	ired; check all tha	at apply Water Aquati True A Hydro Oxidiz Presen Recent Thin M Gauge	HYDROL) -Stained Leave ic Fauna (B13) Aquatic Plants gen Sulfide Oc ted Rhizospher ace or Reduced t Iron Reduction Auck Surface (or Well Data	Hyd OGY s (B9) (B14) lor (C1) es on Living R Iron (C4) on in Tilled Soi (C7) (C7)	dric Soils Present	problematic Problematic
Sandy 5 cm 1 7 ype: Depth (inchest Remark Wetland Hyd Primary Indic Surfac Y High X Satura Water Sedim Drift 1 Algal Iron D Inunda X Sparse	Mucky Material (S1) Mucky Peat or Peat (S ayer (if observed): s): Soil pit dug rology Indicators: cators (minimum of or ce Water (A1) Water Table (A2) ation (A3) Marks (B1) Marks (B1) Marks (B1) Marks (B2) Deposits (B3) Mat or Crust (B4) Deposits (B5) ation Visible on Aeria ely Vegetated Concav ations:	13)	ired; check all tha	at apply Water Aquati True A Hydro Oxidiz Presen Recent Thin N Gauge Other	HYDROL) -Stained Leave ic Fauna (B13) Aquatic Plants gen Sulfide Oc ted Rhizospher ace or Reduced t Iron Reduction Auck Surface (or Well Data	Hyd OGY s (B9) (B14) lor (C1) es on Living R Iron (C4) on in Tilled Soi (C7) (C7) (C7) marks)	dric Soils Present	problematic ? Yes condary Indicators (minimum of two required) Surface Soil Crack (B6) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Stunted or Stressed Plants (D1) X Geomorphic Position (D2) X FAC-Neutral Test (D5)
Sandy 5 cm 1 Restrictive I Type: Depth (inchest Remark Wetland Hyd Primary Indic Surfac X High X Satura Water Sedim Drift I Algal Iron E Inunda X Sparse	Mucky Material (S1) Mucky Peat or Peat (S ayer (if observed): (ayer (if observed): (ayer (if observed): (ayer (if observed): (ayer (ayer)) (ayer (ayer)) (ayer (ayer))	13)	ired; check all tha	at apply Water Aquati True A Hydro Oxidiz Presen Recent Thin M Gauge Other	HYDROL -Stained Leave ic Fauna (B13) Aquatic Plants gen Sulfide Oc red Rhizospher ice or Reduced t Iron Reductio Auck Surface (or Well Data (Explain in Re	Hyd OGY s (B9) (B14) lor (C1) es on Living R Iron (C4) on in Tilled Soi (C7) (C7) marks)	dric Soils Present	problematic Problematic

Real People. Real Solutions.		(Midwest Region)			
Project/Site: Kohner Property Wetland Delineation		City/County: Waba	sha County		Sampling Date: 6/18/2020
Applicant/Owner: City of Wabasha		State	: MN		Sample Point: W4-B
Investigator(s): Brandon Bohks		Section, Town	ship, Range: 30), 111N, 10W	
Landforms (hillside, terrace, etc.): Terrace		Local Relief	(concave, conve	x, none): Linear	
Slope (%): 1-3 Latitude:		Longitude:		Datum:	
Soil Map Unit Name: Pits, gravel-Udipsamments		NWI Classi	fication:		
Are climatic/hydrologic conditions of the site typical for this	s time of yea	ar?	(If no,	explain in remarks)	
Are vegetation \mathbf{X} , soils \mathbf{X} , or hyd	irology	X signif	icantly disturbed	1? Are normal c	ircumstances present? No
Are vegetation , soils , or hyd	lrology –	natura	ally problematic	? (If needed, exp	plain any answers in Remarks)
	SUMM	ARY OF FINI	DINGS		
Hydrophytic vegetation present?	Yes				
Hydric soils present?	No		Is the samp	oled area within a v	vetland? No
Wetland hydrology present?	No				
		-			
<u>Remarks:</u> Very likely the site was previously excavat	ted du eto n	nining practices.			
VE			C 1 4		
VEC	JEIAII	ON - Use scientific	names of plants	1	nance Test Worksheet
	Absolu		Indicator	Domi	lance Test worksheet
Tree Stratum (Plot size: 30 feet)	% Cov	1	Status		minant species
1 Populus deltoides	20	Yes	FAC	that are OBL, F	ACW, or FAC: 3 (A)
2	<u></u>				er of dominant
3		<u> </u>		species a	cross all strata: <u>3</u> (B)
4				Percent of domination	ant species that
5				are OBL, H	FACW or FAC: 100% (A/B)
	20	=Total Cover			
Sapling/Shrub stratum (Plot size: 15 feet)				Preval	ence Index Worksheet
1 Rhamnus cathartica	80	Yes	FAC	Total % cover of:	
2 Zanthoxylum americanum	5	No	FACU	OBL Species:	0 x 1 = 0
3				FACW Species:	35 x 2 = 70
4				FAC Species:	105 x 3 = 315
5				FACU species:	5 x 4 = 20
	85	=Total Cover		UPL Species:	0 x 5 = 0
Herb stratum: (Plot size: 5 feet)		_		Totals:	145 (A) 405 (B)
1 Lysimachia nummularia	30	Yes	FACW	Prevalence	e Index (B/A): 2.79
2 Toxicodendron radicans	5	No	FACW		
3 Rhamnus cathartica	5	No	FAC	Hydrophy	tic Vegetation Indicators
4				Rapid test	for hydrophytic vegetation
5					e test >50%
5 <u> </u>				X Prevalence	
7					
8					gical adaptations* (Provide g data in remarks)
9					
10				Problemat (Explain in	ic hydrophytic vegetation*
10	40	=Total Cover			п топіатк <i>5)</i>
Woody vine stratum: (Plot size: 15 feet)	40	=10tal Cover			ydric soil and wetland hydrology
				must be present	, unless disturbed or problematic
1					
2				Hydrophytic	-
	0	=Total Cover		prese	nt? Yes
Remarks:					
Komarko.					

Real People. Real Solutions.

(Midwest Region)

Profile Descr	iption: (Describe to	the dep	th needed to docu	iment t	the indicator	or confirm the	absence of	indicator	s.)
Depth	Matrix			Redo	x Features				
(inches)	Color (moist)	%	Color (moist)	%	Type*	Loc**	Tex	ture	Remarks
0-8	10YR 2/3	100					Sa	nd	
8-16+	10YR 5/3	100					Sa	nd	
		ation, D	= Depletion, RM	= Redu	ced Matrix, M	IS = Masked Sa			H: PL = Pore Lining, M = Matrix
Hydric Soil I	ndicators:						In	dicators f	or Problematic Hydric Soils*:
Histiso	ol (A1)			-	Gleyed Matri	x (S4)			Prairie Redox (A16)(LRR K,L,R)
Histic	Epipedon (A2)			Sandy	Redox (S5)			Dark S	Surface (S7)(LRR K, L)
Black	Histic (A3)			Stripp	ed Matrix (S6))		Iron-N	Manganese Masses (F12)(LRR K, L, R)
Hydro	gen Sulfide (A4)			Loamy	y Mucky Mate	rial (F1)			Shallow Dark Surface (TF12)
Stratif	ied Layers (A5)			Loamy	Gleyed Matr	ix (F2)		Other	(Explain in remarks)
2 cm N	Auck (A10)			Deplet	ted Matrix (F3)			
Deplet	ed Below Dark Surfa	ace (A11)	Redox	Dark Surface	(F6)			
Thick	Dark Surface (A12)			-	ed Dark Surfa				of hydrophytic vegetation and wetland
Sandy	Mucky Material (S1))		Redox	Depressions ((F8)		hydrology	must be present, unless disturbed or
5 cm M	Aucky Peat or Peat (S	53)							problematic
Restrictive L	ayer (if observed):								
Type:				-		Нус	lric Soils P	resent?	No
Depth (inches):			-					
Remark	s: Soil pit dug	to 16 in	bog						
	<u>s.</u> Son pri uug	10 10 11				OCV			
Wetland Hyd	rology Indicators:				HYDROL	UGY			
-	ators (minimum of or	ne is reau	uired: check all the	at annly	d)			Secon	dary Indicators (minimum of two required)
	e Water (A1)	<u>ie is requ</u>	incu, check an tha		-Stained Leave	es (B9)		Secon	Surface Soil Crack (B6)
	Water Table (A2)			-	ic Fauna (B13				Drainage Patterns (B10)
	tion (A3)			-	Aquatic Plants				Dry-Season Water Table (C2)
	Marks (B1)			-	gen Sulfide O				Crayfish Burrows (C8)
	ent Deposits (B2)			-	-	res on Living R	oots $(C3)$		Saturation Visible on Aerial Imagery (C9)
	Deposits (B3)			-	ice or Reduced	-	0013 (03)		Stunted or Stressed Plants (D1)
	Mat or Crust (B4)			-		on in Tilled Soi	ls (C6)		Geomorphic Position (D2)
	eposits (B5)			-	Auck Surface		13 (00)	x	FAC-Neutral Test (D5)
	tion Visible on Aeria	al Imager	v (B7)	-	or Well Data				
·	ly Vegetated Concav	-	-	-	(Explain in Re				
Field Observa				-		~/	I		
Surface Wate				т	Denth (inchas)				
Water Table I					Depth (inches) Depth (inches)		-		Indicators of Wetland Hydrology Present? No
Saturation Pre					Depth (inches) Depth (inches)		-		
Saturation I I					- open (menes)	·	-		
Remark	8:								

Real People. Real Solutions.	(1	Midwest Region)			
Project/Site: Kohner Property Wetland Delineation	C	City/County: Waba	sha County		Sampling Date: 6/18/2020
Applicant/Owner: City of Wabasha		State	: MN		Sample Point: Site 1
Investigator(s): Brandon Bohks		Section, Town	ship, Range: 30	, 111N, 10W	
Landforms (hillside, terrace, etc.): Depression		Local Relief (concave, conve	x, none): Concave	
Slope (%): 0-2 Latitude:		Longitude:		Datum:	
Soil Map Unit Name: Pits, gravel-Udipsamments		NWI Classi	fication:		
Are climatic/hydrologic conditions of the site typical for this time o	of year	?	(If no,	explain in remarks)	
Are vegetation \mathbf{X} , soils \mathbf{X} , or hydrology		X signifi	cantly disturbed	l? Are normal cir	rcumstances present? No
Are vegetation , soils , or hydrology		natura	lly problematic?	? (If needed, exp	lain any answers in Remarks)
SUN	AMA	ARY OF FINE	DINGS		
Hydrophytic vegetation present? Yes					
Hydric soils present? No			Is the samp	oled area within a w	etland? No
Wetland hydrology present? Yes					
<u>Remarks:</u> Very likely the site was previously excavated du e	eto mi	ning practices.			
VECETA	TIO	N - Use scientific	names of plants	,	
					ance Test Worksheet
	solute Cover		Indicator		
/	15	Species Yes	Status FACW	Number of dor	1
	15	1 es	FACW	that are OBL, FA	ACW, or FAC: 4 (A)
2					er of dominant
3				species ac	eross all strata: <u>4</u> (B)
4				Percent of dominat	-
5			. <u> </u>	are OBL, F	ACW or FAC: 100% (A/B)
	15	=Total Cover			
Sapling/Shrub stratum (Plot size: 15 feet)	~				ence Index Worksheet
	85	Yes	FAC	Total % cover of:	
2 Lonicera ×bella	10	No	FACU	OBL Species:	0 x 1 = 0
3				FACW Species:	35 $x 2 = 70$
4				FAC Species:	91 x 3 = 273
5				FACU species:	10 x 4 = 40
	95	=Total Cover		UPL Species:	0 x 5 = 0
Herb stratum: (Plot size: 5 feet)				-	136 (A) 383 (B)
1 Impatiens capensis	20	Yes	FACW	Prevalence	e Index (B/A): 2.82
2 Rhamnus cathartica	6	Yes	FAC		
3					tic Vegetation Indicators
4					for hydrophytic vegetation
5				X Dominance	e test >50%
6				X Prevalence	index is $\leq 3.0^*$
7				Morpholog	ical adaptations* (Provide
8				supporting	data in remarks)
9				Problematio	c hydrophytic vegetation*
10				(Explain in	remarks)
	26	=Total Cover		*Te diastance of 1	بالمحالة والمحمد لمرم المرم الم
Woody vine stratum: (Plot size: 15 feet)					dric soil and wetland hydrology unless disturbed or problematic
1				present,	
2				Hydrophytic v	vegetation
	0	=Total Cover		presen	
				<u>.</u>	
<u>Remarks:</u>					

Г

EXHIBIT G: WETLAND DETERMINATION DATA FORM

Real People. Real Solutions.

(Midwest Region)

Depth	Matrix			Redo	x Features				
(inches)	Color (moist)	%	Color (moist)	%	Type*	Loc**	Textur	e	Remarks
0-5	10YR 2/3	100					Sand		
	*Type: C = Concentr	ration, D	= Depletion, RM	= Redu	ced Matrix, M	S = Masked Sand	l Grains. **I	Location: PL	= Pore Lining, M = Matrix
Hydric Soil l	Indicators:						Indic	ators for Pr	oblematic Hydric Soils*:
Histis	ol (A1)			Sandy	Gleyed Matrix	x (S4)		Coast Prairi	ie Redox (A16)(LRR K,L,R)
Histic	Epipedon (A2)			Sandy	Redox (S5)			Dark Surfac	ce (S7)(LRR K, L)
Black	Histic (A3)			Strippe	ed Matrix (S6)			- Iron-Manga	anese Masses (F12)(LRR K, L, R)
	gen Sulfide (A4)				Mucky Mater			-	ow Dark Surface (TF12)
	ied Layers (A5)				Gleyed Matri			-	lain in remarks)
	Muck (A10)				ed Matrix (F3)			-	,
	ted Below Dark Surfa	ace (A11)			Dark Surface				
	Dark Surface (A12)				ed Dark Surfa				
	Mucky Material (S1)			Depressions (drophytic vegetation and wetland be present, unless disturbed or
Sandy	Mucky Material (51)			Depressions (10)	пу	arology must	-
5 cm 1	Muchy Post or Post (33)							problematic
	Mucky Peat or Peat (S	\$3)							problematic
Restrictive I	ayer (if observed):	53)							problematic
Restrictive I Type:	Layer (if observed): Bedrock	53)				Hydr	ic Soils Pre	sent?	<u>No</u>
Restrictive I Type:	Layer (if observed): Bedrock	53)				Hydr	ic Soils Pre	sent?	
Restrictive I Type:	Bedrock		es when a restric	:itve la	ver was obser		ic Soils Pre	sent?	
Restrictive I Type: Depth (inches	Bedrock		es when a restric		-	ved.	ic Soils Pre	sent?	
Restrictive I Type: Depth (inches <u>Remark</u>	Layer (if observed): Bedrock S): 5 Si: Soil pit dug		es when a restric		yer was obser HYDROL	ved.	ic Soils Pre	sent?	
Restrictive I Type: Depth (inches <u>Remark</u> Wetland Hyd	ayer (if observed): Bedrock S): 5 Soil pit dug rology Indicators:	to 5 inch			HYDROL	ved.	ic Soils Pre		No
Restrictive I Type: Depth (inches <u>Remark</u> Wetland Hyd Primary Indic	Layer (if observed): Bedrock S): 5 Si: Soil pit dug Irology Indicators: cators (minimum of or	to 5 inch		it apply	HYDROL	ved. OGY	ic Soils Pres	Secondary 1	No
Restrictive I Type: Depth (inches <u>Remark</u> Vetland Hyd Primary Indic Surfac	Bedrock Bedrock S): 5 Si: Soil pit dug Irology Indicators: eators (minimum of or ce Water (A1)	to 5 inch		<u>it apply</u> Water-	HYDROL	ved. OGY s (B9)	ic Soils Pre	Secondary J	No
Restrictive I Type: Depth (inches <u>Remark</u> Vetland Hyd Primary Indic Surfac High ^v	Bedrock Bedrock S): 5 Si: Soil pit dug Irology Indicators: cators (minimum of or ce Water (A1) Water Table (A2)	to 5 inch		<u>it apply</u> Water Aquati	HYDROL	ved. OGY ss (B9)	ic Soils Pre	Secondary I	
Restrictive I Type: Depth (inches <u>Remark</u> Wetland Hyd Primary Indic Surfac High ¹ Satura	Bedrock Bedrock S): 5 Si: Soil pit dug Irology Indicators: eators (minimum of or certain water (A1)) Water Table (A2) ttion (A3)	to 5 inch		tt apply Water Aquati True A	HYDROL) Stained Leave c Fauna (B13) Aquatic Plants	ved. OGY ss (B9) (B14)	ic Soils Pre	Secondary J Surf Drai Dry-	<u>No</u> Indicators (minimum of two required ace Soil Crack (B6) nage Patterns (B10) Season Water Table (C2)
Restrictive I Type: Depth (inches Remark Vetland Hyd Primary Indic Surfac High Satura Water	Bedrock Bedrock S): 5 Si: Soil pit dug Irology Indicators: eators (minimum of or tee Water (A1) Water Table (A2) ttion (A3) Marks (B1)	to 5 inch		<u>tt apply</u> Water Aquati True A Hydro	HYDROL) Stained Leave (c Fauna (B13) Aquatic Plants (gen Sulfide Oc	ved. OGY ss (B9) (B14) lor (C1)		Secondary I Surf Drai Dry- Cray	 Indicators (minimum of two required ace Soil Crack (B6) nage Patterns (B10) .Season Water Table (C2) rfish Burrows (C8)
Restrictive I Type: Depth (inches) Remark Wetland Hyd Primary Indic Surfac High Satura Water Sedim	Bedrock Bedrock Soil 5 Soil 5 Soil pit dug Irology Indicators: eators (minimum of or colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2">Colspan="2"Colspa	to 5 inch		t apply Water Aquati True A Hydro Oxidiz	HYDROL Stained Leave C Fauna (B13) Aquatic Plants gen Sulfide Oc	ved. OGY (B9) (B14) lor (C1) res on Living Roc		Secondary I Surf Drai Dry- Cray Satu	<u>No</u> Indicators (minimum of two required ace Soil Crack (B6) nage Patterns (B10) Season Water Table (C2) rfish Burrows (C8) ration Visible on Aerial Imagery (C9
Restrictive I Type: Depth (inches Remark Vetland Hyd Primary Indic Surfac High ' Satura Water Sedim Drift I	Bedrock Bedrock Si: 5 si: Soil pit dug Irology Indicators: Soil pit dug Irology Ir	to 5 inch		<u>tt apply</u> Water Aquati True A Hydro Oxidiz Presen	HYDROL) Stained Leave ic Fauna (B13) Aquatic Plants (gen Sulfide Oc ced Rhizospher ce or Reduced	ved. OGY (B14) lor (C1) res on Living Roc Iron (C4)	ots (C3)	Secondary J Surf Drai Dry- Cray Satu Stun	
Restrictive I Type: Depth (inches Remark Wetland Hyd Primary Indic Surfac High Satura Water Sedim Drift I Algal	Bedrock Bedrock Si: 5 ss: Soil pit dug kas: Kasser kas: Kasser kasser Kasser kasser <td>to 5 inch</td> <td></td> <td>t apply Water Aquati True A Hydro Oxidiz Presen Recent</td> <td>HYDROL Stained Leave C Fauna (B13) Aquatic Plants gen Sulfide Oc red Rhizospher ce or Reduced t Iron Reductio</td> <td>ved. OGY (B9) (B14) lor (C1) res on Living Roc Iron (C4) on in Tilled Soils</td> <td>ots (C3)</td> <td>Secondary I Surf Drai Dry- Cray Satu Stun X Geor</td> <td><u>No</u> Indicators (minimum of two required ace Soil Crack (B6) nage Patterns (B10) Season Water Table (C2) fish Burrows (C8) ration Visible on Aerial Imagery (C9 ted or Stressed Plants (D1) morphic Position (D2)</td>	to 5 inch		t apply Water Aquati True A Hydro Oxidiz Presen Recent	HYDROL Stained Leave C Fauna (B13) Aquatic Plants gen Sulfide Oc red Rhizospher ce or Reduced t Iron Reductio	ved. OGY (B9) (B14) lor (C1) res on Living Roc Iron (C4) on in Tilled Soils	ots (C3)	Secondary I Surf Drai Dry- Cray Satu Stun X Geor	<u>No</u> Indicators (minimum of two required ace Soil Crack (B6) nage Patterns (B10) Season Water Table (C2) fish Burrows (C8) ration Visible on Aerial Imagery (C9 ted or Stressed Plants (D1) morphic Position (D2)
Restrictive I Type: Depth (inches Remark Remark Wetland Hyd Primary Indic Surfac High Satura Water Sedim Drift I Algal Iron D	Bedrock Bedrock Si: 5 Si: Soil pit dug trology Indicators: Soil pit dug	to 5 inch	ired; check all the	tt apply Water- Aquati True A Hydro Oxidiz Presen Recent Thin M	HYDROL) Stained Leave c Fauna (B13) quatic Plants gen Sulfide Oc red Rhizospher ce or Reduced t Iron Reduction fuck Surface (ved. OGY (B14) (B14) (or (C1) res on Living Roc Iron (C4) on in Tilled Soils (C7)	ots (C3)	Secondary I Surf Drai Dry- Cray Satu Stun X Geor	
Restrictive I Type: Depth (inches Remark Vetland Hyd Primary Indic Surfac High Satura Water Sedim Drift I Algal Iron D Inunda	Bedrock Bedrock Si: 5 Si: Soil pit dug Irology Indicators: Soil pit dug	to 5 inch ne is requ	ired; check all tha	t apply Water- Aquati True A Hydro Oxidiz Presen Recent Thin M Gauge	HYDROL Stained Leave C Fauna (B13) Aquatic Plants (gen Sulfide Oc ted Rhizospher ce or Reduced t Iron Reduction fuck Surface (or Well Data (ved. OGY (B14) (B14) lor (C1) res on Living Roc Iron (C4) on in Tilled Soils (C7) (C7)	ots (C3)	Secondary I Surf Drai Dry- Cray Satu Stun X Geor	<u>No</u> Indicators (minimum of two required ace Soil Crack (B6) nage Patterns (B10) Season Water Table (C2) fish Burrows (C8) ration Visible on Aerial Imagery (C9 ted or Stressed Plants (D1) morphic Position (D2)
Restrictive I Type: Depth (inches) Remark Remark Vetland Hyd Primary Indic Surfac High Satura Water Sedim Drift I Algal Iron E Inunda Sparse	Bedrock Bedrock Si: 5 Soil pit dug Irology Indicators: cators (minimum of or ce Water (A1) Water Table (A2) tion (A3) Marks (B1) ent Deposits (B2) Deposits (B3) Mat or Crust (B4) Deposits (B5) ation Visible on Aeria ely Vegetated Concav	to 5 inch ne is requ	ired; check all tha	t apply Water- Aquati True A Hydro Oxidiz Presen Recent Thin M Gauge	HYDROL) Stained Leave c Fauna (B13) quatic Plants gen Sulfide Oc red Rhizospher ce or Reduced t Iron Reduction fuck Surface (ved. OGY (B14) (B14) lor (C1) res on Living Roc Iron (C4) on in Tilled Soils (C7) (C7)	ots (C3)	Secondary I Surf Drai Dry- Cray Satu Stun X Geor	<u>No</u> Indicators (minimum of two required ace Soil Crack (B6) nage Patterns (B10) Season Water Table (C2) fish Burrows (C8) ration Visible on Aerial Imagery (C9 ted or Stressed Plants (D1) morphic Position (D2)
Restrictive I Type: Depth (inches Remark Vetland Hyd Primary Indic Surfac High Satura Water Sedim Algal Iron E Inund: Sparse Field Observa	Bedrock Bedrock Si: 5 Soil pit dug Irology Indicators: cators (minimum of or rew Water (A1) Water Table (A2) ution (A3) Marks (B1) eent Deposits (B2) Deposits (B3) Mat or Crust (B4) Deposits (B5) ation Visible on Aeria ely Vegetated Concav ations:	to 5 inch ne is requ	ired; check all tha	tt apply Water- Aquati True A Hydro Oxidiz Presen Recent Thin N Gauge Other	HYDROLA Stained Leave C Fauna (B13) Aquatic Plants (gen Sulfide Oc ed Rhizospher ce or Reduced t Iron Reductic fuck Surface (or Well Data ((Explain in Re	ved. OGY (B14) (B14) (or (C1) res on Living Roc Iron (C4) on in Tilled Soils (C7) (C7) (C7) marks)	ots (C3)	Secondary I Surf Drai Dry- Cray Satu Stun X Geor	<u>No</u> Indicators (minimum of two required ace Soil Crack (B6) nage Patterns (B10) Season Water Table (C2) fish Burrows (C8) ration Visible on Aerial Imagery (C9 ted or Stressed Plants (D1) morphic Position (D2)
Restrictive I Type: Depth (inches) Remark Wetland Hyd Primary Indic Surfac High Satura Water Sedim Drift I Algal Iron E Inunds Sparse Field Observes	Bedrock Bedrock Si: 5 si: Soil pit dug krology Indicators: Soil pit dug	to 5 inch ne is requ	ired; check all tha	tt apply Water- Aquati True A Hydro Oxidiz Presen Recent Thin M Gauge Other	HYDROL) Stained Leave ic Fauna (B13) Aquatic Plants (gen Sulfide Oc ed Rhizospher ce or Reduced t Iron Reductic Auck Surface (or Well Data ((Explain in Re Depth (inches):	ved. OGY (B14) (B14) (B14) (C1) res on Living Roc Iron (C4) on in Tilled Soils (C7) (C7) marks)	ots (C3)	Secondary J Surf Drai Dry- Cray Satu Stun X Geon X FAC	<u>No</u> Indicators (minimum of two required ace Soil Crack (B6) nage Patterns (B10) Season Water Table (C2) rfish Burrows (C8) ration Visible on Aerial Imagery (C9 ted or Stressed Plants (D1) morphic Position (D2) 2-Neutral Test (D5)
Restrictive I Type: Depth (inches Remark Wetland Hyd Primary Indic Surfac High Satura Water Sedim Drift I Algal Iron D Inunda	Bedrock Bedrock Si: 5 si: Soil pit dug krology Indicators: Soil pit dug	to 5 inch ne is requ	ired; check all tha	tt apply Water- Aquati True A Hydro Oxidiz Presen Recent Thin M Gauge Other	HYDROLA Stained Leave C Fauna (B13) Aquatic Plants (gen Sulfide Oc ed Rhizospher ce or Reduced t Iron Reductic fuck Surface (or Well Data ((Explain in Re	ved. OGY (B14) (B14) lor (C1) res on Living Roc Iron (C4) on in Tilled Soils (C7) (C7) marks)	ots (C3)	Secondary J Surf Drai Dry- Cray Satu Stun X Geon X FAC	<u>No</u> Indicators (minimum of two required ace Soil Crack (B6) nage Patterns (B10) Season Water Table (C2) rfish Burrows (C8) ration Visible on Aerial Imagery (C9 ted or Stressed Plants (D1) morphic Position (D2) 2-Neutral Test (D5)

Real People. Real Solutions.	(Midwest Region)	
Project/Site: Kohner Property Wetland Delineation	City/County: Wabasha County	Sampling Date: 6/18/2020
Applicant/Owner: City of Wabasha	State: MN	Sample Point: Site 2
Investigator(s): Brandon Bohks	Section, Township, Range: 30, 111N	J, 10W
Landforms (hillside, terrace, etc.): Depression	Local Relief (concave, convex, none	e): Concave
Slope (%): 0-2 Latitude:	Longitude:	Datum:
Soil Map Unit Name: Pits, gravel-Udipsamments	NWI Classification:	
Are climatic/hydrologic conditions of the site typical for this time of ye	ar? (If no, explain	n in remarks)
Are vegetation X , soils X , or hydrology	X significantly disturbed?	Are normal circumstances present? No
Are vegetation , soils , or hydrology	naturally problematic? (If needed, explain any answers in Remarks)
SUMN	ARY OF FINDINGS	
Hydrophytic vegetation present? No		
Hydric soils present? No	Is the sampled ar	rea within a wetland? No
Wetland hydrology present? No		
	•	
<u>Remarks:</u> Very likely the site was previously excavated du eto	nining practices.	
VEGETATI	\mathbf{ON} - Use scientific names of plants	
		Dominance Test Worksheet
Absolu <u>Tree Stratum</u> (Plot size: 30 feet) % Cov	en Energian Status	
1 (1 lot size) // Col	1	Number of dominant species at are OBL, FACW, or FAC: 0 (A)
2	III	
3		Total number of dominant species across all strata: 2 (B)
5		
4	Perc	cent of dominant species that $PACW$ or FAC : $PACW$
5		are OBL, FACW or FAC: 0% (A/B)
	=Total Cover	December of Index Wienlack of
Sapling/Shrub stratum (Plot size: 15 feet)	N DACIU TA	Prevalence Index Worksheet
1 Ulmus pumila 5		l % cover of:
2		OBL Species: 0 x 1 = 0
3		$ACW Species: 0 \qquad x \ 2 = 0$
4		FAC Species: $65 x 3 = 195$
5		ACU species: 21 x 4 = 84
5	=Total Cover	UPL Species: $15 x 5 = 75$
Herb stratum: (Plot size: 5 feet)		Totals: <u>101</u> (A) <u>354</u> (B)
1 Panicum virgatum 65	Yes FAC	Prevalence Index (B/A): 3.50
2 Trifolium campestre 15	No UPL	
3 Poa pratensis 10	No FACU	Hydrophytic Vegetation Indicators
4 Vicia americana 6	No FACU	Rapid test for hydrophytic vegetation
5		Dominance test >50%
6		Prevalence index is $\leq 3.0^*$
7		Morphological adaptations* (Provide
8		supporting data in remarks)
9		Problematic hydrophytic vegetation*
10		(Explain in remarks)
96	=Total Cover *Ir	ndicators of hydric soil and wetland hydrology
Woody vine stratum: (Plot size: 15 feet)		ust be present, unless disturbed or problematic
1		-
2	1	Hydrophytic vegetation
0	=Total Cover	present? No
Remarks:		

Г

EXHIBIT G: WETLAND DETERMINATION DATA FORM

Real People. Real Solutions.

(Midwest Region)

Depth	Matrix			Redo	x Features				
(inches)	Color (moist)	%	Color (moist)	%	Type*	Loc**	Textur	e	Remarks
0-2	10YR 2/3	100					Sandy Lo	am	
	*Type: C = Concentration	ration, D	= Depletion, RM	= Redu	ced Matrix, M	S = Masked Sa	nd Grains. **I	Location: I	PL = Pore Lining, M = Matrix
Iydric Soil	Indicators:						Indic	ators for	Problematic Hydric Soils*:
Histis	ol (A1)			Sandy	Gleyed Matrix	x (S4)		Coast Pr	airie Redox (A16)(LRR K,L,R)
Histic	Epipedon (A2)			Sandy	Redox (S5)			Dark Su	face (S7)(LRR K, L)
Black	Histic (A3)			Strippe	ed Matrix (S6)			- Iron-Mai	nganese Masses (F12)(LRR K, L, R)
	ogen Sulfide (A4)			Loamy	Mucky Mater	rial (F1)		-	allow Dark Surface (TF12)
	fied Layers (A5)				Gleyed Matri			-	xplain in remarks)
	Muck (A10)				ed Matrix (F3)			-	
	ted Below Dark Surfa	ace (A11)		-	Dark Surface				
	Dark Surface (A12)			-	ed Dark Surfa		ΨΤ 1		
	Mucky Material (S1)		•	Depressions (hydrophytic vegetation and wetland ust be present, unless disturbed or
	Mucky Peat or Peat (S			-		- 0)			problematic
	indexy I cat of I cat (i	55)							
	(10.1 1)								
Restrictive I	Layer (if observed):								
Restrictive I	Bedrock					Hyd	ric Soils Pres	sent?	No
Restrictive I Type:	Bedrock			-		Hyd	ric Soils Pres	sent?	No
Restrictive I	Bedrock s): <u>3</u>	to 3 inch	es when a restric		yer was obser	-	ric Soils Pres	sent?	No
Restrictive I Гуре: Depth (inches	Bedrock s): <u>3</u>	to 3 inch	es when a restric		, 	ved.	ric Soils Pres	ent?	No
Restrictive I Гуре: Depth (inche: <u>Remark</u>	Bedrock (s): <u>3</u> (s: Soil pit dug	to 3 inch	es when a restric		yer was obser HYDROL	ved.	lric Soils Pres	sent?	No
Restrictive I Fype: Depth (inche: <u>Remark</u> Vetland Hyd	Bedrock s): <u>3</u>				HYDROL	ved.	ric Soils Pres		
Restrictive I Fype: Depth (inches <u>Remark</u> Vetland Hyd Primary Indic	Bedrock (S): 3 (S): 3 (S): Soil pit dug (S): Soi			it apply	HYDROL	ved. OGY	lric Soils Pres	Secondar	ry Indicators (minimum of two required
Restrictive I Type: Depth (inche: <u>Remark</u> Vetland Hyd Primary Indic Surfac	Bedrock s): 3 Soil pit dug brology Indicators: cators (minimum of or ce Water (A1)			it apply Water-	HYDROL	rved. OGY ss (B9)	lric Soils Pres	Secondar	ry Indicators (minimum of two required urface Soil Crack (B6)
Restrictive I Fype: Depth (inches <u>Remark</u> Vetland Hyd Primary Indic Surfac High Y	Bedrock s): 3 (s): Soil pit dug Irology Indicators: cators (minimum of or ce Water (A1) Water Table (A2)			ut apply Water- Aquati	HYDROL) Stained Leave c Fauna (B13)	ved. OGY es (B9)	ric Soils Pres	Secondar Si	ry Indicators (minimum of two required urface Soil Crack (B6) rainage Patterns (B10)
Restrictive I Type: Depth (inches) Remark Vetland Hyd Primary Indic Surfac High	Bedrock s): <u>3</u> Soil pit dug Irology Indicators: cators (minimum of or ce Water (A1) Water Table (A2) ation (A3)			tt apply Water- Aquati True A	HYDROL) Stained Leave c Fauna (B13) .quatic Plants	rved. OGY es (B9)) (B14)	lric Soils Pres	Secondar D D	ry Indicators (minimum of two required urface Soil Crack (B6) rainage Patterns (B10) ry-Season Water Table (C2)
Restrictive I Type: Depth (inches) Remark Vetland Hyd Primary Indic Surfac High Satura Water	Bedrock s): 3 Soil pit dug Brology Indicators: cators (minimum of or ce Water (A1) Water Table (A2) ation (A3) Marks (B1)			tt apply Water- Aquati True A Hydrog	HYDROL) Stained Leave c Fauna (B13) Aquatic Plants gen Sulfide Oc	ved. OGY ss (B9)) (B14) dor (C1)		Secondar S D D C	ry Indicators (minimum of two required urface Soil Crack (B6) rainage Patterns (B10) ry-Season Water Table (C2) rayfish Burrows (C8)
Restrictive I Fype: Depth (inches) Remark Vetland Hyd Primary Indic Surfac High Satura Water Sedim	Bedrock s): 3 (S): Soil pit dug Irology Indicators: cators (minimum of or ce Water (A1) Water Table (A2) ation (A3) Marks (B1) nent Deposits (B2)			tt apply Water- Aquati True A Hydrog Oxidiz	HYDROL Stained Leave c Fauna (B13) aquatic Plants gen Sulfide Oc ed Rhizospher	ved. OGY es (B9)) (B14) dor (C1) res on Living Ro		Secondar D D C Sa	ry Indicators (minimum of two required urface Soil Crack (B6) rainage Patterns (B10) ry-Season Water Table (C2) rayfish Burrows (C8) aturation Visible on Aerial Imagery (C9
Restrictive I Type: Depth (inches) Remark Vetland Hyd Primary Indic Surfac High Satura Water Sedim Drift 1	Bedrock s): 3 cs: Soil pit dug Irology Indicators: cators (minimum of or construction) ce Water (A1) Water Table (A2) ation (A3) • Marks (B1) nent Deposits (B2) Deposits (B3)			tt apply Water- Aquati True A Hydrog Oxidiz Presen	HYDROL Stained Leave c Fauna (B13) quatic Plants gen Sulfide Oc ed Rhizospher ce or Reduced	rved. OGY (B9) (B14) (B14) (or (C1) res on Living Ro Iron (C4)	pots (C3)	Secondar SI D D C SI SI	ry Indicators (minimum of two required urface Soil Crack (B6) rainage Patterns (B10) ry-Season Water Table (C2) rayfish Burrows (C8) aturation Visible on Aerial Imagery (C9 tunted or Stressed Plants (D1)
Restrictive I Type: Depth (inches) Remark Vetland Hyd Primary Indic Surfac High Satura Water Sedim Drift I Algal	Bedrock s): <u>3</u> Soil pit dug Irology Indicators: cators (minimum of or ce Water (A1) Water Table (A2) ation (A3) Marks (B1) nent Deposits (B2) Deposits (B3) Mat or Crust (B4)			tt apply Water- Aquati True A Hydrog Oxidiz Presen Recent	HYDROL Stained Leave c Fauna (B13) aquatic Plants gen Sulfide Oc ed Rhizospher ce or Reduced	ved. OGY es (B9)) (B14) dor (C1) res on Living Ro Iron (C4) on in Tilled Soil	pots (C3)	Secondar D D C Si Si Si Si Si X G	ry Indicators (minimum of two required urface Soil Crack (B6) rainage Patterns (B10) ry-Season Water Table (C2) rayfish Burrows (C8) aturation Visible on Aerial Imagery (C9 tunted or Stressed Plants (D1) eomorphic Position (D2)
Restrictive I Type: Depth (inches) Remark Remark Vetland Hyd Primary Indic Surfac High Satura Water Sedim Conft I Algal Iron E	Bedrock s): 3 cs: Soil pit dug Irology Indicators: cators (minimum of or ce Water (A1) Water Table (A2) ation (A3) • Marks (B1) nent Deposits (B2) Deposits (B3) Mat or Crust (B4) Deposits (B5)	ne is requ	ired; check all the	at apply Water- Aquati True A Hydrog Oxidiz Presen Recent Thin M	HYDROL Stained Leave c Fauna (B13) quatic Plants gen Sulfide Oc ed Rhizospher ce or Reduced i Iron Reductic fuck Surface (ved. OGY (B14) (B14) dor (C1) res on Living Ro Iron (C4) on in Tilled Soil (C7)	pots (C3)	Secondar D D C Si Si Si Si Si X G	ry Indicators (minimum of two required urface Soil Crack (B6) rainage Patterns (B10) ry-Season Water Table (C2) rayfish Burrows (C8) aturation Visible on Aerial Imagery (C9 tunted or Stressed Plants (D1)
Restrictive I Type: Depth (inches) Remark Vetland Hyd Primary Indic Surfac High Satura Water Sedim Drift I Algal Iron E Inund	Bedrock s): 3 (s): Soil pit dug Irology Indicators: cators (minimum of or ce Water (A1) Water Table (A2) ation (A3) Marks (B1) nent Deposits (B2) Deposits (B3) Mat or Crust (B4) Deposits (B5) ation Visible on Aeria	ne is requ	ired; check all tha	tt apply Water- Aquati True A Hydrog Oxidiz Presen Recent Thin M Gauge	HYDROL Stained Leave c Fauna (B13) quatic Plants gen Sulfide Oc ed Rhizospher ce or Reduced : Iron Reduced fuck Surface (or Well Data	ved. OGY (B9) (B14) dor (C1) res on Living Ro Iron (C4) on in Tilled Soil (C7) (C7)	pots (C3)	Secondar D D C Si Si Si Si Si X G	ry Indicators (minimum of two required urface Soil Crack (B6) rainage Patterns (B10) ry-Season Water Table (C2) rayfish Burrows (C8) aturation Visible on Aerial Imagery (C9 tunted or Stressed Plants (D1) eomorphic Position (D2)
Restrictive I Type: Depth (inches) Remark Vetland Hyd Primary Indic Surfac High Satura Water Sedim Drift I Algal Iron E Inund Sparse	Bedrock s): 3 cs: Soil pit dug Irology Indicators: Inclogy Indicators: cators (minimum of or or cators (minimum of or	ne is requ	ired; check all tha	tt apply Water- Aquati True A Hydrog Oxidiz Presen Recent Thin M Gauge	HYDROL Stained Leave c Fauna (B13) quatic Plants gen Sulfide Oc ed Rhizospher ce or Reduced i Iron Reductic fuck Surface (ved. OGY (B9) (B14) dor (C1) res on Living Ro Iron (C4) on in Tilled Soil (C7) (C7)	pots (C3)	Secondar D D C Si Si Si Si Si X G	ry Indicators (minimum of two required urface Soil Crack (B6) rainage Patterns (B10) ry-Season Water Table (C2) rayfish Burrows (C8) aturation Visible on Aerial Imagery (C9 tunted or Stressed Plants (D1) eomorphic Position (D2)
Restrictive I Type: Depth (inchest Remark Vetland Hyd Vetland Hyd Primary Indic Surfac High Satura Water Sedim Algal Iron E Inund Sparse Field Observ	Bedrock s): 3 (S): Soil pit dug Irology Indicators: Soil pit dug Cators (minimum of or or cators (minimum of or cators (mini	ne is requ	ired; check all tha	at apply Water- Aquati True A Hydrog Oxidiz Presen Recent Thin M Gauge Other	HYDROL	ved. OGY (B14) (B14) dor (C1) res on Living Ro Iron (C4) on in Tilled Soil (C7) (C7) (C7) marks)	pots (C3)	Secondar D D C Si Si Si Si Si X G	ry Indicators (minimum of two required urface Soil Crack (B6) rainage Patterns (B10) ry-Season Water Table (C2) rayfish Burrows (C8) aturation Visible on Aerial Imagery (C9 tunted or Stressed Plants (D1) eomorphic Position (D2)
Restrictive I Type: Depth (inches) Remark Wetland Hyd Primary Indic Surfac High Satura Water Sedirr Algal Iron E Inund Sparse Field Observ Surface Water	Bedrock s): 3 cs: Soil pit dug Irology Indicators: cators (minimum of or ce Water (A1) Water Table (A2) ation (A3) • Marks (B1) nent Deposits (B2) Deposits (B3) Mat or Crust (B4) Deposits (B5) ation Visible on Aeria ely Vegetated Concav ations: cr Present?	ne is requ	ired; check all tha	tt apply Water- Aquati True A Hydrog Oxidiz Presen Recent Thin M Gauge Other (HYDROL Stained Leave c Fauna (B13) quatic Plants gen Sulfide Oc ed Rhizospher ce or Reduced tron Reductio fuck Surface (or Well Data (Explain in Re Depth (inches):	ved. OGY (B14) (B14) (B14) (C1) res on Living Ro Iron (C4) on in Tilled Soil (C7) (C7) marks)	pots (C3)	Secondar D D C Sa Sa Sa Sa Sa Sa Sa Sa Sa Sa Sa Sa Sa	ry Indicators (minimum of two required urface Soil Crack (B6) rainage Patterns (B10) ry-Season Water Table (C2) rayfish Burrows (C8) aturation Visible on Aerial Imagery (C9 tunted or Stressed Plants (D1) eomorphic Position (D2) AC-Neutral Test (D5)
Restrictive I Type: Depth (inchest Remark Wetland Hyd Primary Indic Surfac High Satura Water Sedim Drift I Algal Iron E Inund	Bedrock s): 3 (s): Soil pit dug Irology Indicators: Soil pit dug Cations: Soil pit dug Irology Indicators: Soil pit dug Irology Indicators: Soil pit dug Cation (A3) Marks (B1) Mat or Crust (B4) Soposits (B3) Mat or Crust (B4) Soposits (B5) ation Visible on Aeria Soil pit dug ely Vegetated Concav Soil pit dug ations: Soposits (Present? Present? Soposits (Present?	ne is requ	ired; check all tha	tt apply Water- Aquati True A Hydrog Oxidiz Presen Recent Thin M Gauge Other (HYDROL	ved. OGY (B9) (B14) dor (C1) res on Living Ro Iron (C4) on in Tilled Soil (C7) (C7) marks)	pots (C3)	Secondar D D C Sa Sa Sa Sa Sa Sa Sa Sa Sa Sa Sa Sa Sa	ry Indicators (minimum of two required urface Soil Crack (B6) rainage Patterns (B10) ry-Season Water Table (C2) rayfish Burrows (C8) aturation Visible on Aerial Imagery (C9 tunted or Stressed Plants (D1) eomorphic Position (D2) AC-Neutral Test (D5)

Real People. Real Solutions.	((Midwest Region)		
Project/Site: Kohner Property Wetland Delineation		City/County: Waba	sha County	Sampling Date: 6/18/2020
Applicant/Owner: City of Wabasha		State	: MN	Sample Point: Site 3
Investigator(s): Brandon Bohks		Section, Town	ship, Range: 30), 111N, 10W
Landforms (hillside, terrace, etc.): Terrace		Local Relief	(concave, conve	x, none): Linear
Slope (%): 1-3 Latitude:		Longitude:		Datum:
Soil Map Unit Name: Kalmarville complex, frequently	flooded	NWI Classi	fication:	
Are climatic/hydrologic conditions of the site typical for	this time of yea	r?	(If no,	explain in remarks)
Are vegetation, soils, or h	hydrology	signifi	cantly disturbed	Are normal circumstances present? Yes
Are vegetation, soils, or h	hydrology	natura	lly problematic	? (If needed, explain any answers in Remarks)
	SUMM	ARY OF FINE	DINGS	
Hydrophytic vegetation present?	Yes			
Hydric soils present?	No		Is the samp	oled area within a wetland? <u>No</u>
Wetland hydrology present?	No			
Remarks:				
V	EGETATIO	ON - Use scientific	names of plants	3
	Absolut		Indicator	Dominance Test Worksheet
<u>Tree Stratum</u> (Plot size: 30 feet)	% Cove		Status	Number of dominant species
1 Populus deltoides	35	Yes	FAC	that are OBL, FACW, or FAC: 2 (A)
2				Total number of dominant
3				species across all strata: 4 (B)
4				Percent of dominant species that
5				are OBL, FACW or FAC: 50% (A/B)
	35	=Total Cover		
Sapling/Shrub stratum (Plot size: 15 feet)		_		Prevalence Index Worksheet
1 Fraxinus pennsylvanica	15	Yes	FACU	Total % cover of:
2				OBL Species: 0 x 1 = 0
3				FACW Species: $60 x 2 = 120$
4				FAC Species: 53 $x 3 = 159$
5				FACU species: $35 \times 4 = 140$
	15	=Total Cover		UPL Species: $0 \mathbf{x} 5 = 0$
Herb stratum: (Plot size: 5 feet)		—		Totals: 148 (A) 419 (B)
1 Teucrium canadens	35	Yes	FACW	Prevalence Index (B/A): 2.83
2 Cirsium arvense	20	Yes	FACU	
3 Phalaris arundincaea	15	No	FACW	Hydrophytic Vegetation Indicators
4 Solidago gigantea	10	No	FACW	Rapid test for hydrophytic vegetation
5 Toxicodendron radicans	10	No	FAC	Dominance test >50%
6 Viola sororia	8	No	FAC	X Prevalence index is $\leq 3.0^*$
7				Morphological adaptations* (Provide
8				supporting data in remarks)
9				Problematic hydrophytic vegetation*
10				(Explain in remarks)
	98	=Total Cover		
Woody vine stratum: (Plot size: 15 feet)				*Indicators of hydric soil and wetland hydrology
1				must be present, unless disturbed or problematic
2				Hydrophytic vegetation
	0	=Total Cover		present? Yes
		_		

Real People. Real Solutions.

(Midwest Region)

SOILS

Profile Desci	ription: (Describe to	the dep	th needed to docu	ıment t	he indicator	or confirm the	absence	of indicator	·s.)
Depth	Matrix			Redo	x Features				
(inches)	Color (moist)	%	Color (moist)	%	Type*	Loc**	Г	exture	Remarks
0-6	10YR 2/2	100					San	dy Loam	
6-15	10YR 3/4	100						Sand	
	*Type: C = Concentr	ation, D	= Depletion, RM	= Redu	ced Matrix, M	IS = Masked Sa	and Grain	s. **Location	h: PL = Pore Lining, M = Matrix
Hydric Soil I	ndicators:							Indicators f	or Problematic Hydric Soils*:
Histise	ol (A1)			Sandy	Gleyed Matri	x (S4)		Coast	Prairie Redox (A16)(LRR K,L,R)
Histic	Epipedon (A2)			Sandy	Redox (S5)		-	Dark S	Surface (S7)(LRR K, L)
Black	Histic (A3)			Strippe	ed Matrix (S6)	-	Iron-N	Ianganese Masses (F12)(LRR K, L, R)
Hydro	gen Sulfide (A4)			Loamy	Mucky Mate	erial (F1)	-	Very S	Shallow Dark Surface (TF12)
Stratif	ied Layers (A5)			Loamy	Gleyed Matr	ix (F2)	-	Other	(Explain in remarks)
2 cm N	Muck (A10)			Deplet	ed Matrix (F3	3)	-		
Deplet	ted Below Dark Surfa	ace (A11)	Redox	Dark Surface	e (F6)			
Thick	Dark Surface (A12)			Deplet	ed Dark Surfa	ace (F7)		*Indicators	of hydrophytic vegetation and wetland
Sandy	Mucky Material (S1))		Redox	Depressions	(F8)			must be present, unless disturbed or
5 cm M	Mucky Peat or Peat (S	53)		•					problematic
Restrictive L	ayer (if observed):								
Туре:	-					Hy	dric Soil	s Present?	No
Depth (inches	s):			-					
Remark	s: Soil pit was	dug to 1	5 inches.						
					HYDROL	JOGY			
Wetland Hyd	rology Indicators:								
Primary Indic	ators (minimum of or	ne is requ	ired; check all the	at apply	<u>)</u>			Secon	dary Indicators (minimum of two required)
Surfac	e Water (A1)			Water-	-Stained Leav	es (B9)			Surface Soil Crack (B6)
High	Water Table (A2)			Aquati	ic Fauna (B13)			Drainage Patterns (B10)
Satura	tion (A3)			True A	Aquatic Plants	(B14)			Dry-Season Water Table (C2)
Water	Marks (B1)			Hydro	gen Sulfide O	dor (C1)			Crayfish Burrows (C8)
Sedim	ent Deposits (B2)			Oxidiz	ed Rhizosphe	res on Living R	loots (C3)	Saturation Visible on Aerial Imagery (C9)
Drift I	Deposits (B3)			Presen	ce or Reduced	d Iron (C4)			Stunted or Stressed Plants (D1)
Algal	Mat or Crust (B4)			Recent	t Iron Reducti	on in Tilled Soi	ls (C6)		Geomorphic Position (D2)
Iron D	eposits (B5)			Thin N	Auck Surface	(C7)		X	FAC-Neutral Test (D5)
Inunda	ation Visible on Aeria	ıl Imager	y (B7)	Gauge	or Well Data	(C7)			
Sparse	ely Vegetated Concav	e Surfac	e (B8)	Other	(Explain in Re	emarks)			
Field Observa	ations:								
Surface Wate	r Present?			Ι	Depth (inches)	:			Indicators of Wetland
Water Table I					Depth (inches)		-		Hydrology Present? No
Saturation Pre	esent?			Ι	Depth (inches)	:			

Remarks:

Real People. Real Solutions.	(Midwest Region)		
Project/Site: Kohner Property Wetland Delineation		City/County: Waba	sha County	Sampling Date: 6/25/2020
Applicant/Owner: City of Wabasha		State	: MN	Sample Point: Site 4
Investigator(s): Brandon Bohks		Section, Town	ship, Range: 3), 111N, 10W
Landforms (hillside, terrace, etc.): Depression		Local Relief (concave, conve	ex, none): Concave
Slope (%): 0-2 Latitude:		Longitude:		Datum:
Soil Map Unit Name: Pits, gravel-Udipsamments		NWI Classif	fication:	
Are climatic/hydrologic conditions of the site typical for t	this time of yea	r?	(If no,	explain in remarks)
Are vegetation \mathbf{X} , soils \mathbf{X} , or h	nydrology	X signifi	- cantly disturbe	d? Are normal circumstances present? No
Are vegetation , soils , or h	nydrology	natura	lly problematic	? (If needed, explain any answers in Remarks)
	SUMM	ARY OF FIND	INGS	
Hydrophytic vegetation present?	Yes			
Hydric soils present?	No		Is the sam	pled area within a wetland? No
Wetland hydrology present?	Yes			
<u>Remarks:</u> Very likely the site was previously excav	vated du to mi	ning practices.		
V	EGETATIO	DN - Use scientific	names of plant	c
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				Dominance Test Worksheet
Tree Stratum (Plot size: 30 feet)	Absolut % Cove		Indicator Status	
1 Ulmus americana	15	Yes	FACW	Number of dominant species that are OBL, FACW, or FAC: 4 (A)
2 Fraxinus pennsylvanica		Yes	FACW	
3				Total number of dominant species across all strata: 5 (B)
4				
5				Percent of dominant species that are OBL, FACW or FAC: 80% (A/B)
	23	=Total Cover		
Sapling/Shrub stratum (Plot size: 15 feet)				Prevalence Index Worksheet
1 Rhamnus cathartica	15	Yes	FAC	Total % cover of:
2				OBL Species: 0 x 1 = 0
3				FACW Species: 26 $x = 52$
1				FAC Species: 31 $x 3 = 93$
5				FACU species: 0 $\mathbf{x} 4 = 0$
	15	=Total Cover		$\begin{array}{c} \text{UPL Species:} 0 \\ \text{UPL Species:} 0 \\ \text{x} \ 5 = \\ 0 \end{array}$
Herb stratum: (Plot size: 5 feet)				Totals: 57 (A) 145 (B)
1 Toxicodendron radicans	10	Yes	FAC	Prevalence Index (B/A): 2.54
2 Rhamnus cathartica	6	Yes	FAC	
3 Laportea canadensis	3	No	FACW	Hydrophytic Vegetation Indicators
4				Rapid test for hydrophytic vegetation
5				\mathbf{X} Dominance test >50%
6				X Prevalence index is $\leq 3.0^*$
7				
8				Morphological adaptations* (Provide supporting data in remarks)
9				
10	_			Problematic hydrophytic vegetation* (Explain in remarks)
·		=Total Cover		
Woody vine stratum: (Plot size: 15 feet)				*Indicators of hydric soil and wetland hydrology
1				must be present, unless disturbed or problematic
2				Hadarahada di d
۲ <u></u>	0	=Total Cover		Hydrophytic vegetation present? Yes
	U			Presenter 105

Real People. Real Solutions.

(Midwest Region)

Depth	Matrix			Redo	x Features			
(inches)	Color (moist)	%	Color (moist)	%	Type*	Loc**	Texture	Remarks
0-4	10YR 2/3	100					Sand	
		1 1				1 1		
		+ +				<u> </u>		
	*Type: C - Concentr	ration D	- Depletion PM	– Redu	cod Matrix M	S – Masked San	d Graine **L	ocation: PL = Pore Lining, M = Matrix
Hydric Soil I		ation, D	- Depiction, RW	- Keuu		5 – Maskeu Sali		tors for Problematic Hydric Soils*:
-				C 1		(0.4)		
	ol (A1)			•	Gleyed Matrix	(84)		Coast Prairie Redox (A16)(LRR K,L,R)
Histic	Epipedon (A2)			Sandy	Redox (S5)			Dark Surface (S7)(LRR K, L)
Black	Histic (A3)			Strippe	ed Matrix (S6)			Iron-Manganese Masses (F12)(LRR K, L, R)
Hydro	gen Sulfide (A4)			Loamy	Mucky Mater	ial (F1)		Very Shallow Dark Surface (TF12)
Stratif	ied Layers (A5)			Loamy	Gleyed Matri	x (F2)		Other (Explain in remarks)
2 cm N	Muck (A10)			Deplet	ed Matrix (F3))		
Deplet	ed Below Dark Surfa	ice (A11)		Redox	Dark Surface	(F6)		
Thick	Dark Surface (A12)			Deplet	ed Dark Surfa	ce (F7)	*Indi	cators of hydrophytic vegetation and wetland
Sandy	Mucky Material (S1))		Redox	Depressions ()	F8)		rology must be present, unless disturbed or
Sundy	machy material (51)							
	-							problematic
5 cm N	Mucky Peat or Peat (S			•				problematic
5 cm M Restrictive L	Mucky Peat or Peat (Sayer (if observed):			- 				
5 cm M Restrictive L Type:	Mucky Peat or Peat (S ayer (if observed): Bedrock					Hydr	ic Soils Prese	
5 cm N	Mucky Peat or Peat (S ayer (if observed): Bedrock					Hydr	ic Soils Pres	
5 cm M Restrictive L Type: Depth (inches	Aucky Peat or Peat (S ayer (if observed): Bedrock	53)	es when a restric	- 	ver was obser		ic Soils Prese	
5 cm M Restrictive L Type:	Aucky Peat or Peat (S ayer (if observed): Bedrock	53)	es when a restric		-	ved.	ic Soils Prese	
5 cm M Restrictive L Type: Depth (inches <u>Remark</u>	Mucky Peat or Peat (S ayer (if observed): Bedrock b): 4 Soil pit dug	53)	es when a restric		yer was obser HYDROL	ved.	ic Soils Pres	
5 cm N Restrictive L Type: Depth (inches <u>Remark</u> Vetland Hyd	Mucky Peat or Peat (Sayer (if observed): Bedrock): 4 S: Soil pit dug rology Indicators:	33) to 4 inch			HYDROL	ved.	ic Soils Pres	ent? <u>No</u>
5 cm N Restrictive L Type: Depth (inches Remark Vetland Hyd Primary Indic	Mucky Peat or Peat (Sayer (if observed): Bedrock): 4 Soil pit dug rology Indicators: ators (minimum of or	33) to 4 inch	ired; check all that	it apply	HYDROL	ved. OGY	ic Soils Prese	ent? <u>No</u> Secondary Indicators (minimum of two required
5 cm N Restrictive L Type: Depth (inches <u>Remark</u> Vetland Hyd Primary Indic Surfac	Mucky Peat or Peat (Sayer (if observed): Bedrock): 4 S: Soil pit dug rology Indicators: ators (minimum of or e Water (A1)	33) to 4 inch		it apply Water	HYDROL	ved. OGY s (B9)	ic Soils Pres	ent? <u>No</u> Secondary Indicators (minimum of two required Surface Soil Crack (B6)
5 cm N Restrictive L Type: Depth (inchess Remark Vetland Hyd Primary Indic Surfac High V	Mucky Peat or Peat (S ayer (if observed): Bedrock): 4 s: Soil pit dug rology Indicators: ators (minimum of or e Water (A1) Vater Table (A2)	33) to 4 inch	ired; check all that	ut apply Water Aquati	HYDROL	ved. OGY s (B9)	ic Soils Pres	ent? <u>No</u> <u>Secondary Indicators (minimum of two required</u> Surface Soil Crack (B6) Drainage Patterns (B10)
5 cm N Restrictive L Type: Depth (inches Remark Vetland Hyd Primary Indic Surfac High V Satura	Mucky Peat or Peat (Sayer (if observed): Bedrock Bedrock Soil pit dug Soil pit dug rology Indicators: ators (minimum of or e Water (A1) Vater Table (A2) tion (A3)	33) to 4 inch	ired; check all that	tt apply Water Aquati True A	HYDROL) Stained Leave c Fauna (B13) Aquatic Plants (ved. OGY s (B9) (B14)	ic Soils Prese	<u>Secondary Indicators (minimum of two required</u> Surface Soil Crack (B6) Drainage Patterns (B10) Dry-Season Water Table (C2)
5 cm N Restrictive L Type: Depth (inchess Remark Vetland Hyd Primary Indic Surfac High V Satura Water	Mucky Peat or Peat (Sayer (if observed): Bedrock Search S: Soil pit dug rology Indicators: ators (minimum of or e Water (A1) Water Table (A2) tion (A3) Marks (B1)	33) to 4 inch	ired; check all that	ut apply Water Aquati True A Hydro	HYDROL) Stained Leave (c Fauna (B13) Aquatic Plants (gen Sulfide Od	ved. OGY s (B9) (B14) lor (C1)		<u>Secondary Indicators (minimum of two required</u> Surface Soil Crack (B6) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8)
5 cm N Restrictive L Type: Depth (inchess Remark Vetland Hyd Primary Indic Surfac High V Satura Water	Mucky Peat or Peat (Sayer (if observed): Bedrock Bedrock Soil pit dug Soil pit dug rology Indicators: ators (minimum of or e Water (A1) Vater Table (A2) tion (A3)	33) to 4 inch	ired; check all that	ut apply Water Aquati True A Hydro	HYDROL) Stained Leave (c Fauna (B13) Aquatic Plants (gen Sulfide Od	ved. OGY s (B9) (B14)		<u>Secondary Indicators (minimum of two required</u> Surface Soil Crack (B6) Drainage Patterns (B10) Dry-Season Water Table (C2)
5 cm N Restrictive L Type: Depth (inches Remark Vetland Hyd Primary Indic Surfac High V Satura Satura Satura Satura	Mucky Peat or Peat (Sayer (if observed): Bedrock Search S: Soil pit dug rology Indicators: ators (minimum of or e Water (A1) Water Table (A2) tion (A3) Marks (B1)	33) to 4 inch	ired; check all that	tt apply Water Aquati True A Hydro Oxidiz	HYDROL) Stained Leave (c Fauna (B13) Aquatic Plants (gen Sulfide Od	ved. OGY s (B9) (B14) lor (C1) es on Living Ro		<u>Secondary Indicators (minimum of two required</u> Surface Soil Crack (B6) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8)
5 cm N Restrictive L Type: Depth (inchess Remark Vetland Hyd Primary Indic Surfac High V Satura Water Sedim Drift I	Mucky Peat or Peat (S ayer (if observed): Bedrock): 4 :: Soil pit dug rology Indicators: ators (minimum of or e Water (A1) Water Table (A2) tion (A3) Marks (B1) ent Deposits (B2)	33) to 4 inch	ired; check all that	tt apply Water Aquati True A Hydro Oxidiz Presen	HYDROLO) Stained Leave ic Fauna (B13) Aquatic Plants (gen Sulfide Od ced Rhizospher ce or Reduced	ved. OGY s (B9) (B14) lor (C1) es on Living Ro	ots (C3)	No Secondary Indicators (minimum of two required Surface Soil Crack (B6) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C
5 cm N Restrictive L Type: Depth (inches Remark Vetland Hyd Primary Indic Surfac High V Satura Water Sedim Drift I Algal	Mucky Peat or Peat (S ayer (if observed): Bedrock :: 4 :: Soil pit dug rology Indicators: ators (minimum of or e Water (A1) Water Table (A2) tion (A3) Marks (B1) ent Deposits (B2) Deposits (B3)	33) to 4 inch	ired; check all that	tt apply Water Aquati True A Hydro Oxidiz Presen Recent	HYDROLO) Stained Leave ic Fauna (B13) Aquatic Plants (gen Sulfide Od ced Rhizospher ce or Reduced	ved. OGY s (B9) (B14) lor (C1) es on Living Rou Iron (C4) on in Tilled Soils	ots (C3)	Secondary Indicators (minimum of two required Surface Soil Crack (B6) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C Stunted or Stressed Plants (D1)
5 cm N Restrictive L Type: Depth (inches Remark Vetland Hyd Primary Indic Surfac High V Satura Water Sedim Drift I Algal Iron D	Mucky Peat or Peat (S ayer (if observed): Bedrock): 4 s: Soil pit dug rology Indicators: ators (minimum of or e Water (A1) Vater Table (A2) tion (A3) Marks (B1) ent Deposits (B2) Deposits (B3) Mat or Crust (B4)	to 4 inch		tt apply Water- Aquati True A Hydro Oxidiz Presen Recent Thin M	HYDROLO Stained Leave C Fauna (B13) Aquatic Plants (gen Sulfide Od ed Rhizospher ce or Reduced t Iron Reductio	ved. OGY (B14) lor (C1) es on Living Roy Iron (C4) on in Tilled Soils C7)	ots (C3)	Secondary Indicators (minimum of two required Surface Soil Crack (B6) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C Stunted or Stressed Plants (D1) X Geomorphic Position (D2)
5 cm N Restrictive L Type: Depth (inchess Remark Vetland Hyd Primary Indic Surfac High V Satura Water Sedim Drift I Algal Iron D Inunda	Mucky Peat or Peat (S ayer (if observed): Bedrock 3: Soil pit dug rology Indicators: ators (minimum of or e Water (A1) Vater Table (A2) tion (A3) Marks (B1) ent Deposits (B2) Deposits (B3) Mat or Crust (B4) eposits (B5)	to 4 inch ne is requ	ired; check all tha 	tt apply Water- Aquati True A Hydro Oxidiz Presen Recent Thin M Gauge	HYDROLO Stained Leave C Fauna (B13) Aquatic Plants (gen Sulfide Od ed Rhizospher ce or Reduced t Iron Reductio Auck Surface (ved. OGY s (B9) (B14) lor (C1) es on Living Rod Iron (C4) n in Tilled Soils C7) (C7)	ots (C3)	Secondary Indicators (minimum of two required Surface Soil Crack (B6) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C Stunted or Stressed Plants (D1) X Geomorphic Position (D2)
5 cm N Restrictive L Type: Depth (inches Remark Wetland Hyd Primary Indic Surfac High V Satura Water Sedim Drift I Algal Iron D Inunda Sparse	Mucky Peat or Peat (S ayer (if observed): Bedrock 3: Soil pit dug rology Indicators: ators (minimum of or e Water (A1) Vater Table (A2) tion (A3) Marks (B1) ent Deposits (B2) Deposits (B3) Mat or Crust (B4) eposits (B5) ation Visible on Aeria cly Vegetated Concav	to 4 inch ne is requ	ired; check all tha 	tt apply Water- Aquati True A Hydro Oxidiz Presen Recent Thin M Gauge	HYDROLO Stained Leave C Fauna (B13) Aquatic Plants (gen Sulfide Od ed Rhizospher ce or Reduced thron Reduced thron Reduction fuck Surface (or Well Data (ved. OGY s (B9) (B14) lor (C1) es on Living Rod Iron (C4) n in Tilled Soils C7) (C7)	ots (C3)	Secondary Indicators (minimum of two required Surface Soil Crack (B6) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C Stunted or Stressed Plants (D1) X Geomorphic Position (D2)
5 cm N Restrictive L Type: Depth (inches Remark Vetland Hyd Primary Indic Surfac High V Satura Water Sedim Drift I Algal Iron D Inunda Sparse Field Observa	Mucky Peat or Peat (S ayer (if observed): Bedrock .): 4 s: Soil pit dug rology Indicators: ators (minimum of or e Water (A1) Water Table (A2) tion (A3) Marks (B1) ent Deposits (B2) Deposits (B3) Mat or Crust (B4) eposits (B5) ation Visible on Aeria ely Vegetated Concav ations:	to 4 inch ne is requ	ired; check all tha 	at apply Water- Aquati True A Hydro Oxidiz Presen Recent Thin N Gauge Other	HYDROLO Stained Leave C Fauna (B13) Aquatic Plants (gen Sulfide Od ed Rhizospher ce or Reduced thron Reduced thron Reduction fuck Surface (or Well Data (ved. OGY s (B9) (B14) lor (C1) es on Living Ro- Iron (C4) on in Tilled Soils C7) (C7) (C7) marks)	ots (C3)	Secondary Indicators (minimum of two required Surface Soil Crack (B6) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C Stunted or Stressed Plants (D1) X Geomorphic Position (D2) X FAC-Neutral Test (D5)
5 cm N Restrictive L Type: Depth (inchess Remark Wetland Hyd Primary Indic Surfac High V Satura Water Sedim Drift I Algal Inunda	Mucky Peat or Peat (S ayer (if observed): Bedrock 3: Soil pit dug rology Indicators: ators (minimum of or e Water (A1) Vater Table (A2) tion (A3) Marks (B1) ent Deposits (B2) Deposits (B3) Mat or Crust (B4) eposits (B5) tion Visible on Aeria aly Vegetated Concav ations: r Present?	to 4 inch ne is requ	ired; check all tha 	tt apply Water- Aquati True A Hydro Oxidiz Presen Recent Thin M Gauge Other	HYDROLO Stained Leave C Fauna (B13) Aquatic Plants (gen Sulfide Od ed Rhizospher ce or Reduced t Iron Reductio fuck Surface (or Well Data ((Explain in Re	ved. OGY s (B9) (B14) lor (C1) res on Living Rou Iron (C4) on in Tilled Soils C7) (C7) marks)	ots (C3)	Secondary Indicators (minimum of two required Surface Soil Crack (B6) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C Stunted or Stressed Plants (D1) X Geomorphic Position (D2)

Real People. Real Solutions.	(M	Iidwest Region)						
Project/Site: Kohner Property Wetland Delineation	Ci	ity/County: Waba	sha County	Sampling Date: 6/25/2020				
Applicant/Owner: City of Wabasha		State	: MN	Sample Point: Site 5				
Investigator(s): Brandon Bohks		Section, Town	ship, Range: 30					
Landforms (hillside, terrace, etc.): Depression		Local Relief (concave, convex, none): Concave						
Slope (%): 0-2 Latitude:		Longitude:						
Soil Map Unit Name: Pits, gravel-Udipsamments		NWI Classification:						
Are climatic/hydrologic conditions of the site typical for this time of	f year?	(If no, explain in remarks)						
Are vegetation \mathbf{X} , soils \mathbf{X} , or hydrology		X signifi	cantly disturbed	l? Are normal cir	rcumstances present? No			
Are vegetation , soils , or hydrology		natura	lly problematic:	? (If needed, exp	lain any answers in Remarks)			
SUM	1MA	RY OF FIND	INGS					
Hydrophytic vegetation present? Yes								
Hydric soils present? No			Is the samp	oled area within a w	etland? No			
Wetland hydrology present? Yes								
		•						
<u>Remarks:</u> Very likely the site was previously excavated du te	o mini	ng practices.						
VEGETA	TIO	N - Use scientific	names of plants	\$				
			*	T	ance Test Worksheet			
	solute Cover	Dominant Species	Indicator Status		. , .			
	35	Yes	FACW	Number of dor that are OBL, FA	1			
2 Ulmus americana	5	No	FACW					
3	-				er of dominant eross all strata: 4 (B)			
4		·						
5		·		Percent of domina are OBL F	ACW or FAC: 75% (A/B)			
· · · · · · · · · · · · · · · · · · ·	40	=Total Cover		uie OBE, 12				
Sapling/Shrub stratum (Plot size: 15 feet)	10			Prevale	ence Index Worksheet			
	45	Yes	FAC	Total % cover of:	are much worksheet			
2				OBL Species:	0 x 1 = 0			
3		- <u> </u>		FACW Species:	$\frac{1}{46}$ x 2 = 92			
л — — — — — — — — — — — — — — — — — — —		<u> </u>		FAC Species:	$\frac{40}{47}$ x 3 = $\frac{52}{141}$			
5		<u> </u>		FACU species:	$\frac{47}{5}$ x 4 = 20			
· · · · · · · · · · · · · · · · · · ·	45	=Total Cover		UPL Species:	$\frac{3}{0}$ x 5 = 0			
Herb stratum: (Plot size: 5 feet)				-	$\frac{0}{98}$ (A) $\frac{253}{253}$ (B)			
1 Fraxinus pennsylvanica	6	Yes	FACW	-	e Index (B/A): 2.58			
2 Parthenocissus quinquefolia	5	Yes	FACU	Trevalence				
3 Rhamnus cathartica	2	No	FAC	Hydrophy	tic Vegetation Indicators			
4	-				for hydrophytic vegetation			
				X Dominance				
6					index is $\leq 3.0^*$			
7		<u> </u>						
8					ical adaptations* (Provide data in remarks)			
°		- <u> </u>						
10				Problemati (Explain in	c hydrophytic vegetation*			
	12	Tatal Cause			Temarks)			
	13	=Total Cover			dric soil and wetland hydrology			
Woody vine stratum: (Plot size: 15 feet)				must be present,	unless disturbed or problematic			
1								
2	0			Hydrophytic				
—	0	=Total Cover		presen	t? Yes			
Remarks:								

Real People. Real Solutions.

(Midwest Region)

Depth	Matrix			Redo	x Features					
(inches)	Color (moist)	%	Color (moist)	%	Type*	Loc**	Textu	re	Remarks	
0-7	10YR 2/32	100					Sandy L	oam		
7-14+	10YR 4/3	100					San	1		
	*Type: C = Concentr	ation, D	= Depletion, RM	= Redu	ced Matrix, M	S = Masked Sa	nd Grains. **	Locatior	h: PL = Pore Lining, M = Matrix	
Iydric Soil I	Indicators:						Indi	cators f	or Problematic Hydric Soils*:	
Histis	ol (A1)			Sandy	Gleyed Matrix	x (S4)		Coast Prairie Redox (A16)(LRR K,L,R)		
Histic	Epipedon (A2)			•	Redox (S5)				Surface (S7)(LRR K, L)	
	Histic (A3)				ed Matrix (S6)				Ianganese Masses (F12)(LRR K, L, R)	
	gen Sulfide (A4)			• • •	Mucky Mater			_	Shallow Dark Surface (TF12)	
	ied Layers (A5)			•	Gleyed Matri				(Explain in remarks)	
	Muck (A10)			•	ed Matrix (F3)			_	× I ·······	
	ted Below Dark Surfa	ce (Δ11)		-	Dark Surface					
`				-	ed Dark Surfa	. ,				
Thick Dark Surface (A12)								*Indicators of hydrophytic vegetation and wetland		
	Mucky Material (S1)			Padov	Depressions (F8)	h	drology	must be present unless disturbed or	
Sandy	Mucky Material (S1)			Redox	Depressions (F8)	h	ydrology	must be present, unless disturbed or problematic	
Sandy 5 cm 1	Mucky Peat or Peat (S			Redox	Depressions (F8)	h	ydrology		
Sandy 5 cm 1 Restrictive L	-			Redox	Depressions (
Sandy 5 cm I Restrictive L Гуре:	Mucky Peat or Peat (S Layer (if observed):			Redox	Depressions (hy Iric Soils Pre			
Sandy 5 cm 1 Restrictive L	Mucky Peat or Peat (S Layer (if observed):			Redox	Depressions (problematic	
Sandy 5 cm I Restrictive L Fype: Depth (inches	Mucky Peat or Peat (S Layer (if observed):	3)		Redox	Depressions (problematic	
Sandy 5 cm I Restrictive L	Mucky Peat or Peat (S Layer (if observed):	3)	hes			Hyd			problematic	
Sandy 5 cm 1 Sestrictive L Type: Depth (inches Remark	Mucky Peat or Peat (S ayer (if observed): (S): (S): (S): (S): (S): (S): (S): (S	3)	hes		Depressions (Hyd			problematic	
Sandy 5 cm 1 5 cm 1 Vype: Depth (inches <u>Remark</u> Vetland Hyd	Mucky Peat or Peat (S Layer (if observed):	3) to 14 inc		- - -	HYDROL	Hyd			problematic	
Sandy 5 cm I 5 cm I 7ype: Depth (inches <u>Remark</u> 7 etland Hyd	Mucky Peat or Peat (S ayer (if observed): (S): (S): (S): (S): (S): (S): (S): (S	3) to 14 inc		- - -	HYDROL	Hyd		esent?	problematic <u>No</u>	
Sandy 5 cm l Sestrictive L Yype: Depth (inches Remark Zetland Hyd	Mucky Peat or Peat (S Layer (if observed):	3) to 14 inc		tt apply	HYDROL	Hyd OGY		esent?	problematic <u>No</u>	
Sandy 5 cm I 5 cm I 7ype: Depth (inches <u>Remark</u> Vetland Hyd Primary Indic Surfac	Mucky Peat or Peat (S .ayer (if observed): (S): (S): (S): (S): (S): (S): (S): (S	3) to 14 inc		tt apply Water-	HYDROL	Hyd OGY s (B9)		esent?	problematicNo dary Indicators (minimum of two required	
Sandy 5 cm I Sestrictive L Type: Depth (inches Remark Zerimary Indic Surfac High V	Mucky Peat or Peat (S Layer (if observed): (a): (a): (a): (a): (a): (a): (a): (a	3) to 14 inc		tt apply Water Aquati	HYDROL Stained Leave	Нус О GY s (B9)		esent?		
Sandy 5 cm 1 Sestrictive L Type: Depth (inches Remark Remark Vetland Hyd Primary Indic Surfac High V Satura	Mucky Peat or Peat (S 	3) to 14 inc		tt apply Water Aquati True A	HYDROL) Stained Leave c Fauna (B13)	Hyd OGY s (B9) (B14)		esent?	mo mo dary Indicators (minimum of two required Surface Soil Crack (B6) Drainage Patterns (B10)	
Sandy 5 cm 1 Sestrictive L Type: Depth (inches Remark Vetland Hyd Primary Indic Surfac High V Satura Water	Mucky Peat or Peat (S ayer (if observed): (a): (a): (a): (a): (a): (a): (a): (a): (b): (c):	3) to 14 inc		tt apply Water Aquati True A Hydro	HYDROL) Stained Leave c Fauna (B13) quatic Plants gen Sulfide Oc	Hyd OGY s (B9) (B14)	Iric Soils Pro	esent?	problematic No dary Indicators (minimum of two required Surface Soil Crack (B6) Drainage Patterns (B10) Dry-Season Water Table (C2)	
Sandy 5 cm 1 Sestrictive L Type: Depth (inches Remark Vetland Hyd Primary Indic Surfac High V Satura Satura Satura Sedim	Mucky Peat or Peat (S ayer (if observed): (S):	3) to 14 inc		tt apply Water Aquati True A Hydro Oxidiz	HYDROL) Stained Leave c Fauna (B13) quatic Plants gen Sulfide Oc	Hyd OGY s (B9) (B14) lor (C1) es on Living R	Iric Soils Pro	esent?		
Sandy 5 cm I Sestrictive L Type: Depth (inches Remark Remark Vetland Hyd Primary Indic Surfac High V Satura Water Sedim Drift I	Mucky Peat or Peat (S .ayer (if observed): 	3) to 14 inc		tt apply Water Aquati True A Hydro Oxidiz Presen	HYDROL) Stained Leave c Fauna (B13) quatic Plants of gen Sulfide Oc ed Rhizospher ce or Reduced	Hyd OGY s (B9) (B14) lor (C1) es on Living R	Iric Soils Pro	sent?	mo Mo dary Indicators (minimum of two required Surface Soil Crack (B6) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9)	
Sandy 5 cm 1 Sestrictive L Cype: Depth (inches Remark Vetland Hyd Primary Indic Surfac High V Satura Water Sedim Drift I Algal	Mucky Peat or Peat (S .ayer (if observed): 	3) to 14 inc		tt apply Water Aquati True A Hydro Oxidiz Presen Recent	HYDROL) Stained Leave c Fauna (B13) quatic Plants of gen Sulfide Oc ed Rhizospher ce or Reduced	Hyd OGY s (B9) (B14) lor (C1) es on Living R Iron (C4) on in Tilled Soil	Iric Soils Pro	ssent?		
Sandy 5 cm I 7 S cm I 7 S cm I 7 S cm I 7 Surjac 8 Selim 9 Satura 9 Satura	Mucky Peat or Peat (S .ayer (if observed): 	3) to 14 inc	ired; check all the	tt apply Water Aquati True A Hydro Oxidiz Presen Recent Thin M	HYDROL) Stained Leave c Fauna (B13) quatic Plants gen Sulfide Od ed Rhizospher ce or Reduced Iron Reductio	Hyd OGY s (B9) (B14) lor (C1) es on Living R Iron (C4) m in Tilled Soil C7)	Iric Soils Pro	ssent?	mo Mo Mo dary Indicators (minimum of two required Surface Soil Crack (B6) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9 Stunted or Stressed Plants (D1) Geomorphic Position (D2)	
Sandy 5 cm 1 Sectrictive L Type: Depth (inchess Remark Remark Vetland Hyd Primary Indic Surfac High V Satura Water Sedim Drift I Algal Iron D Inunda	Mucky Peat or Peat (S .ayer (if observed): 	3) to 14 inc e is requ	ired; check all tha	at apply Water Aquati True A Hydro Oxidiz Presen Recent Thin M Gauge	HYDROL) Stained Leave c Fauna (B13) quatic Plants gen Sulfide Oc ed Rhizospher ce or Reduced Iron Reduction fuck Surface (Hyd OGY s (B9) (B14) lor (C1) es on Living R Iron (C4) on in Tilled Soil (C7) (C7)	Iric Soils Pro	ssent?	mo Mo Mo dary Indicators (minimum of two required Surface Soil Crack (B6) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9 Stunted or Stressed Plants (D1) Geomorphic Position (D2)	
Sandy 5 cm I Restrictive I Type: Depth (inches Remark Vetland Hyd Primary Indic Surfac High V Satura Water Sedim Drift I Algal Iron D Inunda Sparse	Mucky Peat or Peat (S .ayer (if observed): 	3) to 14 inc e is requ	ired; check all tha	at apply Water Aquati True A Hydro Oxidiz Presen Recent Thin M Gauge	HYDROLA) Stained Leave c Fauna (B13) quatic Plants gen Sulfide Oc ed Rhizospher ce or Reduced Iron Reduction fuck Surface (or Well Data	Hyd OGY s (B9) (B14) lor (C1) es on Living R Iron (C4) on in Tilled Soil (C7) (C7)	Iric Soils Pro	ssent?	mo Mo Mo dary Indicators (minimum of two required Surface Soil Crack (B6) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9 Stunted or Stressed Plants (D1) Geomorphic Position (D2)	
Sandy 5 cm 1 Restrictive L Type: Depth (inchess Remark Vetland Hyd Primary Indic Surfac High V Satura Water Sedim Drift I Algal Iron D Inunda Sparse	Mucky Peat or Peat (S .ayer (if observed): 	3) to 14 inc e is requ	ired; check all tha	at apply Water- Aquati True A Hydro Oxidiz Presen Recent Thin N Gauge Other	HYDROL HYDROL Stained Leave c Fauna (B13) quatic Plants gen Sulfide Oc ed Rhizospher ce or Reduced Iron Reduction fuck Surface (or Well Data (Explain in Re	Hyd OGY s (B9) (B14) lor (C1) es on Living R Iron (C4) on in Tilled Soil (C7) (C7) (C7) marks)	Iric Soils Pro	sent?	No dary Indicators (minimum of two required Surface Soil Crack (B6) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Stunted or Stressed Plants (D1) Geomorphic Position (D2) FAC-Neutral Test (D5)	
Sandy 5 cm 1 Sectrictive L Type: Depth (inchess Remark Remark Vetland Hyd Primary Indic Surfac High V Satura Water Sedim Drift I Algal Iron D Inunda	Mucky Peat or Peat (S .ayer (if observed): 	3) to 14 inc e is requ	ired; check all tha	tt apply Water Aquati True A Hydro Oxidiz Presen Recent Thin M Gauge Other	HYDROLA) Stained Leave c Fauna (B13) quatic Plants gen Sulfide Oc ed Rhizospher ce or Reduced Iron Reduction fuck Surface (or Well Data	Hyd OGY s (B9) (B14) lor (C1) es on Living R Iron (C4) on in Tilled Soil (C7) (C7) marks)	Iric Soils Pro	sent?	mo Mo Mo dary Indicators (minimum of two required Surface Soil Crack (B6) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9 Stunted or Stressed Plants (D1) Geomorphic Position (D2)	

Real People. Real Solutions.	(Midwest Region)					
Project/Site: Kohner Property Wetland Delineation	City/County: Wa	basha County	Sampling Date: 6/25/2020				
Applicant/Owner: City of Wabasha	Sta	ate: MN		Sample Point: Site 6			
Investigator(s): Brandon Bohks	Section, Toy						
Landforms (hillside, terrace, etc.): Depression	Local Relie	ef (concave, convex	a, none): Concave				
Slope (%): 0-2 Latitude:	Longitude:		Datum:				
Soil Map Unit Name: Pits, gravel-Udipsamments	NWI Clas	ssification:					
Are climatic/hydrologic conditions of the site typical for this time of y	ear? (If no, explain in remarks)						
Are vegetation \mathbf{X} , soils \mathbf{X} , or hydrology	X sign	ificantly disturbed	? Are normal circ	cumstances present? No			
Are vegetation , soils , or hydrology	natu	rally problematic?	(If needed, expla	ain any answers in Remarks)			
SUMI	MARY OF FIN	DINGS					
Hydrophytic vegetation present? No							
Hydric soils present? No	-	Is the samp	led area within a we	tland? No			
Wetland hydrology present? No	-						
<u>Remarks:</u> Very likely the site was previously excavated due to	mining practices.						
VECETAT	ION - Use scientif	Go nomeo of nlonto					
VEGEIAI	IUN - Use scientif	fic names of plants	Domino	nce Test Worksheet			
Abso Trace Structure (Diat size: 20.5)		Indicator	Domina	nce rest worksneet			
Tree Stratum (Plot size: 30 feet) % Co	1	Status	Number of dom	1			
1 Juglans nigra 90		FACU	that are OBL, FA	CW, or FAC: 1 (A)			
2 Ulmus americana 10) <u>No</u>	FACW	Total number				
3			species acr	oss all strata: <u>4</u> (B)			
4			Percent of dominan	1			
5			are OBL, FA	CW or FAC: 25% (A/B)			
	0 =Total Cover						
Sapling/Shrub stratum (Plot size: 15 feet)				nce Index Worksheet			
1 Zanthoxylum americanum 25	5 Yes	FACU	Total % cover of:				
2			OBL Species:	0 x 1 = 0			
3			-	55 x 2 = 110			
4			-	15 x 3 = 45			
5			FACU species:				
25	=Total Cover		UPL Species:	0 x 5 = 0			
Herb stratum: (Plot size: 5 feet)				245 (A) 855 (B)			
1 Sanicula canadensis 35	5 Yes	FACU	Prevalence	Index (B/A): 3.49			
2 Laportea canadensis 30	Yes	FACW					
3 Parthenocissus quinquefolia 20	No No	FACU	Hydrophyti	c Vegetation Indicators			
4 Persicaria virginiana 15	5 No	FAC	Rapid test fo	or hydrophytic vegetation			
5 Pilea fontana 15	5 No	FACW	Dominance	test >50%			
6 Carex pensylvanica 5	No	FACU	Prevalence i	ndex is $\leq 3.0^*$			
7			Morphologic	cal adaptations* (Provide			
8			supporting d	lata in remarks)			
9			Problematic	hydrophytic vegetation*			
10			(Explain in 1				
12	0 =Total Cover		ΨT. J'				
Woody vine stratum: (Plot size: 15 feet)				ric soil and wetland hydrology inless disturbed or problematic			
1			must be present, u	intess disturbed of problemate			
2			Hydrophytic ve	egetation			
0	=Total Cover		present	_			
			ļ				
<u>Remarks:</u>							

Real People. Real Solutions.	((Midwest Region)		
Project/Site: Kohner Property Wetland Delineation		City/County: Waba	sha County	Sampling Date: 6/25/2020
Applicant/Owner: City of Wabasha		State	: MN	Sample Point: Site 7
Investigator(s): Brandon Bohks		Section, Town	ship, Range: 30	, 111N, 10W
Landforms (hillside, terrace, etc.): Depression/Gully		Local Relief (concave, conve	x, none): Concave
Slope (%): 0-2 Latitude:		Longitude:		Datum:
Soil Map Unit Name: Plainfield sand		NWI Classi	fication:	
Are climatic/hydrologic conditions of the site typical for this tin	me of yea	ır?	(If no,	explain in remarks)
Are vegetation \mathbf{X} , soils \mathbf{X} , or hydrol	ogy	X signifi	cantly disturbed	Are normal circumstances present? No
Are vegetation , soils , or hydrol	ogy		lly problematic	· · · · · · · · · · · · · · · · · · ·
		ARY OF FIND		
	Yes			
Hydric soils present?	No		Is the same	oled area within a wetland? No
	Yes		1	
<u>Remarks:</u> Very likely the site was previously excavated	due to m	ining practices.		
VEGE	ΤΑΤΙΟ	ON - Use scientific	names of plants	
	Absolut	e Dominant	Indicator	Dominance Test Worksheet
<u>Tree Stratum</u> (Plot size: <u>30 feet</u>)	% Cove	er Species	Status	Number of dominant species
1 Acer negundo	30	Yes	FAC	that are OBL, FACW, or FAC: 6 (A)
2 Fraxinus pennsylvanica	25	Yes	FACW	Total number of dominant
3 Populus deltoides	20	Yes	FAC	species across all strata: 6 (B)
4				Percent of dominant species that
5				are OBL, FACW or FAC: 100% (A/B)
	75	=Total Cover		
Sapling/Shrub stratum (Plot size: 15 feet)		_		Prevalence Index Worksheet
1 Rhamnus Cathartica	35	Yes	FAC	Total % cover of:
2				OBL Species: 0 x 1 = 0
3				FACW Species: 90 $x 2 = 180$
4				FAC Species: $130 \times 3 = 390$
5				FACU species: 0 x 4 = 0
	35	=Total Cover		UPL Species: $0 \mathbf{x} 5 = 0$
Herb stratum: (Plot size: 5 feet)		_		Totals: 220 (A) 570 (B)
1 Laportea canadensis	65	Yes	FACW	Prevalence Index (B/A): 2.59
2 Persicaria virginiana	45	Yes	FAC	
3				Hydrophytic Vegetation Indicators
4				Rapid test for hydrophytic vegetation
5				\mathbf{X} Dominance test >50%
6				X Prevalence index is $\leq 3.0^*$
7				
8				Morphological adaptations* (Provide supporting data in remarks)
9				
10				Problematic hydrophytic vegetation* (Explain in remarks)
10	110	=Total Cover		
Woody yine stratum: (Plot size: 15 fact.)	110			*Indicators of hydric soil and wetland hydrology
Woody vine stratum: (Plot size: 15 feet)				must be present, unless disturbed or problematic
1				
2			·	Hydrophytic vegetation
	0	=Total Cover		present? <u>Yes</u>
Remarks:				

Real People. Real Solutions.

(Midwest Region)

Depth	Matrix			Redo	k Features	•				
(inches)	Color (moist)	%	Color (moist)	%	Type*	Loc**	Texture	Remarks		
0-6	10YR 2/1	100					Sandy Loar	n		
6-20	10YR 5/3	100					Sand			
	*Type: C = Concentra	ation, D =	Depletion, RM	= Redu	ced Matrix, M	S = Masked Sa	nd Grains. **Loo	ation: PL = Pore Lining, M = Matrix		
Hydric Soil 1	Indicators:						Indicat	ors for Problematic Hydric Soils*:		
Histis	ol (A1)			Sandy	Gleyed Matrix	x (S4)	C	oast Prairie Redox (A16)(LRR K,L,R)		
Histic	Epipedon (A2)			Sandy	Redox (S5)		E	ark Surface (S7)(LRR K, L)		
Black	Histic (A3)			Strippe	d Matrix (S6)		I	Iron-Manganese Masses (F12)(LRR K, L, R)		
Hydro	ogen Sulfide (A4)			•	Mucky Mater			ery Shallow Dark Surface (TF12)		
Stratif	fied Layers (A5)			•	Gleyed Matri			ther (Explain in remarks)		
	Muck (A10)			•	ed Matrix (F3)					
Deple	ted Below Dark Surfa	ce (A11)		Redox	Dark Surface	(F6)				
Thick	Dark Surface (A12)			Deplet	ed Dark Surfa	ce (F7)	*Indica	tors of hydrophytic vegetation and wetland		
				Redox	Depressions (F8)		hydrology must be present, unless disturbed or		
Sandy	Sandy Mucky Material (S1)			Redox				problematic		
	Mucky Material (S1) Mucky Peat or Peat (S			·	-			problematic		
5 cm]	Mucky Peat or Peat (S				-			problematic		
5 cm 1 Restrictive I	-			·		Hvc	Iric Soils Presen			
5 cm 1 Restrictive I Type:	Mucky Peat or Peat (S Layer (if observed):					Hyd	lric Soils Presen			
5 cm 1 Restrictive I	Mucky Peat or Peat (S Layer (if observed):					Нус	lric Soils Presen			
5 cm 1 Restrictive I Type:	Mucky Peat or Peat (S Layer (if observed):	3)	 nes			Нус	lric Soils Presen			
5 cm 1 Restrictive I Гуре: Depth (inches	Mucky Peat or Peat (S Layer (if observed):	3)	nes	- - -	HYDROL		lric Soils Presen			
5 cm 1 Restrictive I Type: Depth (inches Remark	Mucky Peat or Peat (S Layer (if observed):	3)	les	- - -	HYDROL		lric Soils Presen			
5 cm 1 Restrictive I Type: Depth (inches Remark	Mucky Peat or Peat (S Layer (if observed): (S)	3) to 20 inch						t? <u>No</u>		
5 cm 1 Restrictive I Fype: Depth (inches Remark Vetland Hyd Primary Indic	Mucky Peat or Peat (S Layer (if observed): (S): (S): (S): (S): (S): (S): (S): (S	3) to 20 inch		tt apply		OGY		t? <u>No</u>		
5 cm 1 Restrictive I Type: Depth (inches Remark Vetland Hyd Primary Indic Surfac	Mucky Peat or Peat (S .ayer (if observed): s): Soil pit dug to lrology Indicators: cators (minimum of on	3) to 20 inch		tt apply Water-	<u>)</u>	OGY s (B9)		t? <u>No</u> econdary Indicators (minimum of two required		
5 cm 1 Restrictive I Type: Depth (inches Remark Vetland Hyd Primary Indic Surfac High	Mucky Peat or Peat (S Layer (if observed): (a): (a): (a): (a): (a): (a): (a): (a	3) to 20 inch		tt apply Water- Aquati	<u>)</u> Stained Leave	OGY s (B9)		t? <u>No</u> econdary Indicators (minimum of two required Surface Soil Crack (B6)		
5 cm 1 Restrictive I Fype: Depth (inches Remark Vetland Hyd Primary India Surfac High Satura	Mucky Peat or Peat (S Layer (if observed): s): Soil pit dug to rology Indicators: cators (minimum of on ce Water (A1) Water Table (A2)	3) to 20 inch		tt apply Water- Aquati True A	<u>)</u> Stained Leave c Fauna (B13)	OGY s (B9) (B14)		t? <u>No</u> econdary Indicators (minimum of two required Surface Soil Crack (B6) Drainage Patterns (B10)		
5 cm 1 Restrictive I Type: Depth (inchest Remark Vetland Hyd Primary Indic Surfac High Satura Water	Mucky Peat or Peat (S Layer (if observed): (S)	3) to 20 inch		tt apply Water- Aquati True A Hydrog	<u>)</u> Stained Leave c Fauna (B13) quatic Plants gen Sulfide Oc	OGY s (B9) (B14)		t? <u>No</u> econdary Indicators (minimum of two required Surface Soil Crack (B6) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8)		
5 cm 1 Restrictive I Type: Depth (inchest Remark Vetland Hyd Primary Indic Surfac High Satura Water Sedim	Mucky Peat or Peat (S Layer (if observed): s): Soil pit dug to rology Indicators: cators (minimum of on ce Water (A1) Water Table (A2) ation (A3) Marks (B1)	3) to 20 inch		tt apply Water- Aquati True A Hydrog Oxidiz	<u>)</u> Stained Leave c Fauna (B13) quatic Plants gen Sulfide Oc	OGY s (B9) (B14) lor (C1) es on Living R		t? <u>No</u> econdary Indicators (minimum of two required Surface Soil Crack (B6) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8)		
5 cm l Restrictive I Fype: Depth (inches Remark Vetland Hyd Primary Indic Surfac High Satura Satura Water Sedirr Drift l	Mucky Peat or Peat (S Layer (if observed): (S): Soil pit dug to Arology Indicators: eators (minimum of on the Water (A1) Water Table (A2) ation (A3) Marks (B1) ment Deposits (B2)	3) to 20 inch		tt apply Water- Aquati True A Hydrog Oxidiz Presen) Stained Leave c Fauna (B13) quatic Plants gen Sulfide Oc ed Rhizospher ce or Reduced	OGY s (B9) (B14) lor (C1) es on Living R	S 	t? <u>No</u> econdary Indicators (minimum of two required Surface Soil Crack (B6) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9		
5 cm l Restrictive I Type: Depth (inchest Remark Vetland Hyd Primary Indic Surfac High Satura Water Sedim Drift l Algal	Mucky Peat or Peat (S Layer (if observed): (S): Soil pit dug to Soil pit dug to Cators (minimum of on the Water (A1) Water Table (A2) tion (A3) Marks (B1) tent Deposits (B2) Deposits (B3)	3) to 20 inch		tt apply Water- Aquati True A Hydrog Oxidiz Presen Recent) Stained Leave c Fauna (B13) quatic Plants gen Sulfide Oc ed Rhizospher ce or Reduced	OGY s (B9) (B14) lor (C1) es on Living R Iron (C4) on in Tilled Soil	S 	t? <u>No</u> econdary Indicators (minimum of two required Surface Soil Crack (B6) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9 Stunted or Stressed Plants (D1)		
5 cm l Restrictive I Type: Depth (inchest Remark Vetland Hyd Primary India Surfac High Satura Satura Satura Satura Drift I Algal Iron D	Mucky Peat or Peat (S Layer (if observed): (S): (S): (S): (S): (S): (S): (S): (S	3) to 20 inch te is requi	red; check all the	tt apply Water- Aquati True A Hydrog Oxidiz Presen Recent Thin M) Stained Leave c Fauna (B13) quatic Plants gen Sulfide Oc ed Rhizospher ce or Reduced Iron Reductio	OGY s (B9) (B14) lor (C1) es on Living R Iron (C4) on in Tilled Soil C7)	S 	t? <u>No</u> econdary Indicators (minimum of two required Surface Soil Crack (B6) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9 Stunted or Stressed Plants (D1) X Geomorphic Position (D2)		
5 cm l Restrictive I Type: Depth (inchest Remark Vetland Hyd Primary Indic Surfac High Satura Water Sedim Drift l Algal Iron D Inund	Mucky Peat or Peat (S Layer (if observed): (S): Soil pit dug to Arology Indicators: cators (minimum of on the Water (A1) Water Table (A2) ation (A3) Marks (B1) thent Deposits (B2) Deposits (B3) Mat or Crust (B4) Deposits (B5)	3) to 20 inch ne is requi	(B7)	at apply Water- Aquati True A Hydrog Oxidiz Presen Recent Thin M Gauge) Stained Leave c Fauna (B13) quatic Plants gen Sulfide Oc ed Rhizospher ce or Reduced Iron Reductio Iuck Surface (OGY s (B9) (B14) lor (C1) es on Living R Iron (C4) on in Tilled Soil (C7) (C7)	S 	t? <u>No</u> econdary Indicators (minimum of two required Surface Soil Crack (B6) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9 Stunted or Stressed Plants (D1) X Geomorphic Position (D2)		
5 cm l Restrictive I Type: Depth (inchest Remark Vetland Hyd Primary Indic Surfac High Satura Water Sedirr Drift l Algal Iron E Inunda Sparse	Mucky Peat or Peat (S Layer (if observed): (S): Soil pit dug to Soil pit dug to Cators (minimum of on the Water (A1) Water Table (A2) attion (A3) Marks (B1) thent Deposits (B2) Deposits (B3) Mat or Crust (B4) Deposits (B5) attion Visible on Aeria ely Vegetated Concave	3) to 20 inch ne is requi	(B7)	at apply Water- Aquati True A Hydrog Oxidiz Presen Recent Thin M Gauge) Stained Leave c Fauna (B13) quatic Plants gen Sulfide Oc ed Rhizospher ce or Reduced Iron Reductic Iuck Surface (or Well Data	OGY s (B9) (B14) lor (C1) es on Living R Iron (C4) on in Tilled Soil (C7) (C7)	S 	t? <u>No</u> econdary Indicators (minimum of two required Surface Soil Crack (B6) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9 Stunted or Stressed Plants (D1) X Geomorphic Position (D2)		
5 cm l Restrictive I Type: Depth (inchest Remark Wetland Hyd Primary Indic Surfac High Satura Water Sedim Drift l Algal Iron D Inund	Mucky Peat or Peat (S Layer (if observed): (s): (s): (s): (c) Soil pit dug to (c) Soil pit dug to (c) Soil pit dug to (c) (c) Soil pit dug to (c) (c) (c) (c) (c) (c) (c) (c)	3) to 20 inch ne is requi	(B7)	tt apply Water- Aquati True A Hydrog Oxidiz Presen Recent Thin M Gauge Other () Stained Leave c Fauna (B13) quatic Plants gen Sulfide Oc ed Rhizospher ce or Reduced Iron Reductic Iuck Surface (or Well Data	OGY s (B9) (B14) lor (C1) es on Living R Iron (C4) on in Tilled Soil (C7) (C7) (C7) marks)	S 	t? <u>No</u> econdary Indicators (minimum of two required Surface Soil Crack (B6) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9 Stunted or Stressed Plants (D1) X Geomorphic Position (D2)		
5 cm 1 Restrictive I Type: Depth (inchest Remark Wetland Hyd Primary Indic Surfac High Satura Water Sedim Drift 1 Algal Iron E Inund Sparse Field Observ	Mucky Peat or Peat (S Layer (if observed): (a): (a): (a): (b): (c)	3) to 20 inch ne is requi	(B7)	tt apply Water- Aquati True A Hydrog Oxidiz Presen Recent Thin M Gauge Other () Stained Leave c Fauna (B13) quatic Plants gen Sulfide Oc ed Rhizospher ce or Reduced Iron Reductio Iuck Surface (or Well Data Explain in Re	OGY s (B9) (B14) lor (C1) ves on Living R Iron (C4) on in Tilled Soil (C7) (C7) marks)	S 	t? <u>No</u> econdary Indicators (minimum of two required Surface Soil Crack (B6) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9 Stunted or Stressed Plants (D1) X Geomorphic Position (D2) X FAC-Neutral Test (D5)		

EXHIBIT G: OFF-SITE HYDROLOGY ASSESSMENT RECORDING FORM

Real People. Real Solutions. RECORDING FORM							ORM					
Project/Site:	Kohner Pro	perty Wetland D	elineation	City/County:	Wabas	sha			Date: 6/15/2020			
Applicant/Owr	ner: City	-		State:	Minnesota							
Investigator(s)				S		p, Ran: 19, 10	9N. 9W					
		W				p, 10	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
WETS Station	ID: wa	basha-Minneiska	-weaver (Cot	inty-1 ownsnip	b-City)							
Date:	Source:	e: Climatic Image Interpretations						-	<u><u> </u></u>	C*4 - F	C!4- 0	
1979		Condition:	Site 1	Site 2	Sit	e s	Site 4	Site 5	Site 6	Site 7	Site 8	
1979												
1980												
1982												
1983												
1984												
1985												
1986												
1987												
1988 1989												
1989												
1990												
1992												
1993												
1994												
1995												
1996												
1997												
1998 1999												
2000												
2000												
2002												
2003	FSA	Normal	NV									
2004												
2005												
2006												
2007 2008	FSA	Normal	NV									
2008	FSA	Normal	NV NV									
200)	FSA	Dry	NV									
2010	Google	Normal	NV									
2012												
2013	FSA	Wet	NV									
2014												
2015	FSA	Normal	NV									
2016	50.4											
2017	FSA	Wet	CS No									
		Hydric Soil NWI	No No									
		Normal Years	5									
		Wet Signatures	0									
	Perce	nt Wet Signatures	0.0%	0.0%	0.0)%	0.0%	0.0%	0.0%	0.0%	0.0%	
		rification required										
NV - No	ormal Vegeta	tion, WS - Wet Sig		rop Stress, DO	- Droi	wn Out	, SW - Standin	g Water, AP -	Altered Patter	rn, NC - Not Cr	opped	
		Decision Ma			2							
Hydric soil	NWI	% Wet	Field visit?	Wetland	?			P	••• •••••			
Yes Yes	Yes Yes	>50% 30-50%	No No	Yes Yes		Site	Hydric soil	Dec NWI	cision Table % Wet	Field Hydro	ID #	
Yes	Yes	<30%	Yes	Yes, w/field	hvdro	Site	No	No	% wet	No	ID #	
Yes	No	>50%	No	Yes		2	0	0	0	110		
Yes	No	30-50%	Yes	Yes, w/field	hydro	3	0	0	0			
Yes	No	<30%	No	No	-	4	0	0	0			
No	Yes	>50%	No	Yes		5	0	0	0			
No	Yes	30-50%	No	Yes		6	0	0	0			
No	Yes	<30%	No	No		7 8	0	0	0			
No	No	>50%	Yes	Yes, w/field	Yes, w/field hydro		0	0	0			

City of Wabasha

Exhibit H: Historical Photo Array (2003 - 2010)

July 2020

Real People. Real Solutions.

City of Wabasha

Exhibit H: Historical Photo Array 2011 - 2017)

July 2020

Real People. Real Solutions.

APPENDIX E

Preliminary Drainage Memo

Real People. Real Solutions.

Ph: (952) 890-0509 Fax: (952) 890-8065 Bolton-Menk.com

December 12, 2022

Tony Johnson – Public Works Director 900 Hiawatha Drive, East Wabasha, MN 55981 pwdirector@wabasha.org (651) 565-3404

RE: USACE Dredge Material Management Plan – Preliminary Drainage Memo City of Wabasha, Wabasha County, MN Project No.: H19.114396

I. INTRODUCTION

The City of Wabasha in conjunction with the Wabasha Port Authority is working on a dredge material management plan for the Mississippi River that includes constructing a barge facility on the north end of the City of Wabasha, MN (River Mile 760). Approximately 270,000 CY of sand will be dredged annually to maintain a 9-ft navigable channel in the river. This barge facility is intended to facilitate dredged material storage and, by extension, transportation of agricultural products and shipping containers on the Mississippi River. The primary purpose is to transport sand from the navigation channel dredging operations to offsite locations for beneficial re-use.

Specifically, the project includes the following activities:

- 1. Construction of infrastructure including a site access road, weighing station and small operations facility
- 2. Construction of a sheet pile dock wall, mooring and maneuvering facilities, and conveyers and hoppers for material processing
- 3. Temporary storage of dredged material on site
- 4. Channel dredging for barge access to the proposed docking and off-loading facilities
- 5. Use of dredged material as fill on the terminal site to raise the dredge material storage area above the 100-year flood elevation

The proposed project triggers NPDES Construction Stormwater permit requirements by adding 2.99 acres of impervious surface to the site. Wabasha is not an MS4 city nor is it subject to more specific pollutant reduction criteria. The site is shown in Figure 1.

Name: Tony Johnson – City of Wabasha Date: December 12, 2022 Page: 2

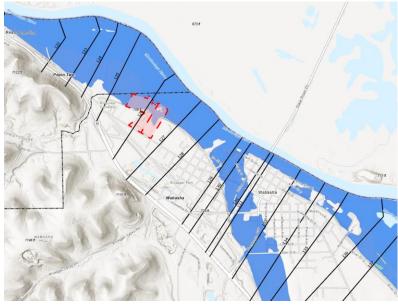


Figure 1: Vicinity Map (not to scale)

The City is proposing an infiltration practice along the access road and offloading facilities to treat runoff on site before discharging to the Mississippi River. The preliminary site design and existing conditions hydrology and hydraulics were assessed using Storm and Sanitary Analysis (SSA) 2021. Design considerations and calculations are described in the following sections.

II. EXISTING CONDITIONS

The existing site includes two mostly undeveloped parcels totaling 48 acres north of Wabasha, MN off of Grant Blvd. W. The land cover is primarily forest and wetland. USGS soil data shows the site is primarily type A and B soils.

SCS methodology was using in SSA 2021 to analyze the existing conditions hydrology and hydraulics. Atlas 14 rainfall depths for the 2-year through 100-year 24-hour storm were applied in the modeling via the MSE 3 rainfall distribution curve. Curve Numbers (CN) were determined using weighted averages of existing land cover and USGS soils data by subbasin. The SCS TR-55 method for time of concentration (Tc) was used. Runoff follows ephemeral gullies and ravines down the major bluff system to flat wetlands and low-lying areas that buffer the Mississippi River. Peak flow rates contributing to the river at the bank line along the site boundary are reported in Table 1.

Storm Event	Site Peak Discharge
Storm Event	(cfs)
2-year	5.9
10-year	23.0
100-year	82.7

Table 1:	Existing	Discharge	Rates
----------	----------	-----------	-------

Name: Tony Johnson – City of Wabasha Date: December 12, 2022 Page: 3

III. PROPOSED CONDITIONS

The proposed project adds 2.99 acres of impervious surface to the site by providing an access road and barge docking station with associated infrastructure. There are no local karst regions, the site is mostly A and B soils, and there are no DWSMA's within 1000 ft of the site, allowing for infiltration to treat stormwater runoff. An infiltration basin is proposed at the southern toe of the access road along the base of the bluff to treat stormwater runoff. CN values were determined based on weighted averages of proposed land uses and USGS soil type. The proposed infiltration basin was designed using the MN Stormwater Manual standards. A proposed conditions workmap is attached.

We assume an infiltration rate of 0.45 in/hr., the maximum for type B soils and note a required drawdown time of 48 hrs. Drainage area to the basin, provided storage volumes, and key elevations are reported in the table below. Pretreatment via rock check dams is included along the swale on the south side of the road. The low spot of the loading pad will be placed just upstream of the final check dam before entering the infiltration basin. If possible, water along the edge of the access road will be routed to this low point. Where runoff sheet flows into the infiltration basin directly, filter strips will be used.

Parameter	Value	Unit
Drainage Area to Basin =	3.73	Acres
Site New Impervious Area =	2.99	Acres
Required Dead Storage Volume =	0	Cu. ft.
Required Water Quality Volume =	10,890 ¹	Cu. ft.
Provided Water Quality Volume =	18,729	Cu. ft.
Hydrologic Soil Group =	В	
Infiltration Rate =	0.45	in/hr
Basin Bottom Area =	6065	Sq. ft.
Basin Bottom Elevation =	674.5	ft
Required Drawdown Time =	48	Hrs
Calculated Drawdown Time =	48	Hrs
Emergency Overflow Elevation =	677.5	ft

Table 2: Water	Ouality BM	P Design Summary
	Quality Divi	

1. 1-in per acre of impervious surface.

One outlet is provided for the basin. This is one 8" corrugated pipe direct northeast towards the river. See the attached workmaps. Two separated overflow locations are provided at 677.5 ft along the southern edge of the ditch, which spill to existing ground and will sheet flow towards the river. These emergency overflows are accessed starting at roughly the 50-year storm.

Proposed infiltration basin flow attenuation, high water levels, and site discharge rates are presented in Table 3. The basin design and emergency overflow adequately provide rate control for the 2-, 10-, and 100-year flows off site.

Name: Tony Johnson – City of Wabasha Date: December 12, 2022 Page: 4

Storm Event	Basin Peak Inflow	Basin Peak Outflow	Basin Water Elevation	Site Peak Discharge
	(cfs)	(cfs)	(ft)	(cfs)
Dry Condition			674.5	
2-year	10.1	0.0	676.0	5.8
10-year	29.2	0.4	676.9	21.8
100-year	56.6	22.9	677.7	82.2

Table 3: Proposed Discharge Rates and High Water Levels

The high-water elevation is 677.7 ft. This is well below any proposed structures which are protected from the Mississippi River base flood elevation of 678.6 ft. The high water level does not threaten the proposed utilities or road infrastructure with regards to flooding.

The infiltration basin and pretreatment swale is easily accessible with an 8' bottom and 3:1 side slopes. Stable vegetation in combination with the rock checks will adequately prevent scour with the ditch and infiltration basin. The basin would need to be inspected after high Mississippi River flows when fine sediment and other debris may be deposited in the basin, or if significant washout of onsite dredge material is observed. The City will oversee the maintenance of the basin and outlet.

Sincerely,

Bolton & Menk, Inc.

Roberta Cronquist, PE, CFM Senior Water Resources Engineer

Attachments:

- Hydrologic Data
- SSA Workmaps
- Preliminary Site Layout

Precipitation Frequency Data Server

NOAA Atlas 14, Volume 8, Version 2 Location name: Wabasha, Minnesota, USA* Latitude: 44.3915°, Longitude: -92.0541° Elevation: 695.36 ft** * source: ESRI Maps ** source: USGS

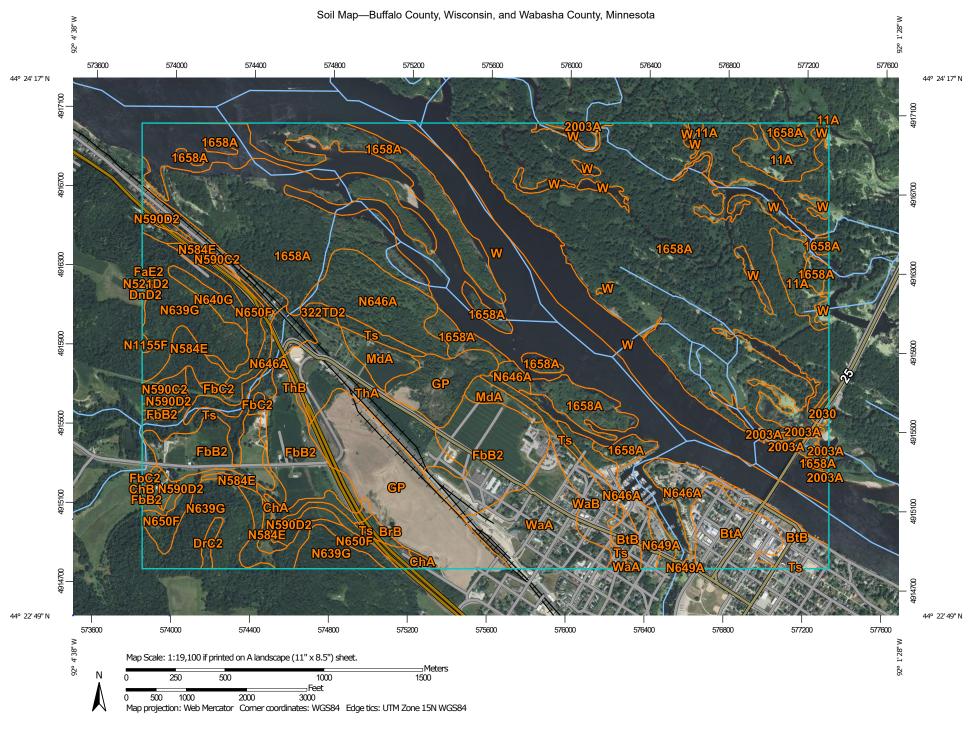
POINT PRECIPITATION FREQUENCY ESTIMATES

Sanja Perica, Deborah Martin, Sandra Pavlovic, Ishani Roy, Michael St. Laurent, Carl Trypaluk, Dale Unruh, Michael Yekta, Geoffery Bonnin

NOAA, National Weather Service, Silver Spring, Maryland

PF_tabular | PF_graphical | Maps_&_aerials

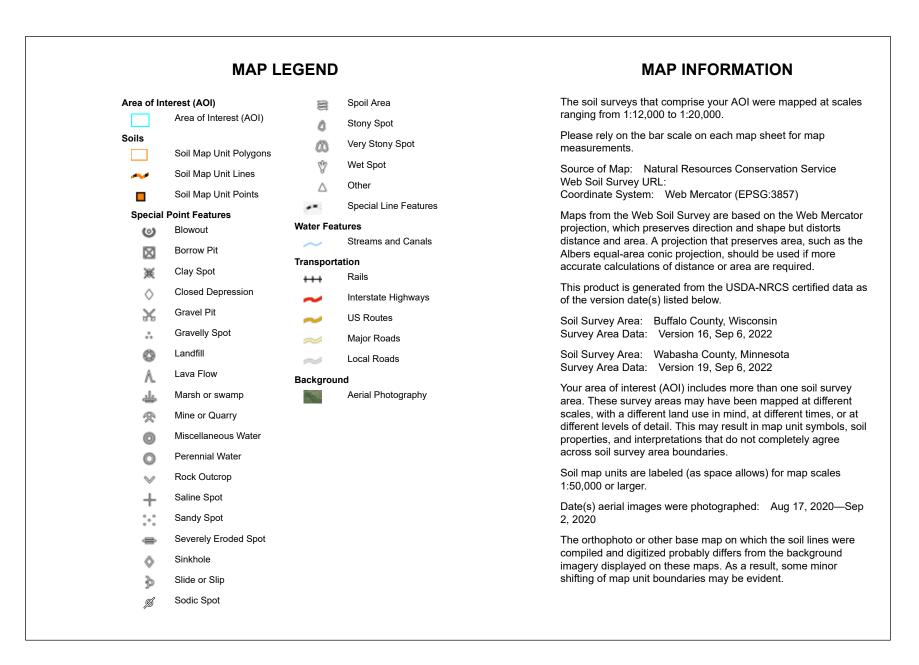
PF tabular


PDS-	b-based point precipitation frequency estimates with 90% confidence intervals (in inches) ¹									
Duration		Average recurrence interval (years)								
Burution	1	2	5	10	25	50	100	200	500	1000
5-min	0.369 (0.288-0.479)	0.440 (0.343-0.571)	0.559 (0.435-0.727)	0.661 (0.511-0.863)	0.807 (0.604-1.09)	0.923 (0.675-1.25)	1.04 (0.737-1.44)	1.17 (0.791-1.65)	1.34 (0.872-1.94)	1.47 (0.933-2.15)
10-min	0.540 (0.422-0.701)	0.644 (0.502-0.836)	0.819 (0.636-1.06)	0.968 (0.748-1.26)	1.18 (0.885-1.59)	1.35 (0.988-1.84)	1.53 (1.08-2.11)	1.71 (1.16-2.42)	1.96 (1.28-2.83)	2.15 (1.37-3.15)
15-min	0.659 (0.515-0.855)	0.785 (0.613-1.02)	0.998 (0.776-1.30)	1.18 (0.913-1.54)	1.44 (1.08-1.94)	1.65 (1.21-2.24)	1.86 (1.32-2.58)	2.09 (1.41-2.95)	2.39 (1.56-3.46)	2.63 (1.67-3.84)
30-min	0.917 (0.716-1.19)	1.10 (0.859-1.43)	1.41 (1.10-1.83)	1.68 (1.30-2.19)	2.05 (1.53-2.76)	2.35 (1.72-3.19)	2.65 (1.87-3.67)	2.97 (2.01-4.20)	3.40 (2.22-4.92)	3.74 (2.37-5.47)
60-min	1.20 (0.940-1.56)	1.43 (1.12-1.86)	1.84 (1.43-2.39)	2.20 (1.70-2.87)	2.75 (2.07-3.73)	3.20 (2.35-4.37)	3.68 (2.61-5.12)	4.19 (2.85-5.96)	4.92 (3.21-7.14)	5.50 (3.49-8.04)
2-hr	1.49 (1.18-1.91)	1.77 (1.39-2.26)	2.27 (1.78-2.91)	2.73 (2.14-3.52)	3.44 (2.63-4.64)	4.05 (3.01-5.49)	4.70 (3.37-6.50)	5.41 (3.73-7.65)	6.43 (4.25-9.30)	7.26 (4.65-10.5)
3-hr	1.68 (1.33-2.13)	1.97 (1.57-2.50)	2.52 (2.00-3.21)	3.06 (2.41-3.90)	3.89 (3.02-5.25)	4.62 (3.48-6.27)	5.43 (3.93-7.50)	6.32 (4.39-8.92)	7.61 (5.07-11.0)	8.68 (5.59-12.5)
6-hr	1.98 (1.59-2.47)	2.30 (1.85-2.88)	2.94 (2.36-3.70)	3.57 (2.85-4.51)	4.59 (3.61-6.15)	5.49 (4.18-7.38)	6.49 (4.77-8.91)	7.62 (5.35-10.7)	9.26 (6.24-13.3)	10.6 (6.92-15.3)
12-hr	2.23 (1.82-2.76)	2.61 (2.13-3.23)	3.34 (2.71-4.14)	4.04 (3.26-5.02)	5.15 (4.09-6.78)	6.12 (4.71-8.11)	7.18 (5.33-9.74)	8.37 (5.94-11.6)	10.1 (6.88-14.4)	11.5 (7.58-16.4)
24-hr	2.55 (2.11-3.10)	2.93 (2.42-3.57)	3.67 (3.02-4.48)	4.38 (3.59-5.38)	5.52 (4.44-7.18)	6.52 (5.08-8.55)	7.63 (5.73-10.2)	8.85 (6.36-12.2)	10.6 (7.33-15.0)	12.1 (8.06-17.2)
2-day	2.95 (2.47-3.54)	3.31 (2.77-3.97)	4.01 (3.35-4.83)	4.72 (3.91-5.70)	5.86 (4.78-7.54)	6.88 (5.44-8.92)	8.02 (6.10-10.7)	9.30 (6.76-12.7)	11.2 (7.79-15.7)	12.8 (8.57-17.9)
3-day	3.25 (2.75-3.87)	3.59 (3.03-4.28)	4.29 (3.60-5.12)	4.99 (4.17-5.98)	6.13 (5.04-7.83)	7.16 (5.70-9.23)	8.32 (6.38-11.0)	9.62 (7.05-13.1)	11.5 (8.10-16.1)	13.1 (8.89-18.4)
4-day	3.50 (2.97-4.13)	3.86 (3.27-4.56)	4.58 (3.87-5.43)	5.29 (4.45-6.31)	6.45 (5.32-8.17)	7.48 (5.99-9.57)	8.64 (6.65-11.3)	9.93 (7.31-13.4)	11.8 (8.34-16.5)	13.4 (9.12-18.8)
7-day	4.09 (3.51-4.78)	4.58 (3.93-5.35)	5.46 (4.67-6.40)	6.27 (5.33-7.39)	7.51 (6.21-9.30)	8.55 (6.88-10.8)	9.68 (7.50-12.5)	10.9 (8.07-14.6)	12.7 (8.98-17.4)	14.1 (9.67-19.6)
10-day	4.63 (4.00-5.37)	5.22 (4.51-6.06)	6.24 (5.37-7.26)	7.14 (6.10-8.35)	8.45 (7.00-10.3)	9.53 (7.69-11.8)	10.7 (8.28-13.6)	11.9 (8.80-15.7)	13.5 (9.62-18.5)	14.9 (10.2-20.6)
20-day	6.26 (5.49-7.15)	7.03 (6.16-8.04)	8.32 (7.26-9.54)	9.40 (8.15-10.8)	10.9 (9.14-13.1)	12.1 (9.89-14.8)	13.4 (10.5-16.8)	14.6 (11.0-19.0)	16.3 (11.7-22.0)	17.6 (12.3-24.3)
30-day	7.69 (6.80-8.71)	8.61 (7.60-9.75)	10.1 (8.89-11.5)	11.3 (9.91-13.0)	13.0 (11.0-15.5)	14.4 (11.8-17.4)	15.7 (12.4-19.6)	17.0 (12.8-22.0)	18.8 (13.6-25.2)	20.1 (14.1-27.5)
45-day	9.57 (8.53-10.7)	10.7 (9.52-12.0)	12.5 (11.1-14.1)	14.0 (12.3-15.8)	15.9 (13.5-18.6)	17.3 (14.3-20.8)	18.8 (14.9-23.2)	20.2 (15.3-25.8)	21.9 (15.9-29.2)	23.2 (16.4-31.7)
60-day	11.2 (10.0-12.5)	12.5 (11.2-14.0)	14.7 (13.1-16.4)	16.3 (14.5-18.4)	18.5 (15.7-21.4)	20.0 (16.6-23.8)	21.5 (17.1-26.4)	22.9 (17.4-29.2)	24.6 (17.9-32.5)	25.8 (18.3-35.1)

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values. Please refer to NOAA Atlas 14 document for more information.

Back to Top


PF graphical

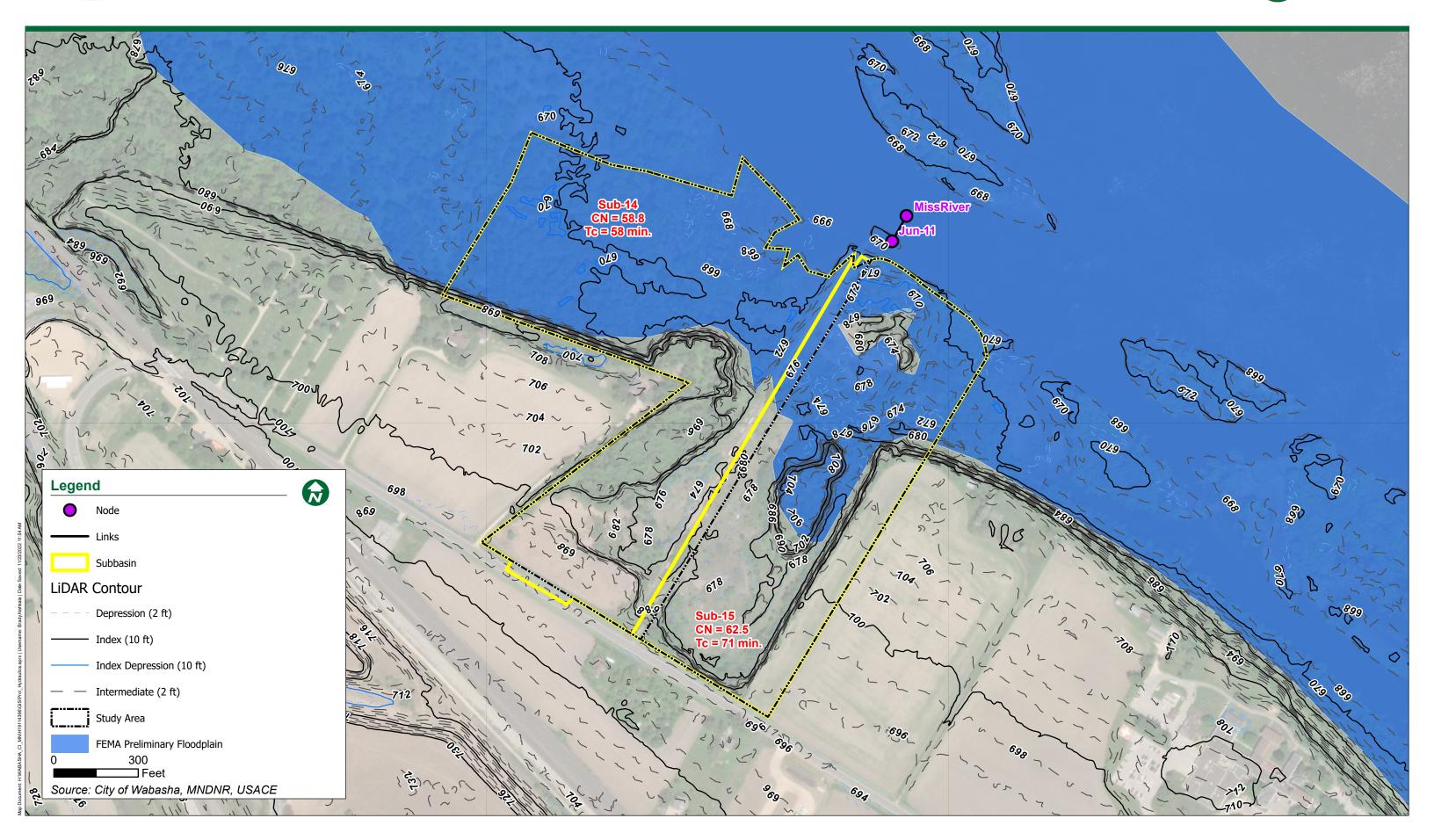
USDA Natural Resources

Conservation Service

Web Soil Survey National Cooperative Soil Survey 10/28/2022 Page 1 of 4

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
11A	Markey muck, 0 to 1 percent slopes, frequently flooded	35.7	1.8%
1658A Algansee-Kalmarville compleriver valleys, 0 to 3 percers slopes, frequently flooded		382.2	19.7%
2003A	Riverwash, nearly level	8.5	0.4%
2030 Udorthents and Udipsamments, cut or fill		1.8	0.1%
W	Water	158.7	8.2%
Subtotals for Soil Survey Area		586.9	30.2%
Totals for Area of Interest		1,943.9	100.0%

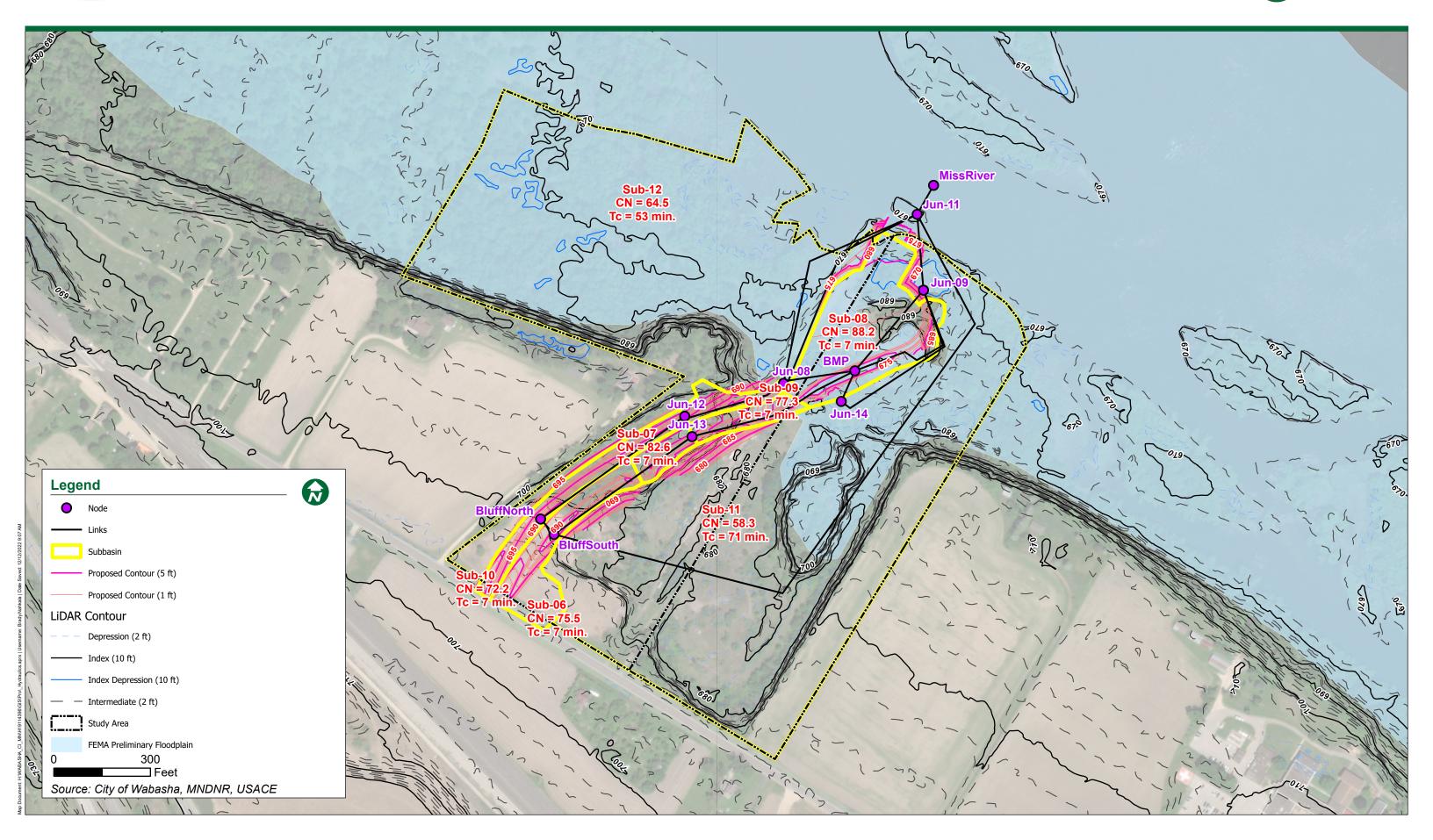

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
322TD2	Plumcreek silt loam, 20 to 45 percent slopes	2.4	0.1%
1658A	Algansee-Kalmarville complex, river valleys, 0 to 3 percent slopes, frequently flooded	235.5	12.1%
BrB	Burkhardt loam, 2 to 6 percent slopes	3.6	0.2%
BtA	Burkhardt sandy loam, 0 to 2 percent slopes	33.9	1.7%
BtB	Burkhardt sandy loam, 2 to 6 percent slopes	24.6	1.3%
ChA	Chaseburg silt loam, moderately well drained, 0 to 2 percent slopes	8.4	0.4%
ChB	Chaseburg silt loam, moderately well drained, 2 to 6 percent slopes	1.9	0.1%
DnD2	Dubuque silt loam, 12 to 18 percent slopes, moderately eroded	1.1	0.1%
DrC2	Dubuque silt loam, shallow, 6 to 12 percent slopes, moderately eroded	3.2	0.2%
FaE2 Fayette silt loam, 18 to 35 percent slopes, moderat eroded		0.6	0.0%
FbB2	Festina silt loam, 1 to 6 percent slopes, moderately eroded	133.0	6.8%
FbC2	Festina silt loam, 6 to 12 percent slopes, moderately eroded	3.7	0.2%

USDA

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
GP	Pits, gravel-Udipsamments complex	113.8	5.9%
MdA	Meridian sandy loam, 0 to 2 percent slopes	20.7	1.1%
N521D2	Mt. Carroll silt loam, 12 to 20 percent slopes, moderately eroded	0.3	0.0%
N584E	Downs silt loam, valleys, 18 to 25 percent slopes	26.2	1.3%
N590C2	Tama silt loam, driftless valley, 6 to 12 percent slopes, moderately eroded	21.6	1.1%
N590D2	Tama silt loam, driftless valley, 12 to 18 percent slopes, moderately eroded	18.1	0.9%
N639G	Frontenac-Lacrescent complex, 30 to 70 percent slopes, rocky	104.2	5.4%
N640G	Lacrescent, flaggy-Frontenac- Rock outcrop complex, 45 to 90 percent slopes	8.0	0.4%
N646A	Ceresco-Spillville complex, 0 to 3 percent slopes, frequently flooded	100.9	5.2%
N649A	Shandep loam, channeled, 0 to 2 percent slopes, frequently flooded	5.5	0.3%
N650F	Downs-Oak Center complex, 25 to 35 percent slopes	42.2	2.2%
N1155F	Brodale-Bellechester complex, 30 to 60 percent slopes, rocky	0.7	0.0%
ThA	Tell silt loam, 0 to 2 percent slopes	53.6	2.8%
ThB	Tell silt loam, 2 to 6 percent slopes	1.8	0.1%
Ts	Plainfield sand, river valley, 15 to 60 percent slopes	58.3	3.0%
W	Water	251.4	12.9%
WaA	Waukegan silt loam, 0 to 2 percent slopes	57.6	3.0%
WaB	Waukegan silt loam, 2 to 6 percent slopes	20.3	1.0%
Subtotals for Soil Survey A	Area	1,356.9	69.8%
Totals for Area of Interest		1,943.9	100.0%

WABASHA

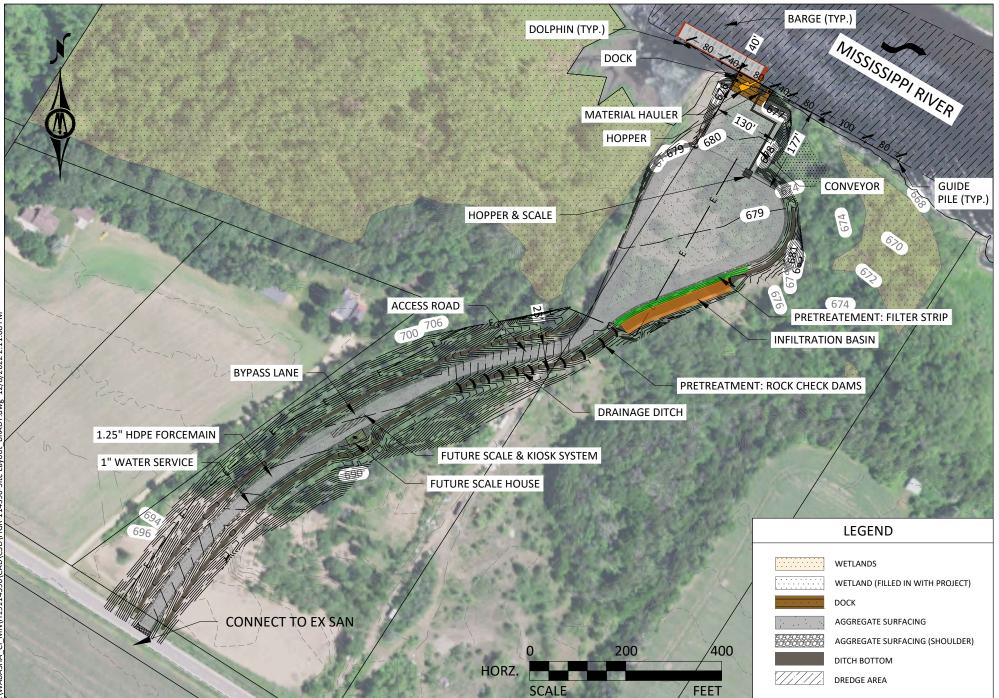
City of Wabasha


SSA Existing Conditions Workmap November 2022

USACE Dredge Material Management Plan

City of Wabasha

WABASHA


SSA Proposed Conditions Workmap December 2022

USACE Dredge Material Management Plan

City of Wabasha, MN

APPENDIX F

Mussel Survey

FINAL REPORT

Mussel Survey of the Mississippi River for a Proposed Barge Terminal in Wabasha, MN

by

Brett J. K. Ostby Daguna Consulting, LLC 617 20th Street NE Rochester, MN 55906

for

Real People. Real Solutions.

July 20th 2023

CONTENTS

Introduction	3
Methods	3
Level I Survey	3
Level II Survey	4
Results	4
Flow Conditions and Weather	4
Level I Surveys	5
Level II Survey	6
Demographics	6
Zebra Mussels	6
Species Curve	6
Discussion	7
Tables and Figures	9
Appendix A 2	23

INTRODUCTION

A proposed barge terminal north of Wabasha, MN would disturb riverbed habitats of the Mississippi River along the Minnesota bank at 44.392760, -92.050422 (WGS84). The proposed footprint was mostly in a side channel of the river but included habitats adjacent to the navigation channel (Figure 1). Based on a site map provided by Bolton and Menk, the approximate extent of direct disturbance encompassed a 27,000 square meter (m²) area of riverbed.

The Mississippi River is inhabited by several federally listed species, with the federally endangered Higgin's Eye Pearlymussel (*Lampsilis higginsii*) most likely to occur at the site. Other state-listed species are known from this pool of the Mississippi River, including but not limited to Wartyback (*Cyclonaias nodulata*), Butterfly (*Ellipsaria lineolata*), Mucket (*Actinonaias ligamentina*), and Monkeyface (*Theliderma metanerva*). A recent survey and relocation conducted by Daguna Consulting, LLC approximately 1.5 kilometers (km) downstream detected several state-listed species and native mussel densities of 18.6 mussels per square meter (m⁻²) (Ostby 2022a,b).

As part of the environmental review for the project, the Minnesota Department of Natural Resources (DNR) and U. S. Fish and Wildlife Service (USFWS) required a mussel survey. The purpose of the survey was to determine the presence or absence of protected species and to assess the condition of the mussel assemblage in and around the proposed footprint.

Daguna Consulting, LLC conducted surveys on June 6-8, 2023. Surveys covered habitats in areas that may be directly and indirectly disturbed by proposed construction and operation activities. This area was defined as the study area and was approximately 45,000 m² in extent. According to the "Minnesota Freshwater Survey and Relocation Protocol", at least one "Level I" survey was required for each 2,000 m² of instream habitat in a study area. Thus, 23 Level I surveys were conducted. All mussel species native to the state were targeted in Level I surveys. Where Level I survey efforts encountered more than 1 mussel per minute or a listed species, "Level II" surveys were initiated.

METHODS

Level I surveys were conducted June 6-8, 2023 and a Level II survey was conducted on June 8th, 2023. Brett J. K. Ostby was the permit holder, led fieldwork, and was responsible for species identification. The SCUBA divers were Emory Hagemeyer and Hunter Poffinbarger. All work was covered by Minnesota DNR Special Permit No. 32812 and USFWS Recovery Permit ES59798B-2.

Level I Survey

The mussel assemblage in the defined study area was surveyed by biologists to qualitatively assess species composition, relative abundance, and the possible presence of protected species. All habitats in the study area were searched unless deemed "unsuitable" for mussels, based on the site visit. The "unsuitability" of any habitat for mussels was fully documented. Sufficient effort was expended to inspect all suitable habitat so that the biologists could state with

reasonable confidence that endangered and/or threatened species do or do not occur in the areas sampled. Based on the extent of the study area and desire to detect all species present, 23 timed dives were conducted, each lasting no fewer than 20 minutes. Due to average depth being greater than 2 m, biologists used SCUBA to conduct visual and tactile searches of the riverbed. During each dive, a biologist searched the riverbed while connected to the sampling boat and guided by the surface operator via an underwater communication system. All live mussels and shells encountered were collected and relayed to the surface. A GPS unit was used to georeference the approximate center of each survey (Table 1, Figure 2).

All mussels were identified to species and then measured for maximum length (in millimeters, mm) and aged by counting annual growth arrest lines. Any endangered or threatened mussels collected were returned to the riverbed by hand. Other species were returned to the substrate from the water surface.

If during Level I surveys more than 1 mussel per minute or a listed species were encountered, the Level II survey protocol was initiated for that habitat.

Level II Survey

Within selected habitats, sample locations assigned using a systematic grid. The base point of the grid was located randomly within the identified Level II unit to avoid bias in estimating density. Points were at most 20 m from each other. At each location, a 0.25 m^2 total substrate quadrat attached to a rope was thrown from the boat. A diver excavated the streambed within the quadrat to a depth of 10-15 cm and placed the contents of the sample into the mesh bag attached to the quadrat frame. At each quadrat location, all mussels collected were identified to species, measured for maximum length (in mm), and aged. After processing, mussels were promptly returned to the riverbed. Endangered or threatened species were hand-placed, while others were returned from the water surface. The locations of quadrats were geo-referenced using a GPS unit (Table 1, Figure 3).

RESULTS

Flow Conditions and Weather

On the morning of June 6th, flow was 42,000 cubic feet per second (cfs) at USGS Gage 05378500 in Winona, MN. Flow declined throughout the study period to 35,200 cfs on the afternoon of June 8th. These flows were just below median for early June, having rapidly dropped from flood stages observed in April due to the onset of a "flash drought" in May. The Winona gage used to approximate conditions was located approximately 49 kilometers (km) downstream and had flow data for the previous 95 years.

During the survey period, air temperatures were above average, ranging from 28°C at midmorning to as high as 33°C in the afternoon on all three days. Skies were mostly to partly sunny during the survey period with haze from Canadian wildfires present every day, limiting visibility and air quality.

Water clarity was good for the Mississippi River, with habitats visible at a distance of 1.25 m. Water temperatures ranged from 23-25 °C.

Level I Surveys

Most Level I Surveys (16 of 23) were conducted in a side channel that was located between an unnamed island and the Minnesota bank (Figure 4). The side channel was separated from the main channel by the larger Drury Island, which was located farther upstream of the study area, and by the aforementioned unnamed island seen in Figures 1-4. Currents in the side channel were moderately strong. This made it difficult for divers to maintain position in some sandy habitats near the middle of the channel. The downstream portion of the side channel had unusual habitats for the hydrologically altered Mississippi River; a riffle was located between an anthropomorphic rock pile and the bank (Figure 5). Its location was marked in Figures 2 and 3. The riffle had a riverbed of boulder, cobble, gravel, and sand substrates. Another rock pile was located farther out from the bank in deeper waters. Areas around that outer rock pile likewise had larger substrates than observed elsewhere in the side channel (Survey 17). These habitats were unlike most of the side channel. In general, the side channel was 2 to 3 m deep with a sand dominated riverbed. Water depths in the side channel increased precipitously from both the Minnesota and the island bank, reaching a depth of 2 m or greater within 5 m of the bank. Both banks had some exposed clay along those steep submerged slopes. Mussels were mostly observed within 5-10 m of the Minnesota bank and also in riffle habitats near the inner rock pile. Mussels were rarer in the center of the channel and near the island.

Several Level I surveys were conducted in habitats adjacent to the navigation channel. Except for areas near wing dams, the riverbed was mostly sand. Depths and flows varied greatly over short distances, with a maximum depth of 4 m observed at the edge of the navigation channel and depths < 1 m near wing dams. Mussels were rare in the main channel and no listed species were detected there.

A list of species detected and their corresponding photographs are provided in Table 2. Photographs of all but one species are in Appendix A. Habitat information for each Level I survey can be found in Table 3.

Across all Level I surveys, a total of 418 live mussels (native) were detected in 8 person-hours of search. Live specimens of 15 species were detected (Table 5). Just over half of all live mussels were Threeridge (*Amblema plicata*). Threehorn Wartyback (*Obliquaria reflexa*) was the second most abundant species, comprising 12.4 % of live mussels. Mucket (*A. ligamentina*) was the only state listed species detected live and all specimens were found within 5 m of the Minnesota bank. Two species of special concern, Round Pigtoe (*Pleurobema sintoxia*) and Black Sandshell (*Ligumia recta*), were also detected live, with Black Sandshell detected throughout the entire study area, comprising 3.8% of live mussels. Round Pigtoe was only detected near the Minnesota bank, comprising 1.2% of live mussels. Catch-per-unit-effort (CPUE) for habitats along the Minnesota bank and in the riffle were, on average, more than 8 times greater than surveys conducted elsewhere in the study area.

Level II Survey

Level II surveys focused on habitats within 20 m of the Minnesota Bank and in the riffle habitat near the inner rock pile (see Figure 3). These habitats supported a state-listed species and relatively greater abundances. Mussel and habitat data for each Level II quadrat were summarized in Table 6. The Level II survey detected an additional species, Paper Pondshell (*Utterbackia imbecillis*). This species was not found during the Level I surveys. Density in the best habitats was estimated at 2.8 m⁻², with a 95% confidence interval of $1.97 - 3.63 \text{ m}^{-2}$. Sampling was sufficient for estimating population size, achieving a desired Coefficient of Variation (CV) of 0.146, generally CV < 0.2 is considered good for estimating mussel densities. The best habitats within the proposed project footprint were limited to a 4,000 m² area off the Minnesota bank and likely supported no more than 14,518 mussels Figure 3. Both Level I and II results suggest that Threeridge may be half of all mussels in these habitats. Habitats in the Level II survey area had a mean depth of 1.8 m and tended to have a sand/gravel riverbed. Some quadrats were in a shallow inlet, with much shallower depths where organic debris and silt were more common.

Demographics

Length and age statistics for a representative subset of mussels observed in both Level I and Level II surveys are presented in Table 6. Younger year classes were common in the study area, with 3 species demonstrating recruitment in the last year or so. Mussels ≤ 5 years old comprised 46.7% of mussels that were measured. Older mussels, defined as specimens ≥ 15 years old, were present but comprised only 14.7% of mussels that were measured.

Zebra Mussels

The invasive, non-native Zebra Mussel (*Driessen polymorpha*) was abundant in the study area. Most native mussels had more than 20 attached to their shells (Figure 6), so percent of a native mussel shell covered by Zebra Mussels was estimated in lieu of counting individual Zebra Mussels. Mean coverage was 32.8% (n =262). Some smaller natives, like Threehorn Wartyback and Deertoe, were covered by 1-2 layers of Zebra Mussels over >80% of their shell surface.

Species Curve

A species richness curve was produced with cumulative total species richness indexed with live individual encounters (Figure 7). A logarithmic model was fit using JMP 17.0 (© 2023 JMP Statistical Discovery LLC).

Richness = -1.814 + 2.850*Ln(Cumulative Live Mussels)

The model suggested that it would require 73 additional mussels to increase species richness by 1. This suggests 2 additional Level II surveys or 100 quadrats near the Minnesota bank would yield an additional species.

DISCUSSION

No federally listed mussel species were detected during surveys. Given the number of mussels encountered and number of surveys conducted, it was extremely unlikely that federally listed mussels inhabit the study area. Only one state-listed species was detected, the Mucket; it was relatively rare. Two species of special concern—Black Sandshell and Round Pigtoe—were detected live, with the Black Sandshell relatively common throughout the study area. It is likely that 1-2 additional species may be present in the best habitats. Nonetheless, sampling was more than adequate according to state guidelines.

The best habitats for mussels in the study area were identified, delineated, and quantified. These habitats would be impacted by the proposed project. One was located along the Minnesota bank, which formed the southwest boundary of the proposed project footprint. The second was a riffle habitat, located just downstream (southeast) of the proposed footprint. These habitats were relatively better than other areas sampled. Most of the project footprint (85%) was 2-3 m deep with a sand riverbed, supporting native mussel densities $< 1 \text{ m}^{-2}$.

Habitats near the bank and in the riffle had mean mussel densities of 2.8 m⁻². For comparison, mussel assemblages documented 1.5 km downstream by Ostby (2022a) had a mean density of 18.6 m⁻², suggesting high quality habitats along the Minnesota bank in the Mississippi River have the compacity to support far greater numbers than detected in the study area. Richness was also low for this reach of the Mississippi River. This low density and richness was likely caused by the unstable sand dominated substrate observed in most of the side channel. Surveys and relocations downstream detected a total of 24 species (Ostby 2022a,b) compared to 16 detected in this study. There were historically 41 species known from the Minnesota reaches of the Mississippi River. Better Mississippi River mussel beds still support greater than 25 species.

The study area skewed toward younger mussels, with nearly half of all mussels measured being ≤ 5 years old. This suggests that mussels may have recently colonized the area or that many habitats are not stable over greater time scales.

Zebra Mussel densities were high for the Mississippi River, especially compared to those observed the previous year in habitats 1.5 km downstream. All but a few native mussels were infested, with some almost completely covered by Zebra Mussels. Many of the Zebra Mussels observed were <20mm, suggesting a recent population outbreak.

The riffle habitat downstream of the study area was a habitat type more common in tributaries and to the Mississippi River and in the river itself upstream of the metro area. These habitats are not common in the regulated reached of the Mississippi River downstream of St. Anthony Falls. This habitat type may have been more common in the unaltered river before navigation channels were maintained and dams built. Level II surveys #16-#18 focused on the riffle habitat and habitats associated with anthropogenic rockpiles. While unique features with potential for species like Spectaclecase and Salamander Mussel, focused efforts did not yield additional species.

LITERATURE CITED

Minnesota Department of Natural Resources. 2013. Minnesota Freshwater Survey and Relocation Protocol. St. Paul. MN. 6 pp.

Ostby, B. J. K. 2022a. Mussel Survey of the Mississippi River for a Proposed Dock at the National Eagle Center in Wabasha, MN: Final Report and Relocation Plan. Report for Bolton and Menk, Rochester, MN. 39 pp.

Ostby, B. J. K. 2022b. Mussel Relocation for a Dock Removal and Installation in the Mississippi River at the National Eagle Center in Wabasha, MN: Preliminary Results. Report for Bolton and Menk, Rochester, MN. 5 pp.

Smith, D. R. 2006. Survey design for detecting rare freshwater mussels. Journal of the North American Benthological Society 25:701–711.

TABLES AND FIGURES

Level I			Level II		-
Survey	Latitude	Longitude	Quadrat	Latitude	Longitude
1	44.39338	-92.05257	1	44.39356	-92.05299
2	44.39379	-92.05209	2	44.39344	-92.05280
3	44.39324	-92.05206	3	44.39333	-92.05264
4	44.393668	-92.051568	4	44.39324	-92.05249
5	44.39334	-92.05153	5	44.39315	-92.05230
6	44.39307	-92.0516	6	44.39319	-92.05271
7	44.39382	-92.05123	7	44.39310	-92.05251
8	44.39347	-92.05101	8	44.39300	-92.05230
9	44.39302	-92.0509	9	44.39361	-92.05274
10	44.39275	-92.05093	10	44.39348	-92.05256
11	44.39363	-92.05065	11	44.39337	-92.05240
12	44.39291	-92.05023	12	44.39328	-92.05220
13	44.392568	-92.050307	13	44.39319	-92.05203
14	44.393199	-92.050347	14	44.39310	-92.05184
15	44.39273	-92.04953	15	44.39301	-92.05167
16	44.393014	-92.049077	16	44.39292	-92.05150
17	44.39275	-92.04879	17	44.39315	-92.05166
18	44.392431	-92.04934	18	44.39304	-92.05145
19	44.39284	-92.04825	19	44.39294	-92.05129
20	44.392589	-92.048481	20	44.39284	-92.05115
21	44.392612	-92.047628	21	44.39275	-92.05098
22	44.392886	-92.04725	22	44.39263	-92.05081
23	44.392623	-92.046734	23	44.39253	-92.05064
			24	44.39274	-92.05077
			25	44.39264	-92.05062
			26	44.39283	-92.05134
			27	44.39254	-92.05045
			28	44.39248	-92.04932
			29	44.39236	-92.04950
			30	44.39227	-92.04932
			31	44.39233	-92.04926
			32	44.39239	-92.04928
			33	44.39243	-92.04949
			34	44.39323	-92.05222
			35	44.39349	-92.05270
			36	44.39367	-92.05299
			37	44.39241	-92.05041
			38	44.39226	-92.05005
			39	44.39239	-92.05018
			40	44.39235	-92.04986

Table 1. Latitude and Longitude in WGS 84 for each Level I survey and Level II quadrat.

Table 2. Scientific name, common name, and status for native mussels detected in the study area during each survey type are provided. Corresponding figure numbers are listed (most are in Appendix A).

Species Name	Common Name	Status	Level I	Level II	Figure
Actinonaias ligamentina	Mucket	Minnesota Threatened	Х		A1
Amblema plicata	Threeridge		Х	Х	A2, A3
Cyclonaias pustulosa	Pimpleback		Х	Х	A4
Fusconaia flava	Wabash Pigtoe		Х	Х	A5, A6
Lampsilis cardium	Plain Pocketbook		Х		A7
Lampsilis siliquoidea	Fat Mucket		Х		A8
Lasmigonia complanata	White Heelsplitter		Х		A9
Leptodea fragilis	Fragile Papershell		Х	Х	6, A10
Ligumia recta	Black Sandshell	Minnesota Special Concern	Х	Х	A11, A12
Obliquaria reflexa	Threehorn Wartyback		Х	Х	A13, A14
Oblovaria olivaria	Hickorynut		Х	Х	A15, A16
Pleurobema sintoxia	Round Pigtoe	Minnesota Special Concern	Х		A17, A18
Potamilus alatus	Pink Heelsplitter		Х		A19
Pyganodon grandis	Giant Floater		Х	Х	A20
Truncilla truncata	Deertoe		Х	Х	A21
Utterbackia imbecillis	Paper Pondshell			Х	Not pictured, lost in handling

Table 3. Average depths and percent riverbed for Level I surveys are listed. Most of the study area had a sand riverbed and was greater than 2 m deep.

Survey	Latitude	Longitude	Depth (m)	%Boulder	%Cobble	%Gravel	%Sand	%Silt	%Clay	Woody Debris
1	44.39338	-92.0526	2.1	0	0	10	80	0	10	0
2	44.39379	-92.0521	1.5	0	0	0	100	0	0	0
3	44.39324	-92.0521	2.4	0	0	20	80	0	0	0
4	44.39367	-92.0516	2.7	0	0	10	90	0	0	0
5	44.39334	-92.0515	1.5 - 3.0	0	0	0	100	0	0	0
6	44.39307	-92.0516	3.0	0	0	0	100	0	0	0
7	44.39382	-92.0512	2.1	0	0	20	80	0	0	0
8	44.39347	-92.051	2.4	0	0	10	90	0	0	0
9	44.39302	-92.0509	3.0	0	0	0	100	0	0	0
10	44.39275	-92.0509	3.4	0	0	30	70	0	0	0
11	44.39363	-92.0507	1.5	0	0	10	80	10	0	0
12	44.39291	-92.0502	3.4	0	0	0	100	0	0	0
13	44.39257	-92.0503	2.7	0	0	20	80	0	0	0
14	44.3932	-92.0503	0.9 - 2.1	0	0	0	60	0	40	0
15	44.39273	-92.0495	2.7	0	0	0	100	0	0	0
16	44.39301	-92.0491	0.6 - 1.5	0	0	5	95	0	0	0
17	44.39275	-92.0488	1.2	40	10	10	40	0	0	0
18	44.39243	-92.0493	0.3 - 2.4	5	20	20	35	0	20	0
19	44.39284	-92.0483	1.2 - 2.1	0	0	10	90	0	0	0
20	44.39259	-92.0485	0.9 - 2.0	0	0	10	90	0	0	0
21	44.39261	-92.0476	1.5 - 2.7	0	0	10	90	0	0	0
22	44.39289	-92.0473	0.9 - 4.0	20	10	10	50	0	0	10
23	44.39262	-92.0467	1.2 - 3.0	20	10	10	60	0	0	0
Mean			2.1	3.7	2.2	9.3	80.9	0.4	3.0	0.4

Table 4. Number of live mussels detected in each Level I survey and in the Level II survey. Survey effort for Level I surveys was recorded in person-hours, with the Catch-Per-Unit-Effort (CPUE) calculated by dividing total number of live by person hours effort.

Level I Survey	Effort (person- hours)	A. ligamentina	A. plicata	C. pustulosa	F. flava	L. cardium	L. siliquoidea	L. complanata	L. fragilis	L. recta	0. reflexa	0. olivaria	P. sintoxia	P. alatus	P. grandis	T. truncata	U. imbecillis	Total	CPUE
1	0.33	0	55	5	6	0	1	1	0	1	12	1	3	0	1	1	0	87	261
2	0.33	0	1	0	0	0	0	0	2	0	0	0	0	0	0	0	0	3	9
3	0.33	1	41	2	6	0	0	0	1	1	11	2	2	0	0	1	0	68	204
4	0.33	0	3	0	1	0	0	0	1	0	1	2	0	0	0	0	0	8	24
5	0.33	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	3
6	0.33	0	8	3	0	1	FD	0	1	0	2	0	0	0	0	0	0	15	45
7	0.33	0	3	1	0	0	0	0	1	1	1	0	0	0	0	0	0	7	21
8	0.33	0	1	0	0	0	0	0	0	0	5	0	0	0	0	0	0	6	18
9	0.33	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	3
10	0.33	FD	25	0	3	3	0	0	0	3	1	1	0	0	0	0	0	36	108
11	0.33	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	2	6
12	0.33	0	2	0	0	1	0	0	0	0	1	0	0	0	0	0	0	4	12
13	0.33	1	16	14	4	0	0	0	0	4	6	2	0	0	0	0	0	47	141
14	0.33	0	1	1	0	5	2	0	0	2	0	1	0	0	0	0	0	12	36
15	0.33	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	2	6
16	0.33	0	0	1	1	2	0	0	1	0	0	2	0	0	0	2	0	9	27
17	0.33	0	11	2	1	3	0	0	0	0	2	0	0	0	0	0	0	19	57
18	0.33	0	42	0	2	5	0	0	2	0	2	0	0	0	0	0	0	53	159
19	0.33	0	1	0	0	2	0	0	0	0	1	0	0	0	0	0	0	4	12
20	0.33	0	0	0	0	2	0	0	0	1	4	0	0	0	0	0	0	7	21
21	0.33	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	2	6
22 23	0.33	0	6	0	2	5	0	0	0	3	1	1	0	0	0	0	0	18	54
Level I	0.33	0	0	0	0	4	0	0	0	0	2	0	0	1	0	0	0	7	21
Total	8	2	220	30	26	33	3	1	10	16	52	13	5	2	1	4	0	418	52.3
Assembla	age %	0.5	52.6	7.2	6.2	7.9	0.7	0.2	2.4	3.8	12.4	3.1	1.2	0.5	0.2	1.0	0.0		
Level II Total		0	11	2	4	0	0	0	2	2	2	1	0	0	1	2	1	28	
Grand To	otal	2	231	32	30	33	3	1	12	18	54	14	5	2	2	6	1	446	

Table 5. Mussels detected and habitat information for each 0.25 m² quadrat in the Level II survey.

Ouadrat	Latituda	Longitude	A. plicata	C. pustulosa	F. flava	L. fragilis	L. recta	0. reflexa	0. olivaria	P. grandis	T. truncata	U. imbecillis	Total	Depth (m)	%Gravel	%Sand	%Silt	%Clay	%Debris	%Organic Debris
Quaurat	44.39356	-92.05299	0	0	1	0	0	0	0	0	0	0	1	1.5	0	100	0	0	0	0
2	44.39344	-92.05280	0	0	0	0	0	0	0	0	0	1	1	1.5	5	95	0	0	0	0
3	44.39333	-92.05264	0	0	0	1	0	0	0	0	0	0	1	0.6	0	100	0	0	0	0
4	44.39324	-92.05249	0	0	1	0	0	0	0	0	0	0	1	1.8	10	70	20	0	0	0
5	44.39315	-92.05230	0	0	0	0	0	0	0	0	0	0	0	0.3	0	40	30	0	0	30
6	44.39319	-92.05271	0	0	0	0	0	0	0	1	0	0	1	0.9	0	40	30	0	0	30
7	44.39310	-92.05251	0	0	0	0	0	0	0	0	0	0	0	0.6	0	40	40	0	0	20
8	44.39300	-92.05230	0	0	0	0	0	0	0	0	0	0	0	0.3	0	40	30	0	0	30
9	44.39361	-92.05274	1	0	0	0	0	0	0	0	0	0	1	1.5	0	100	0	0	0	0
10	44.39348	-92.05256	1	0	0	0	0	0	0	0	0	0	1	2.7	0	100	0	0	0	0
11	44.39337	-92.05240	0	0	0	0	0	1	0	0	0	0	1	1.8	20	70	10	0	0	0
12	44.39328	-92.05220	1	0	0	0	0	0	0	0	0	0	1	2.1	0	10	90	0	0	0
13	44.39319	-92.05203	1	0	0	0	0	0	0	0	1	0	2	1.5	10	90	0	0	0	0
14	44.39310	-92.05184	0	0	0	0	1	0	0	0	0	0	1	2.1	0	60	0	0	40	0
15	44.39301	-92.05167	0	0	1	0	0	0	0	0	0	0	1	2.4	20	70	10	0	0	0
16	44.39292	-92.05150	1	0	0	0	0	0	0	0	0	0	1	2.4	20	70	10	0	0	0
17	44.39315	-92.05166	0	0	0	0	0	0	0	0	0	0	0	3.0	0	100	0	0	0	0
18	44.39304	-92.05145	0	0	0	1	0	0	0	0	0	0	1	3.1	30	60	10	0	0	0
19	44.39294	-92.05129	0	0	0	0	0	0	0	0	0	0	0	3.0	40	50	10	0	0	0
20	44.39284	-92.05115	0	0	0	0	0	0	0	0	0	0	0	3.1	30	60	10	0	0	0
21	44.39275	-92.05098	1	0	0	0	0	0	0	0	0	0	1	3.1	30	70	0	0	0	0
22	44.39263	-92.05081	0	0	0	0	0	0	0	0	0	0	0	2.7	30	70	0	0	0	0
23	44.39253	-92.05064	0	0	0	0	0	0	0	0	0	0	0	1.8	80	20	0	0	0	0
24	44.39274	-92.05077	0	0	0	0	0	0	0	0	0	0	0	3.4	10	90	0	0	0	0
25	44.39264	-92.05062	0	0	0	0	0	0	0	0	0	0	0	2.4	30	70	0	0	0	0
26	44.39283	-92.05134	0	0	0	0	0	0	0	0	0	0	0	0.9	30	60	10	0	0	0
27	44.39254	-92.05045	0	0	0	0	0	0	0	0	0	0	0	2.1	95	5	0	0	0	0
28	44.39248	-92.04932	0	0	0	0	0	0	0	0	0	0	0	0.6	60	20	0	20	0	0
29	44.39236	-92.04950	1	0	0	0	0	0	0	0	0	0	1	1.2	30	70	0	0	0	0
30	44.39227	-92.04932	0	0	0	0	1	0	0	0	0	0	1	1.2	0	0	100	0	0	0
31	44.39233	-92.04926	1	0	1	0	0	0	0	0	0	0	2	0.9	10	90	0	0	0	0
32 33	44.39239 44.39243	-92.04928 -92.04949	1	0	0	0	0	0	0	0	0	0	1	0.5	80 80	20 20	0	0	0	0
33	44.39243 44.39323	-92.04949	0		0	0	0	0	0	0	1	0	1 2	2.4	10	20 90	0 0	0	0	0 0
34	44.39323	-92.03222	1 0	1	0	0	0	0	0	0	0	0		1.8	0	100	0	0	0	
35	44.39349	-92.03270	0	1 0	0	0	0	1	1	0	0	0	1 2	1.8	0	100	0	0	0	0 0
30	44.39307	-92.03299	0	0	0	0	0	0	0	0	0	0	0	1.4	0	100	0	0	0	0
37	44.39241	-92.05005	0	0	0	0	0	0	0	0	0	0	0	1.5	0	100	0	0	0	0
39	44.39220	-92.05018	1	0	0	0	0	0	0	0	0	0	1	1.5	0	20	20	60	0	0
40	44.39235	-92.04986	0	0	0	0	0	0	0	0	0	0	0	1.5	10	20 90	0	0	0	0
Totals		2.01200	11	2	4	2	2	2	1	1	2	1	28	1.0	10		5	5	0	
Mean*														1.8	19	64	11	2	1	3

Table 6. Mean, standard error, and range of lengths (mm) for a representative subset of each species (n). Age was also estimated and assigned here to age groups standard for the Mississippi River.

		L	ength (m	n)	Age Range	% Age Groups (yrs)					
Species	n	mean	SE	Range	(yrs)	≤5	6 to 10	≥15			
A.ligamentina	2	114.5	5.5	109-120	11-12	0.0	100.0	0.0			
A. plicata	74	62.0	3	15-106	1-25+	44.6	37.8	17.6			
C. pustulosa	45	59.6	1.9	45-79	4-25	8.0	68.0	24.0			
F. flava	27	56.0	2.3	27-74	4-20	14.8	66.7	18.5			
L. cardium	32	104.8	2.9	61-125	3-25+	41.9	35.5	22.6			
L. siliquoidea	4	96.5	6.4	88-115	3-25+	50.0	25.0	25.0			
L. complanata	1	156.0	n/a	156	20+	0.0	0.0	100.0			
L. fragilis	12	69.6	8	21-108	1-5	100.0	0.0	0.0			
L. recta	19	133.0	4.1	85-157	3-20+	15.8	68.4	15.8			
O. olivaria	14	43.8	2.4	33-65	3-13	85.7	14.3	0.0			
O. reflexa	24	40.1	1.5	24-57	3-14	85.7	11.4	2.9			
P. alatus	2	85.0	27	58-112	2-5	100.0	0.0	0.0			
P. grandis	2	121.5	18.5	103-140	3-5	100.0	0.0	0.0			
P. sintoxia	5	57.4	5.3	46-73	6-15+	0.0	80.0	20.0			
T. truncata	5	28.8	2.9	19-35	2-4	100.0	0.0	0.0			
U. imbecillis	1	16.0	n/a	16	1	100.0	0.0	0.0			
Assemblage						46.7	38.6	14.7			

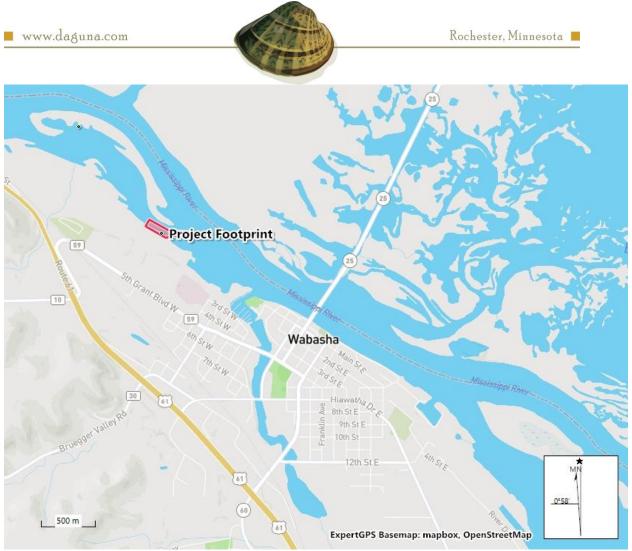


Figure 1. Street map demonstrating location of project footprint north of Wabasha, Minnesota.

Figure 2. Aerial image of the project footprint and centroid of each Level I survey. The locations of the riffle and rock piles are shown.

Figure 3. Quadrats were systematically distributed in areas with greater CPUE along the Minnesota bank and in the riffle habitat.

Figure 4. Side channel of the Mississippi River with the Minnesota bank photograph left to center. The unnamed island was photograph right and in the foreground. This photograph was taken facing upstream toward the northwest from the downstream corner of the unnamed island.

Figure 5. Diver sampling shallow riffle habitat with the inner rock pile pictured on the left. This photograph was taken while wading in shallows facing downstream towards the southeast.

Figure 6. Fragile Papershell (*L. fragilis*) heavily infested by Zebra Mussels (*Dreissena polymorpha*). This was a typical condition for mussels in the side channel of the Mississippi River that was surveyed.

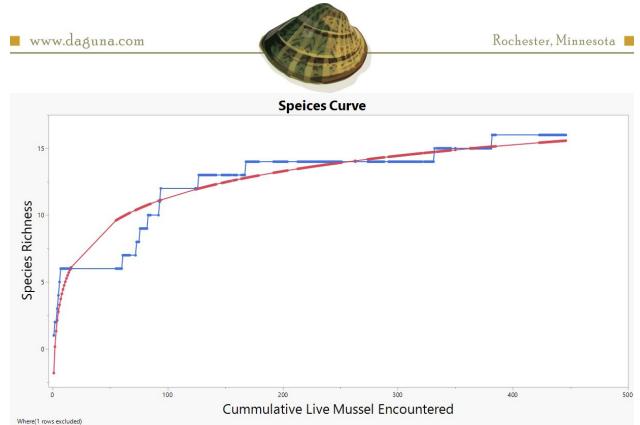


Figure 7. Cumulative total species richness (live) was plotted by live individual mussel encountered. Blue points and line are raw data. A logarithmic model was fit using JMP software (red points and line).

APPENDIX A

Representative Photographs

Figure A1. State-threatened Mucket (A. ligamentina) observed near the Minnesota bank.

Figure A2. Range of Threeridge (A. plicata) observed during Level I surveys.

Figure A3. Younger specimens of Threeridge with green coloration were observed in sandy habitats.

Figure A4. Live Pimpleback (C. pustulosa) observed during Level I surveys.

Figure A.5 Younger specimen of Wabash Pigtoe (F. flava) observed in the study area.

Figure A6. This specimen was identified as Wabash Pigtoe (*F. flava*) due to its deep sulcus and cloth-like periostracum.

Figure A7. Female (left) and male (right) specimens of Plain Pocketbook (L. cardium).

Figure A8. Fat Mucket (*L. siliquoidea*) with beak structure shown in the lower figure.

Figure A9. This live White Heelsplitter (*L. complanata*) was encrusted with Zebra Mussels.

Figure A10. Live Fragile Papershell (*L. fragilis*) observed during Level I surveys.

Figure A11. Live femail Black Sandshell (*L. recta*) observed in study area.

www.daguna.com

Figure A12. Black Sandshell observed in the side channel of the Misssippi River.

Figure A13. Threehorn Wartyback (*O. reflexa*) were common in the study area. Many were heavily encrusted by Zebra Mussels.

Figure A14. Side view of a Threehorn Wartyback.

Figure A15. Live Hickorynut (O. olivaria) detected in the study area.

Figure A16. Olive coloration of younger Hickorynuts detected in the side channel.

Figure A17. Live Round Pigtoe (*Pleurobema sintoxia*) observed near Minnesota bank.

Figure A18. View of same Round Pigtoe in A18 showing anterior of the shell and umbo.

Figure A19. Pink Heelpslitter (*P. alatus*) observed in the study area.

Figure A 20. Giant Floater (P. grandis) observed in the study area.

Figure A21. Deertoe (*T. truncata*) detected live in the study area.

APPENDIX G

MnDNR Correspondence

DEPARTMENT OF NATURAL RESOURCES

Minnesota Department of Natural Resources Division of Ecological & Water Resources 500 Lafayette Road, Box 25 St. Paul, MN 55155-4025

July 8, 2022 Correspondence # MCE 2022-00127

> Robert Rogers Bolton & Menk, Inc.

RE: Natural Heritage Review of the proposed Wabasha Barge Terminal Project, T111N R10W Section 30; Wabasha County

Dear Robert Rogers,

As requested, the <u>Minnesota Natural Heritage Information System</u> has been reviewed to determine if the proposed project has the potential to impact any rare species or other significant natural features. Based on the project details provided with the request, the following rare features may be impacted by the proposed project:

Ecologically Significant Areas

The proposed project is within a site identified by the Minnesota Biological Survey (MBS) as a Site
of Moderate Biodiversity Significance. Sites of Biodiversity Significance have varying levels of
native biodiversity and are ranked based on the relative significance of this biodiversity at a
statewide level. Sites ranked as Moderate contain occurrences of rare species and/or moderately
disturbed native plant communities, and/or landscapes that have a strong potential for recovery.
Green dragon (Arisaema dracontium), Gary's sedge (Carex grayi), and cattail sedge (Carex
typhina), all state-listed plant species of special concern, have been documented within this Site
and may be impacted by this project.

We encourage you to consider project alternatives that would avoid or minimize disturbance to this ecologically significant area. Actions to minimize disturbance may include, but are not limited to, the following recommendations:

- Minimize vehicular disturbance in the MBS Site (allow only vehicles/equipment necessary for construction activities);
- Do not park equipment or stockpile supplies in the MBS Site;
- Do not place spoil within MBS Site or other sensitive areas;

- Retain a buffer between proposed activities and the MBS Site;
- If possible, conduct the work under frozen ground conditions;
- Use effective erosion prevention and sediment control measures;
- Inspect and clean all equipment prior to bringing it to the site to prevent the introduction and spread of invasive species;
- As much as possible, operate within already-disturbed areas;
- Revegetate disturbed soil with native species suitable to the local habitat as soon after construction as possible; and
- Use only weed-free mulches, topsoils, and seed mixes. Of particular concern are birdsfoot trefoil (Lotus corniculatus) and crown vetch (Coronilla varia), two invasive species that are sold commercially and are problematic in prairies and disturbed open areas.

MBS Sites of Biodiversity Significance and DNR Native Plant Communities community can be viewed using the <u>Minnesota Conservation Explorer</u> or their GIS shapefiles can be downloaded from the <u>MN Geospatial Commons</u>. Please contact me if you do not have access to the appropriate mapping services. For information on interpreting the data, reference the <u>MBS Site</u> <u>Biodiversity Significance</u> and <u>Native Plant Community</u> websites.

Pool 4 of the Mississippi River has been identified as a Lake of *Outstanding* Biological Significance.
 Lakes of Biological Significance were ranked as *Outstanding*, *High*, *or Moderate* based on unique plant and animal presence. It is important that effective erosion prevention and sediment control practices be implemented and maintained near lakes throughout the project. Indirect impacts, such as the introduction or spread of invasive species, should also be considered and minimized.

State-listed Species

- Several state-listed fish including paddlefish (*Polyodon spathula*), a state-listed threatened fish species have been documented in the Mississippi River near the proposed project. In Minnesota, paddlefish spawn in the spring in temporarily flooded tributaries to the large rivers. Minnesota's Endangered Species Statute (Minnesota Statutes, section 84.0895) and associated Rules (Minnesota Rules, part 6212.1800 to 6212.2300 and 6134) prohibit the take of threatened or endangered species without a permit. To protect this species, work within the water needs to be avoided from April to mid-June. Contact the DNR Endangered Species Environmental Review Coordinator, Lisa Joyal (Lisa.Joyal@state.mn.us or 651-259-5109) if this is not feasible as additional action may be needed.
- Timber rattlesnakes (*Crotalus horridus*), a state-listed threatened species, have been reported from the vicinity of the proposed project and may be encountered on site. In Minnesota, the ideal habitat for this species is forested bluffs, south-facing rock outcrops, and bluff prairies, particularly in the Mississippi River Valley. Nearby forests, prairies, and agricultural lands are used as summer feeding grounds. Two necessary habitat components are open areas for thermoregulation, and dens for overwintering. The dens are often located on steep, south or

west-facing hillsides with rock outcroppings and ledges. Timber rattlesnakes emerge from their dens in late April to early May and return to them in late September to early October. In the spring and fall, timber rattlesnakes are active during the day; while during the hottest months of summer, they are mostly active at night.

Timber rattlesnake mortality in Minnesota is most commonly caused by poaching, vehicle collisions, and habitat destruction. The loss of a single adult, especially a female, can impact the population significantly. As such, crews working in the area should be advised that if they encounter any snakes, the snakes should not be disturbed. The use of <u>erosion control</u> blanket shall be limited to 'bio-netting' or 'naturalnetting' types, and specifically not products containing plastic mesh netting or other plastic components. Also, be aware that hydro-mulch products may contain small synthetic (plastic) fibers to aid in their matrix strength. These loose fibers could potentially re-suspend and make their way into Public Waters. As such, please review mulch products and not allow any materials with synthetic (plastic) fiber additives in areas that drain into Public Waters. Be aware, that there are also other species of snakes in the area that will mimic rattlesnakes. Contact the DNR Regional Nongame Wildlife Specialist, Bridgette Timm (952-207-9769 or <u>bridgette.timm@state.mn.us</u>) if timber rattlesnakes are encountered on-site or if you have any questions regarding this species.

 Please visit the <u>DNR Rare Species Guide</u> for more information on the habitat use of these species and recommended measures to avoid or minimize impacts. For further assistance with these species, please contact the appropriate <u>DNR Regional Nongame Specialist</u> or <u>Regional Ecologist</u>.

Federally Protected Species

Several federally and state-listed mussels, including the sheepnose (*Plethobasus cyphyus*), a
federally and state-listed endangered species, have been documented in the Mississippi River in
the vicinity of the proposed project, some as recently as 2021. As mussels are particularly
vulnerable to deterioration in water quality, especially increased siltation, it is important that
effective erosion prevention and sediment control practices be implemented and maintained
near the river.

Minnesota's Endangered Species Statute (Minnesota Statutes, section 84.0895) and associated Rules (Minnesota Rules, part 6212.1800 to 6212.2300 and chapter 6134) prohibit the take of threatened or endangered species without a permit. In order to determine the potential for a take of state-protected mussels, a qualified surveyor (see attached list) will need to conduct a mussel survey and/or relocation in any potential mussel habitat prior to construction within these habitats.

The surveyor will need to obtain a permit from the DNR Endangered Species Coordinator, Bridget Henning-Randa (<u>Bridget.Henning-Randa@state.mn.us</u> or 651-259-5073) before conducting any mussel surveys and will need to follow the <u>mussel survey and relocation protocol</u>. The extent of

the mussel survey should include all areas of the riverbed that will be directly impacted by excavation, pile driving, placing of fill or riprap, driving of equipment, or dewatering; as well as any areas downstream that will receive sediment from project activities. Please send the results of all survey work to the DNR Endangered Species Environmental Review Coordinator, Lisa Joyal. **No work in the riverbed shall occur until potential impacts to mussels have been resolved** to the satisfaction of the DNR's Endangered Species Coordinator, Bridget Henning-Randa.

• To ensure compliance with federal law, conduct a federal regulatory review using the U.S. Fish and Wildlife Service's (USFWS) online Information for Planning and Consultation (IPaC) tool.

Environmental Review and Permitting

• Please include a copy of this letter and the MCE-generated Final Project Report in any state or local license or permit application. Please note that measures to avoid or minimize disturbance to the above rare features may be included as restrictions or conditions in any required permits or licenses.

The Natural Heritage Information System (NHIS), a collection of databases that contains information about Minnesota's rare natural features, is maintained by the Division of Ecological and Water Resources, Department of Natural Resources. The NHIS is continually updated as new information becomes available, and is the most complete source of data on Minnesota's rare or otherwise significant species, native plant communities, and other natural features. However, the NHIS is not an exhaustive inventory and thus does not represent all of the occurrences of rare features within the state. Therefore, ecologically significant features for which we have no records may exist within the project area. If additional information becomes available regarding rare features in the vicinity of the project, further review may be necessary.

For environmental review purposes, the results of this Natural Heritage Review are valid for one year; the results are only valid for the project location and project description provided with the request. If project details change or the project has not occurred within one year, please resubmit the project for review within one year of initiating project activities.

The Natural Heritage Review does not constitute project approval by the Department of Natural Resources. Instead, it identifies issues regarding known occurrences of rare features and potential impacts to these rare features. Visit the <u>Natural Hertiage Review website</u> for additional information regarding this process, survey guidance, and other related information. For information on the environmental review process or other natural resource concerns, you may contact your <u>DNR Regional</u> Environmental Assessment Ecologist.

Thank you for consulting us on this matter, and for your interest in preserving Minnesota's rare natural resources.

Sincerely,

Samantha Bump

Samantha Bump Natural Heritage Review Specialist Samantha.Bump@state.mn.us

James Drake

James Drake Natural Heritage Review Specialist James.F.Drake@state.mn.us

Cc: Melissa Collins, Bridgette Timm, and Bridget Henning-Randa

Wabahsa Barge Terminal Project MCE #: 2022-00127 Page 1 of 4

DEPARTMENT OF NATURAL RESOURCES

Formal Natural Heritage Review - Cover Page

See next page for results of review. A draft watermark means the project details have not been finalized and the results are not official.

Project Name: Wabahsa Barge Terminal Project

Project Proposer: City of Wabasha

Project Type: Development, Commercial/Institutional/Industrial

Project Type Activities: Lakeshore; Tree Removal; Waterbody, watercourse, streambed impacts (e.g.,

discharge, runoff, sedimentation, fill, excavation)

TRS: T111 R10 S30

County(s): Wabasha

DNR Admin Region(s): Central

Reason Requested: State EIS

Project Description: The barge facility will serve to transport Mississippi River dredge materials from the river to offsite locations. The project area encompasses 54.0 acres ...

Existing Land Uses: Site consists of a combination of old gravel mining/burrow site, agricultural, and undeveloped/open space

Landcover / Habitat Impacted: Wooded/forest, brush/grassland, and agricultural cropland

Waterbodies Affected: The site is located adjacent to and will involve impacts to the Mississippi River with the proposed barge fleeting area

Groundwater Resources Affected: NA

Previous Natural Heritage Review: No

Previous Habitat Assessments / Surveys: No

SUMMARY OF AUTOMATED RESULTS

Category	Results	Response By Category
Project Details	No Comments	No Further Review Required
Ecologically Significant Area	Comments	MBS Sites - Recommendations Potential RNC - Will Require Consultation Lakes - Recommendations
State-Listed Endangered or Threatened Species	Needs Further Review	Needs Further Review
State-Listed Species of Special Concern	Comments	Recommendations
Federally Listed Species	Comments	Visit IPaC for Federal Review

Wabahsa Barge Terminal Project MCE #: 2022-00127 Page 2 of 4

DEPARTMENT OF NATURAL RESOURCES

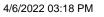
April 6, 2022

Project Name: Wabahsa Barge Terminal Project Project Proposer: City of Wabasha Project Type: Development, Commercial/Institutional/Industrial Project ID: MCE #2022-00127

AUTOMATED RESULTS: FURTHER REVIEW IS NEEDED

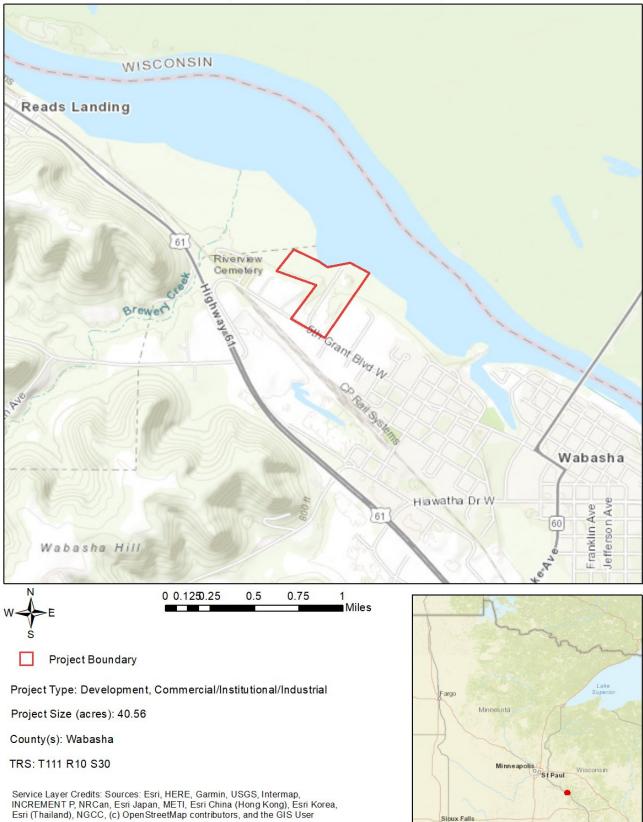
As requested, the above project has undergone an automated review for potential impacts to rare features. Based on this review, one or more rare features may be impacted by the proposed project and further review by the Natural Heritage Review Team is needed. You will receive a separate notification email when the review process is complete and the Natural Heritage Review letter has been posted.

Please refer to the table on the cover page of this report for a summary of potential impacts to rare features. For additional information or planning purposes, use the Explore Page in Minnesota Conservation Explorer to view the potentially impacted rare features or to create a Conservation Planning Report for the proposed project.


If you have additional information to help resolve the potential impacts listed in the summary results, please attach related project documentation in the Edit Details tab of the Project page. Relevant information includes, but is not limited to, additional project details, completed habitat assessments, or survey results. This additional information will be considered during the project review.

Wabahsa Barge Terminal Project MCE #: 2022-00127 Page 3 of 4

Wabahsa Barge Terminal Project Aerial Imagery With Locator Map


Service Layer Credits: Source: Esri, Maxar, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community Sources: Esri, HERE, Garmin, USGS, Intermap, INCREMENT P, NRCan, Esri

StPaul

Sioux Falls

APPENDIX H

Traffic Impact Memorandum

Real People. Real Solutions.

111 Washington Avenue S Suite 650 Minneapolis, MN 55401

> Ph: (612) 416-0220 Fax: (612) 416-0222 Bolton-Menk.com

MEMORANDUM

Date:December 8, 2022To:Caroline Gregerson, Wabasha City AdministratorFrom:Ross Tillman P.E.
Kelsey Retherford P.E., PTOESubject:Wabasha Barge Terminal Project Traffic Impacts
City of Wabasha

Project No.: H19114396

Introduction

A study of the intersections of TH 61 and County Road 10/5th Grant Boulevard, TH 61 and Shields Avenue, and 5th Grant Boulevard and the Wabasha Barge Site was completed to determine the recommended traffic control with for the proposed barge terminal site being constructed along the Mississippi River. As a part of the project, a new driveway will be constructed along 5th Grant Boulevard to allow trucks to access the new site. The project is located in northwest Wabasha and just northwest of Gundersen St. Elizabeth's Hospital. TH 61 is the main traffic artery connecting Wabasha to the surrounding communities up and down the Mississippi River, while 5th Grant Blvd is a low traffic connecting road between TH 61 and Wabasha. See **Figure 1** for the project location map. Trucks accessing the site will follow a specific truck route to and from the site, which will take them from the project site on 5th Grant Blvd, along TH 61, and then onto Shields Ave. The route map can be found in the **Appendix**.

Figure 1: Project Location Map

\\Burnsville4\h\WABASHA_CI_MN\H19114396\2_Preliminary\C_Reports\Memo\Wabasha Barge Terminal Project Traffic Impacts.docx Bolton & Menk is an equal opportunity employer. Name:Wabasha Barge Terminal Project Traffic ImpactsDate:12/8/2022Page:2

Existing Conditions

The intersection of TH 61 and County Road 10/ 5th Grant Blvd has the following characteristics:

- Side street stop-controlled intersection
- The speed limit on TH 61 is 55 MPH
- The speed limit on County Road 10 is 40 MPH
- The speed limit on 5th Grant Blvd is 40 MPH
- TH 61 is an undivided 2 lane roadway north of the intersection, and a divided 4 lane roadway south of the intersection
- The intersection has left and right turn lanes along the northbound and southbound approaches
- TH 61 is classified as a Principal Arterial
- County Road 10 is classified as a Major Collector
- 5th Grant Blvd is classified as a Major Collector
- Downtown Wabasha and the intersection of Pembroke Ave and Main St W is approximately two miles east of the study intersection
- There is no pedestrian or bicycle infrastructure along TH 61, County Road 10, or 5th Grant Blvd

The intersection of TH 61 and Shields Ave has the following characteristics:

- Restricted Crossing U-Turn (RCUT) intersection (Built in 2019)
- Each U-Turn location includes a Loon bump out to accommodate trucks
- The speed limit on TH 61 is 55 MPH
- The speed limit on Shields Ave is MPH
- TH 61 is a divided 4 lane highway
- Shields Ave at the study intersection is classified as a Local Road
- TH 61 is classified as a Principal Arterial
- Downtown Wabasha and the intersection of Pembroke Ave and Main St W is approximately 1.1 miles northeast of the study intersection
- There is no pedestrian or bicycle infrastructure along TH 61 or Shields Ave immediately adjacent to the study intersection

Currently, the 5th Grant Boulevard and Project Driveway intersection does not exist.

Data Collection

A traffic count was completed on September 29, 2022. A 13-hour count was completed for the intersection of County Road 10/5th Grant Blvd and Highway 61. The AM peak hour was found to be 9:30-10:30 AM and the PM peak hour was found to be 3:45-4:45 PM. A 13-hour count from 2015 for the intersection of TH 61 and Shields Ave was available from a previous study. Traffic volumes from the peak hours of the previous count was compared to the new count. The volumes were found to differ by at most 25 vehicles, or approximately 10%. The previous counts were adjusted to match in with the new count. The turning movement counts are included in the **Appendix**.

Safety Analysis

A crash review was completed for the three intersections being investigated in this study. This review analyzed the last three years (2019-2021) of crash data, which was obtained from the Minnesota Crash Mapping Analysis Tool (MnCMAT2). Over the past three years, no crashes were recorded at the

Name:Wabasha Barge Terminal Project Traffic ImpactsDate:12/8/2022Page:3

intersection of TH 61 and County Road 10 and on 5th Grant Ave near the barge site. At the intersection of TH 61 and Shields Ave there were four reported crashes, one minor injury crash, one possible injury crash, and two property damage only crashes. The RCUT at the TH 61 and Shields Ave intersection was built during 2019, and one of the four crashes occurred while construction was ongoing. That crash was the minor injury crash, which was a left turn crash involving a northbound left turning vehicle and a southbound vehicle. The possible injury incident was a rear end crash involving an eastbound right turn vehicle onto southbound TH 61 who turned in front of another southbound vehicle and was not being able to speed up in time. Weather was not a factor in either crash.

MnDOT uses a comparison of the crash rate and the critical rate when determining whether there is a safety issue at an intersection. The crash rate is the number of crashes per million entering vehicles (MEV). The critical rate is a statistical comparison based on similar intersections statewide. An observed crash rate greater than the critical rate indicates that the intersection operates outside of the expected, normal range. The critical index reports the magnitude of this difference and a critical index of less than one indicates that the intersection is operating within the normal range.

At TH 61 and Shields Ave, the total crash critical index is less than one for the analysis period which concludes that this intersection is operating within the normal range. The observed crash rate with three years of crash data was found to be 0.45, which is above the average of 0.19 for similar intersections statewide but below the critical rate of 0.61. The fatal and serious injury critical index is 0, as no fatal or serious injury crashes have occurred in the last three years. The intersection crash worksheets for each intersection are included in the **Appendix**.

Future Conditions

Traffic Forecasting

Future traffic volumes for 2042 were developed based on current and past volume data collected from the MnDOT Traffic Mapping Application. Historic growth rates throughout the project area are listed below:

- TH 61 north of County Road 10: 0.48%
- TH 61 south of Shields Ave: 0.85%
- 5th Grant Blvd east of TH 61: -0.08%
- County Road 10 west of TH 61: 0.96%
- Shields Ave/Hiawatha Dr east of TH 61: 0.16%

Based on the historic growth rates, a growth rate of 0.5% per year was assumed for TH 61 north of County Road, 5th Grant Blvd east of TH 61, and Shields Ave/Hiawatha Dr east of TH 61. A growth rate of 1% per year was assumed for TH 61 south of Shields Ave and County Road 10 west of TH 61.

The existing and 2042 average daily traffic volumes (ADTs) are listed in **Table 1** below.

Name:Wabasha Barge Terminal Project Traffic ImpactsDate:12/8/2022Page:4

Location	2022 ADT	2042 ADT
TH 61 north of County Road 10	5,500	6,050
County Road 10 west of TH 61	560	675
5th Grant Blvd east of TH 61	525	575
TH 61 south of County Road 10	5,700	6,300
Shields Ave/Hiawatha Dr east of TH 61	3,100	3,400
Shields Ave west of TH 61	1,700	1,800
TH 61 south of Shields Ave	3,600	4,300

Table 1 – Traffic Volumes

Proposed Development

The site is currently agricultural. A new barge terminal facility is proposed that will receive Mississippi River dredge material from the US Corps of Engineers and transport the material offsite. The barge facility is planned to be built on the north side of 5th Grant Blvd approximately 1,500 feet northwest of Steele Rd. Concept plans showing the proposed development are included in the **Appendix**.

The site will be operational between April and October. 100 truckloads per day on average are planned into and out of the site between 7:00 AM and 5:30 PM with the truckloads evenly distributed throughout the day. Based on this information 10 trucks were assumed to both enter and exit the site during the AM and PM peak hours. The proposed development will have access to TH 61 via 5th Grant Blvd, with the TH 61 at 5th Grant Blvd and TH 61 at Shields Ave intersections being primary intersections along the truck route to and from the barge facility.

Operational Analysis

The traffic operation analysis for the intersection included an evaluation of existing intersection delay and Level of Service (LOS). LOS results are described using letters ranging from A to F. These letters serve to describe a range of operating conditions for different types of facilities. Levels of Service are calculated based on the Highway Capacity Manual (HCM) 6th Edition, which defines the LOS, based on control delay. Control delay is the delay experienced by vehicles slowing down as they are approaching the intersection, the wait time at the intersection, and the time for the vehicle to speed up through the intersection and enter into the traffic stream. The average intersection control delay is a volume weighted average of delay experienced by all motorists entering the intersection on all intersection approaches. The control delay is modeled within the analysis software Trafficware Synchro. LOS D is commonly taken as an acceptable design year LOS.

Existing and forecasted turning movement counts were analyzed in Synchro for the intersections of TH 61 and CR 10/5th Grant Blvd, and TH 61 and Shields Ave. The intersection of TH 61 and Hiawatha Avenue was not analyzed, as the only traffic added as a result of the project are approximately 10 vehicles per hour of mainline traffic, approximately a 4% increase. There are no additional vehicles turning at this intersection as a result of completing the project. The TH 61 and Shields Ave intersection is an RCUT, and both U turns are included in the analysis, separately. **Table 1** shows the operational results for the existing conditions.

							Traffic Dela	y (sec/ve	eh)				
				AM	Peak Ho	ur				PM	Peak Hou	ır	
		N	lovement ((Delay - LO	S)	Approach		N	lovement	(Delay - LO	S)	Approach	
Intersection	Approac h	υ	L	т	R	(Delay - LOS)	Intersection (Delay - LOS)	U	L	т	R	(Delay - LOS)	Intersection (Delay - LOS)
	EB	-	10 - B	10 - B	10 - B	10 - B		-	11 - B	11 - B	11 - B	11 - B	
TH 61 at CR 10/5th Grant	WB	-	10 - B	10 - B	10 - B	10 - B	2 - A	-	12 - B	12 - B	12 - B	12 - B	2 - A
Blvd	NB	-	8 - A	0 - A	0 - A	1 - A	2-8	-	8 - A	0 - A	0 - A	1 - A	2-8
	SB	-	8 - A	0 - A	0 - A	2 - A		-	8 - A	0 - A	0 - A	1 - A	
North U-Turn	NB	9 - A	-	0 - A	-	3 - A	2 - A	9 - A	-	0 - A	-	3 - A	1 - A
North O-Tulli	SB	-	-	0 - A	-	0 - A	2-A	-	-	0 - A	-	0 - A	1-7
	EB	-	-	-	9 - A	9 - A		-	-	-	10 - B	10 - B	
TH 61 at Shields	WB	-	-	-	10 - B	10 - B	4 - A	-	-	-	10 - B	10 - B	4 - A
in or at silielus	NB	-	8 - A	0 - A	0 - A	1 - A	4 - A	-	8 - A	0 - A	0 - A	1 - A	4 - A
	SB	-	8 - A	0 - A	0 - A	3 - A		-	8 - A	0 - A	0 - A	3 - A	
South U-Turn	NB	-	-	0 - A	-	0 - A	1 - A	-	-	0 - A	-	0 - A	1 - A
South 0-1011	SB	8 - A	-	0 - A	-	2 - A	1- A	9 - A	-	0 - A	-	3 - A	1-A

Table 1: Existing Conditions (2022) Traffic Operations Analysis

Table 1 shows the overall intersection delay and movement delays for each intersection on TH 61, including the U-Turn locations for the RCUT at Shields Ave. The overall intersection delay at all four locations operate with LOS A during both peak hours, while the approach delay for the side streets of TH 61 operate at LOS B.

Table 2 shows the 2042 No Build traffic operations.

Table 2: 2042 Traffic Operations Analysis – No Build Scenario

							Traffic Dela	y (sec/ve	h)				
				AM	Peak Hou	ur 🛛				PM	Peak Hou	ır	
		N	lovement ((Delay - LO	S)	Approach		N	lovement	(Delay - LO	S)	Approach	
Intersection	Approac h	U	L	т	R	(Delay - LOS)	Intersection (Delay - LOS)	U	L	т	R	(Delay - LOS)	Intersection (Delay - LOS)
	EB	-	10 - B	10 - B	10 - B	10 - B		-	12 - B	12 - B	12 - B	12 - B	
TH 61 at CR 10/5th Grant	WB	-	10 - B	10 - B	10 - B	10 - B	2 - A	-	14 - B	14 - B	14 - B	14 - B	2 - A
Blvd	NB	-	8 - A	0 - A	0 - A	1 - A	2-8	-	8 - A	0 - A	0 - A	1 - A	2-7
	SB	-	8 - A	0 - A	0 - A	2 - A		-	8 - A	0 - A	0 - A	1 - A	
North U-Turn	NB	9 - A	-	0 - A	-	3 - A	2 - A	10 - B	-	0 - A	-	3 - A	1 - A
North 6-1411	SB	-	-	0 - A	-	0 - A	2 - A	-	-	0 - A	-	0 - A	1 - A
	EB	-	-	-	10 - B	10 - B		-	-	-	10 - B	10 - B	
TH 61 at Shields	WB	-	-	-	10 - B	10 - B	4 - A	-	-	-	10 - B	10 - B	4 - A
TT OT at Shields	NB	-	8 - A	0 - A	0 - A	1 - A	4 - A	-	8 - A	0 - A	0 - A	1 - A	4 - A
	SB	-	8 - A	0 - A	0 - A	3 - A		-	9 - A	0 - A	0 - A	3 - A	
South U-Turn	NB	-	-	0 - A	-	0 - A	1 - A	-	-	0 - A	-	0 - A	1 - A
South O-Tuffi	SB	8 - A	-	0 - A	-	2 - A	1-A	9 - A	-	0 - A	-	3 - A	1-A

Table 2 shows that with 2042 volumes the overall intersection delay operates at LOS A during both peak hours and all approaches operate with LOS A or B which is consistent with 2022 volumes.

Tables 3 and 4 show the operational analysis of the 2022 and 2042 traffic volumes with the proposed barge facility. These tables help to illustrate how the proposed facility would affect operations.

							Traffic Dela	y (sec/ve	eh)				
				AM	Peak Hou	ur				PM	Peak Hou	ır	
		N	lovement ((Delay - LO	S)	Approach		N	lovement (Delay - LO	S)	Approach	
Intersection	Approac h	U	L	т	R	(Delay - LOS)	Intersection (Delay - LOS)	U	L	т	R	(Delay - LOS)	Intersection (Delay - LOS)
	EB	-	10 - B	10 - B	10 - B	10 - B		-	11 - B	11 - B	11 - B	11 - B	
TH 61 at CR 10/5th Grant	WB	-	13 - B	13 - B	13 - B	13 - B	2 - A	-	17 - C	17 - C	17 - C	17 - C	3 - A
Blvd	NB	-	8 - A	0 - A	0 - A	1 - A	2 - A	-	8 - A	0 - A	0 - A	1 - A	5-A
	SB	-	8 - A	0 - A	0 - A	2 - A		-	8 - A	0 - A	0 - A	1 - A	
North U-Turn	NB	9 - A	-	0 - A	-	3 - A	2 - A	9 - A	-	0 - A	-	3 - A	1 - A
North O-Turn	SB	-	-	0 - A	-	0 - A	2 - R	-	-	0 - A	-	0 - A	1-A
	EB	-	-	-	9 - A	9 - A		-	-	-	10 - B	10 - B	
TH 61 at Shields	WB	-	-	-	10 - B	10 - B	5 - A	-	-	-	10 - B	10 - B	4 - A
in or at shields	NB	-	8 - A	0 - A	0 - A	1 - A	5 7	-	8 - A	0 - A	0 - A	1 - A	
	SB	-	8 - A	0 - A	0 - A	3 - A		-	9 - A	0 - A	0 - A	3 - A	
South U-Turn	NB	-	-	0 - A	-	0 - A	1 - A	-	-	0 - A	-	0 - A	2 - A
30411 0-1411	SB	8 - A	-	0 - A	-	3 - A	1 A	9 - A	-	0 - A	-	3 - A	2 4
New Driveway Access /	EB	-	1 - A	0 - A	-	1 - A		-	2 - A	0 - A	-	1 - A	
5th Grant Blvd	WB	-	-	0 - A	-	0 - A	2 - A	-	-	0 - A	-	0 - A	2 - A
	WB	-	8 - A	-	-	8 - A		-	9 - A	-	-	9 - A	

Table 3: 2022 Traffic Operations Analysis – Build Scenario

Table 3 shows that the overall intersections continue to operate with LOS A during both peak hours. The westbound approach of TH 61 at CR 10/5th Grant Blvd worsens to LOS C during the PM peak hour with the proposed development. All other approaches continue to operate with LOS A or B during both peak hours.

							Traffic Dela	y (sec/ve	eh)				
				AM	Peak Hou	ur				PM	Peak Hou	ır	
		N	lovement (Delay - LO	S)	Approach		N	lovement	(Delay - LO	S)	Approach	
Intersection	Approac h	U	L	т	R	(Delay - LOS)	Intersection (Delay - LOS)	U	L	т	R	(Delay - LOS)	Intersection (Delay - LOS)
	EB	-	10 - B	10 - B	10 - B	10 - B		-	12 - B	12 - B	12 - B	12 - B	
TH 61 at CR 10/5th Grant	WB	-	12 - B	12 - B	12 - B	12 - B	2 - A	-	19 - C	19 - C	19 - C	19 - C	3 - A
Blvd	NB	-	8 - A	0 - A	0 - A	1 - A	2 - A	-	8 - A	0 - A	0 - A	1 - A	3 - A
	SB	-	8 - A	0 - A	0 - A	2 - A		-	8 - A	0 - A	0 - A	1 - A	
North U-Turn	NB	9 - A	-	0 - A	-	3 - A	1 - A	10 - B	-	0 - A	-	3 - A	1 - A
North 6-run	SB	-	-	0 - A	-	0 - A	1-A	-	-	0 - A	-	0 - A	1-A
	EB	-	-	-	10 - B	10 - B		-	-	-	11 - B	11 - B	
TH 61 at Shields	WB	-	-	-	10 - B	10 - B	4 - A	-	-	-	10 - B	10 - B	4 - A
TH OT at Shields	NB	-	8 - A	0 - A	0 - A	1 - A	4 - A	-	8 - A	0 - A	0 - A	1 - A	4-A
	SB	-	8 - A	0 - A	0 - A	3 - A		-	9 - A	0 - A	0 - A	3 - A	
South U-Turn	NB	-	-	0 - A	-	0 - A	1 - A	-	-	0 - A	-	0 - A	2 - A
3000110-10111	SB	8 - A	-	0 - A	-	2 - A	1-A	9 - A	-	0 - A	-	3 - A	2 - A
New Driveway Access /	EB	-	1 - A	0 - A	-	1 - A		-	2 - A	0 - A	-	1 - A	
5th Grant Blvd	WB	-	-	0 - A	-	0 - A	2 - A	-	-	0 - A	-	0 - A	2 - A
	WB	-	8 - A	-	-	8 - A		-	9 - A	-	-	9 - A	

Table 4 shows that, similar to the 2022 conditions the overall intersection delay at all four locations is LOS A during both peak hours. The approach delay for the most approaches along side streets of TH 61 operate at LOS B, with the Westbound approach of TH 61 at CR 10/5th Grant Blvd operating at LOS C.

The operational analysis indicates that both intersections are expected to operate acceptably as a side through 2042 whether or not the barge facility is built. Detailed operational results are included in the **Appendix**.

Name:Wabasha Barge Terminal Project Traffic ImpactsDate:12/8/2022Page:7

Summary

TH 61 and County Road 10/5th Grant Boulevard

With the current volumes and geometry, the intersection of TH 61 and CR 10/5th Grant Blvd operates well. There have been no crashes at the intersection in the last three years. This intersection will see an increase in truck traffic with the development of the proposed barge facility, and due to the operational schedule, there will not be peak times with large volumes of truck traffic, but instead the trucks will be well dispersed throughout the day. This will not lead to a significant impact in traffic, as the estimates are there will be 10 truck arrivals to the site and 10 truck departures from the site every hour. The current two way stop configuration is sufficient for current 2022 and for future 2040 volumes, and no additional intersection control should be required during this time period. The operational analysis indicated that all approaches would operate with LOS C or better during both peak hours.

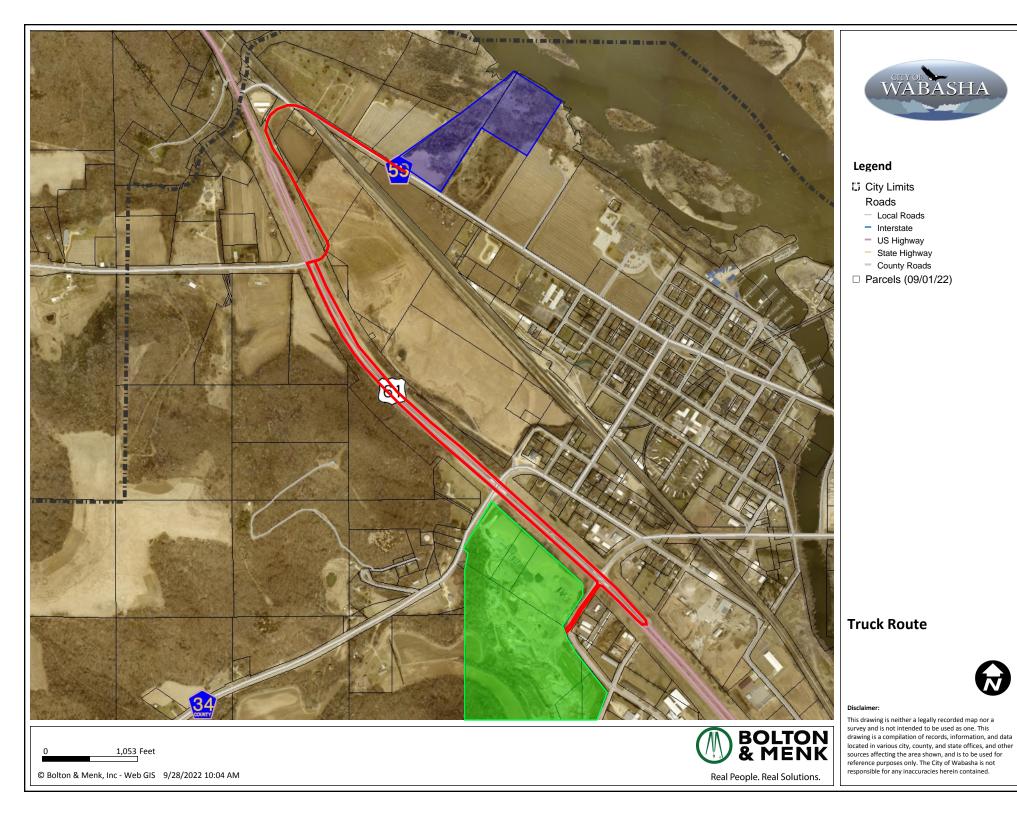
TH 61 and Shields Avenue

Under current conditions, the intersection of TH 61 and Shields Ave operates well. There have been four crashes at the intersection over the last three years, but none have resulted in serious injury or fatality. The crash that occurred during construction of the RCUT was a minor injury crash. With the opening of the proposed barge facility, there will be an increase of truck traffic at this intersection, however with the operation schedule being spread out throughout the day, there will not be peak times during the day that sees increased truck traffic, and it will remain rather consistent. The operational analysis indicated that all approaches would operate with LOS B or better during both peak hours.

5th Grant Boulevard and Barge Site Driveway

Currently there is no intersection at the project site, and 5th Grand Boulevard operates at LOS A. With construction, very little will change in terms of operation. The new intersection will operate at LOS A, and intersection delay times will be minimal. Turn lanes for site access are not necessary based upon both the vehicle volumes and the speed limit of the roadway.

Recommendation


Based on the analysis reviewed in this memorandum, no mitigation measures are recommended with the construction of the barge facility. The operational analysis indicated that the intersections in the project area will continue to operate with minimal delay through 2042. The existing safety analysis indicated that there are no crash concerns in the project area that need to be addressed.

Name:Wabasha Barge Terminal Project Traffic ImpactsDate:12/8/2022Page:8

Appendix

H19.114396\\Burnsville4\h\WABASHA_CI_MN\H19114396\2_Preliminary\C_Reports\Memo\Wabasha Barge Terminal Project Traffic Impacts.docx

Bolton & Menk is an equal opportunity employer.

Turning Movement Counts

File Name : Hwy 61 & CR 10-5th Grant Blvd, 9-29-22, 6am-7pm

Site Code : 4

Start Date : 9/29/2022

Page No : 1

	•									G	Froups I	Printed- C	ars + -	Trucks											
			High	<i>w</i> ay 61					5th Gr	ant Blvo	b				Highw	vay 61						y Rd 10			
			South	hbound					West	bound					North	bound					East	bound			
Start Time	Right	Thru	Left	UTrn	Peds	App. Total	Right	Thru	Left	UTrn	Peds	App. Total	Right	Thru	Left	UTrn	Peds	App. Total	Right	Thru	Left	UTrn	Peds	App. Total	Int. Total
06:00 AM	0	14	1	0	0	15	0	1	0	0	0	1	0	33	0	0	0	33	2	0	0	0	0	2	51
06:15 AM	0	17	3	0	0	20	0	0	0	0	0	0	0	26	0	0	0	26	0	2	0	0	0	2	48
06:30 AM	0	15	1	0	0	16	2	0	0	0	0	2	0	31	1	0	0	32	1	0	1	0	0	2	52
06:45 AM	1	25	0	0	0	26	2	0	0	0	0	2	0	30	3	1	0	34	0	0	0	0	0	0	62
Total	1	71	5	0	0	77	4	1	0	0	0	5	0	120	4	1	0	125	3	2	1	0	0	6	213
																									L
07:00 AM	1	33	1	0	0	35	1	0	0	0	0	1	0	39	1	0	0	40	7	1	0	0	0	8	84
07:15 AM	0	42	3	0	0	45	1	1	0	0	0	2	0	35	4	0	0	39	4	2	0	0	0	6	92
07:30 AM	0	34	7	0	0	41	3	0	0	0	0	3	2	28	3	0	0	33	9	0	0	0	0	9	86
07:45 AM	0	27	1	0	0	28	2	1	0	0	0	3	1	27	5	0	0	33	5	2	0	0	0	7	71
Total	1	136	12	0	0	149	7	2	0	0	0	9	3	129	13	0	0	145	25	5	0	0	0	30	333
														~-				~~						_	
08:00 AM	0	30	0	0	0	30	3	1	0	0	0	4	1	35	2	0	0	38	4	1	0	0	0	5	77
08:15 AM	0	42	1	0	0	43		0	1	0	0	2	1	25	2	3	0	31	2	1	1	0	0	4	80
08:30 AM	0	24	1	0	0	25	1	0	2	0	0	3	0	31	1	1	0	33	7	0	0	0	0	7	68
08:45 AM	0	37	1	0	0	38	3	0	0	0	0	3	2	34	2	0	0	38	5	0	0	0	0	5	84
Total	0	133	3	0	0	136	8	1	3	0	0	12	4	125	7	4	0	140	18	2	1	0	0	21	309
09:00 AM	0	41	4	0	0	45	4	0	0	0	0	1	1	38	2	0	0	41	2	0	0	0	0	2	89
09:00 AM	0	21	2	0	0	43 23	2	0	0	0	0	2	0	38 40	2	0	0	41	7	0	1	0	0	2 8	75
09:30 AM	0	41	2	0	0	23 50	2	0	1	0	0	2	0	40 38	2	1	0	42	3	1	1	0	0	о 5	99
09:45 AM	1	31	8	0	0	40	4	1	0	0	0	2 5	0	30 31	0	1	0	42 32	5	1	1	0	0	5	84
Total	1	134	23	0	0	158	8	1	1	0	0	10	1	147	7	2	0	157	17	2	3	0	0	22	347
Total		134	25	0	0	150	0	1		0	0	10	1	147	1	2	0	157	17	2	5	0	0	22	547
10:00 AM	0	51	3	0	0	54	3	0	1	0	0	4	1	42	3	1	0	47	2	1	1	0	0	4	109
10:15 AM	Ő	38	5	Ő	Ő	43	6	õ	0	0	Õ	6	1	31	4	1	Õ	37	3	0	O	Õ	õ	3	89
10:30 AM	1	40	3	Ő	Ő	44	1	õ	2	Ő	Õ	3	o i	30	2	0 0	Õ	32	4	Ő	õ	Õ	õ	4	83
10:45 AM	0	40	3	Õ	0	43	4	Õ	1	Õ	Õ	5	Ő	44	1	Õ	Õ	45	1	Ő	Õ	Õ	Õ	1	94
Total	1	169	14	0	0	184	14	0	4	0	0	18	2	147	10	2	0	161	10	1	1	0	0	12	375
11:00 AM	0	40	3	0	0	43	3	0	0	0	0	3	0	32	5	0	0	37	1	1	0	0	0	2	85
11:15 AM	0	32	7	0	0	39	3	0	1	0	0	4	0	36	1	0	0	37	2	0	0	0	0	2	82
11:30 AM	1	41	3	0	0	45	6	0	0	0	0	6	0	36	2	0	0	38	1	1	0	0	0	2	91
11:45 AM	0	55	0	0	0	55	0	0	2	0	0	2	1	48	1	1	0	51	1	0	0	0	0	1	109
Total	1	168	13	0	0	182	12	0	3	0	0	15	1	152	9	1	0	163	5	2	0	0	0	7	367

Hwy 61 & 5th Grant Blvd/CR 10 Wabasha, MN

Turning Movement Counts

File Name : Hwy 61 & CR 10-5th Grant Blvd, 9-29-22, 6am-7pm

Site Code : 4

Start Date : 9/29/2022

Page No : 2

										G	roups F	Printed- C	ars + - T	Frucks											
				vay 61						ant Blvd						<i>w</i> ay 61					County				
				bound						bound						bound					Eastb				
Start Time	Right	Thru		UTrn	Peds	App. Total	Right	Thru	Left	UTrn	Peds	App. Total	Right	Thru	Left	UTrn	Peds	App. Total	Right	Thru	Left	UTrn I	Peds	App. Total	Int. Total
12:00 PM	0	56	2	0	0	58	4	0	0	0	0	4	0	37	3	0	0	40	2	0	0	0	0	2	104
12:15 PM	1	33	4	0	1	39	5	0	2	0	0	7	1	44	4	1	0	50	4	0	0	0	0	4	100
12:30 PM	1	59	6	0	0	66	2	0	0	0	0	2	1	42	5	1	0	49	2	0	0	0	0	2	119
12:45 PM	0	35	1	0	0	36	3	1	1	0	0	5	1	44	6	1	0	52	3	1	0	0	0	4	97
Total	2	183	13	0	1	199	14	1	3	0	0	18	3	167	18	3	0	191	11	1	0	0	0	12	420
01:00 PM	1	38	3	0	1	43	5	1	0	0	0	6	0	56	1	2	0	59	1	2	0	0	0	3	111
01:15 PM	0	48	2	0	0	43 50	5	1	0	0	0	6	0	36	4	2	0	42	9	0	1	0	0	10	108
01:30 PM	0	63	4	0	0	67	4	0	0	0	0	4	1	37	3	0	0	42	9 5	2	1	0	0	8	120
01:45 PM	0	40	4	0	0	43	4	2	0	0	0	4 9	0	58	5	1	0	64	2	2	0	0	0	3	119
Total	1	189	12	0	1	203	21	4	0	0	0	25	1	187	13	5	0	206	17	5	2	0	0	24	458
Total		103	12	0	1	203	21	4	0	0	0	20		107	15	5	0	200	17	5	2	0	0	24	450
02:00 PM	1	41	1	0	0	43	4	0	1	0	0	5	2	53	5	0	0	60	1	0	0	0	0	1	109
02:15 PM	1	44	4	0	0	49	7	0	2	0	0	9	0	65	3	1	0	69	2	1	0	0	0	3	130
02:30 PM	0	58	5	0	0	63	4	2	0	0	0	6	0	58	5	1	0	64	3	1	0	0	0	4	137
02:45 PM	2	50	4	0	0	56	7	0	3	0	0	10	0	57	6	0	0	63	3	0	0	0	0	3	132
Total	4	193	14	0	0	211	22	2	6	0	0	30	2	233	19	2	0	256	9	2	0	0	0	11	508
		47	-	•	•	50	0	-	0	0	0	•			•		0	a a	•	0	0	•	0		400
03:00 PM	0	47	5	0	0	52	6	2	0	0	0	8	0	60	8	1	0	69	6	3	0	0	0	9	138
03:15 PM	0	65	7	0	0	72	1	0	1	0	0	2	0	49	4	2	0	55	2	2	0	0	0	4	133
03:30 PM	1	54	6	0	0	61	6	0	0	0	0	6	1	58	4	0	0	63	1	0 1	0	0	0	1	131
03:45 PM	0	<u>51</u> 217	<u>3</u> 21	0	0	54 239	<u>2</u> 15	<u>1</u> 3	<u>1</u> 2	0	0	4 20	0	<u>58</u> 225	<u>5</u> 21	<u>1</u> 4	0	64 251	<u>3</u> 12	6	1	0	0	<u>5</u> 19	<u> </u>
Total	1	217	21	0	0	239	15	ა	Z	0	0	20		225	21	4	0	201	12	0	I	0	0	19	529
04:00 PM	0	44	5	0	0	49	8	2	0	0	0	10	0	68	6	2	0	76	6	0	0	0	0	6	141
04:15 PM	1	89	3	0	0	93	6	1	2	0	0	9	1	54	4	0	0	59	8	0	1	0	0	9	170
04:30 PM	0	61	1	0	0	62	5	1	0	0	0	6	0	52	8	1	0	61	7	1	0	0	0	8	137
04:45 PM	0	53	1	0	0	54	2	4	0	0	0	6	1	51	4	0	0	56	7	1	0	0	0	8	124
Total	1	247	10	0	0	258	21	8	2	0	0	31	2	225	22	3	0	252	28	2	1	0	0	31	572
05:00 PM	0	55	6	0	0	61	3	4	0	0	0	7	1	55	3	0	0	59	4	2	1	0	0	7	134
05:15 PM	0	60	4	0	0	64	0	0	2	0	0	2	0	56	7	Ő	Ő	63	6	0	0	0	Ő	6	135
05:30 PM	0	49	3	0	0	52	3	1	0	0	0	4	0	41	4	1	0	46	2	2	0	0	Ő	4	106
05:45 PM	1	39	3	1	0	44	2	1	0	0	0	3	0	31	3	1	0	35	3	0	0	0	0	3	85
Total	1	203	16	1	0	221	8	6	2	0	0	16	1	183	17	2	0	203	15	4	1	0	0	20	460
i otai		200	10	1	0		0	0	2	0	0	10		100	.,	2	0	200	10	т		U	U	20	700
06:00 PM	0	44	0	0	0	44	2	0	0	0	0	2	0	31	4	1	0	36	9	0	0	0	0	9	91
06:15 PM	0	42	1	0	0	43	2	0	0	0	0	2	1	35	8	0	0	44	11	0	0	0	0	11	100
06:30 PM	0	48	3	0	0	51	2	0	1	0	0	3	0	24	9	0	0	33	5	2	1	0	0	8	95
06:45 PM	2	30	4	0	1	37	1	0	0	0	0	1	0	19	5	0	0	24	2	1	0	0	0	3	65
Total	2	164	8	0	1	175	7	0	1	0	0	8	1	109	26	1	0	137	27	3	1	0	0	31	351

Hwy 61 & 5th Grant Blvd/CR 10 Wabasha, MN

Turning Movement Counts

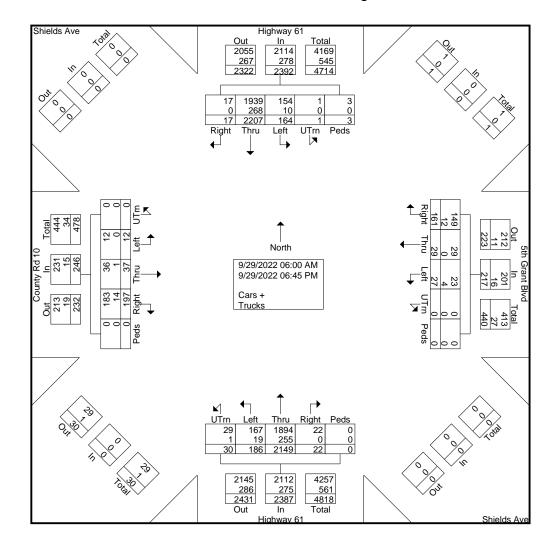
File Name : Hwy 61 & CR 10-5th Grant Blvd, 9-29-22, 6am-7pm

Site Code : 4

Start Date : 9/29/2022

Page No : 3


Hwy 61 & 5th Grant Blvd/CR 10
Wabasha, MN


										G	Froups F	Printed-C	ars + -	Trucks											
			High	way 61					5th Gr	ant Blvo	d				High	way 61					County	Rd 10	i		
			South	nbound					West	bound					North	bound					Eastb	ound			
	Right	Thru	Left	UTrn	Peds	App. Total	Right	Thru	Left	UTrn	Peds	App. Total	Right	Thru	Left	UTrn	Peds	App. Total	Right	Thru	Left	UTrn	Peds	App. Total	Int. Total
Grand Total	17	2207	164	1	3	2392	161	29	27	0	0	217	22	2149	186	30	0	2387	197	37	12	0	0	246	5242
Apprch %	0.7	92.3	6.9	0	0.1		74.2	13.4	12.4	0	0		0.9	90	7.8	1.3	0		80.1	15	4.9	0	0		
Total %	0.3	42.1	3.1	0	0.1	45.6	3.1	0.6	0.5	0	0	4.1	0.4	41	3.5	0.6	0	45.5	3.8	0.7	0.2	0	0	4.7	
Cars +	17	1939	154	1	3	2114	149	29	23	0	0	201	22	1894	167	29	0	2112	183	36	12	0	0	231	4658
% Cars +	100	87.9	93.9	100	100	88.4	92.5	100	85.2	0	0	92.6	100	88.1	89.8	96.7	0	88.5	92.9	97.3	100	0	0	93.9	88.9
Trucks	0	268	10	0	0	278	12	0	4	0	0	16	0	255	19	1	0	275	14	1	0	0	0	15	584
% Trucks	0	12.1	6.1	0	0	11.6	7.5	0	14.8	0	0	7.4	0	11.9	10.2	3.3	0	11.5	7.1	2.7	0	0	0	6.1	11.1

Turning Movement Counts

File Name : Hwy 61 & CR 10-5th Grant Blvd, 9-29-22, 6am-7pm Site Code : 4 Start Date : 9/29/2022

Page No : 4

Turning Movement Counts

File Name : Hwy 61 & CR 10-5th Grant Blvd, 9-29-22, 6am-7pm

Site Code : 4

Start Date : 9/29/2022

Page No : 5

			Highy	vay 61					5th Gr	ant Blvd	1				High	way 61					Count	v Rd 10	1		I
				bound						bound						bound						bound			I
Start Time	Right	Thru		UTrn	Peds A	.pp. Total	Right	Thru	Left	UTrn	Peds	App. Total	Right	Thru	Left		Peds	App. Total	Right	Thru	Left	UTrn	Peds	App. Total	Int. Total
Peak Hour Ana		om 06:0	0 AM to	0 11:45	AM - Pea	ak 1 of 1																			
Peak Hour for E	Íntire In	tersecti	on Begi	ins at 0	9:30 AM																				
09:30 AM	0	41	9	0	0	50	1	0	1	0	0	2	0	38	3	1	0	42	3	1	1	0	0	5	99
09:45 AM	1	31	8	0	0	40	4	1	0	0	0	5	0	31	0	1	0	32	5	1	1	0	0	7	84
10:00 AM	0	51	3	0	0	54	3	0	1	0	0	4	1	42	3	1	0	47	2	1	1	0	0	4	109
10:15 AM	0	38	5	0	0	43	6	0	0	0	0	6	1	31	4	1	0	37	3	0	0	0	0	3	89
Total Volume	1	161	25	0	0	187	14	1	2	0	0	17	2	142	10	4	0	158	13	3	3	0	0	19	381
% App. Total	0.5	86.1	13.4	0	0		82.4	5.9	11.8	0	0		1.3	89.9	6.3	2.5	0		68.4	15.8	15.8	0	0		I
PHF	.250	.789	.694	.000	.000	.866	.583	.250	.500	.000	.000	.708	.500	.845	.625	1.00	.000	.840	.650	.750	.750	.000	.000	.679	.874
Peak Hour Ana						ak 1 of 1	1																		
Peak Hour for E	Intire In	tersecti	on Begi	ins at 0	3:45 PM																				I.
03:45 PM	0	51	3	0	0	54	2	1	1	0	0	4	0	58	5	1	0	64	3	1	1	0	0	5	127
04:00 PM	0	44	5	0	0	49	8	2	0	0	0	10	0	68	6	2	0	76	6	0	0	0	0	6	141
04:15 PM	1	89	3	0	0	93	6	1	2	0	0	9	1	54	4	0	0	59	8	0	1	0	0	9	170
04:30 PM	0	61	1	0	0	62	5	1	0	0	0	6	0	52	8	1	0	61	7	1	0	0	0	8	137
Total Volume	1	245	12	0	0	258	21	5	3	0	0	29	1	232	23	4	0	260	24	2	2	0	0	28	575
% App. Total	0.4	95	4.7	0	0		72.4	17.2	10.3	0	0		0.4	89.2	8.8	1.5	0		85.7	7.1	7.1	0	0		L
PHF	.250	.688	.600	.000	.000	.694	.656	.625	.375	.000	.000	.725	.250	.853	.719	.500	.000	.855	.750	.500	.500	.000	.000	.778	.846

Hwy 61 & 5th Grant Blvd/CR 10 Wabasha, MN

PO Box 16296 St. Louis Park, MN 55416

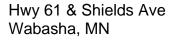
> File Name : 4 - Hwy 61 & Shields Ave, 12-3-15, 6am-7pm Site Code : 4 Start Date : 12/3/2015 Page No : 1

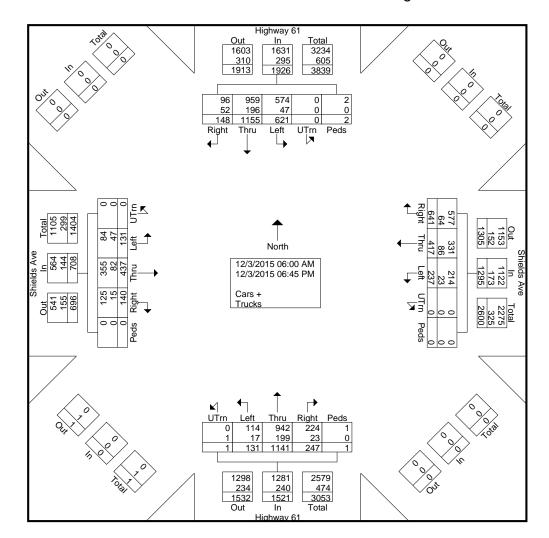
Hwy 61 & Shields Ave Wabasha, MN

										G	roups F	Printed- C	ars + - T	rucks											
			High	way 61					Shiel	ds Ave					Highv	way 61					Shiel	ds Ave			
				nbound						tbound						bound						bound			
Start Time	UTrn	Left	Thru		Peds	App. Total	UTrn	Left	Thru	Right	Peds	App. Total	UTrn	Left	Thru	Right	Peds	App. Total	UTrn	Left	Thru	Right	Peds	App. Total	Int. Total
06:00 AM	0	3	12	0	0	15	0	2	1	4	0	7	0	0	7	7	0	14	0	0	1	0	0	1	37
06:15 AM	0	5	11	0	0	16	0	1	3	14	0	18	0	0	16	5	0	21	0	0	0	1	0	1	56
06:30 AM	0	3	11	0	0	14	0	4	1	14	0	19	0	1	16	6	0	23	0	0	0	0	0	0	56
06:45 AM	0	6	14	4	0	24	0	2	4	8	0	14	0	1	19	13	0	33	0	0	0	0	0	0	71
Total	0	17	48	4	0	69	0	9	9	40	0	58	0	2	58	31	0	91	0	0	1	1	0	2	220
07:00 AM	0	8	19	2	0	29	0	4	6	12	0	22	0	4	19	5	0	28	0	0	2	0	0	2	81
07:15 AM	0	15	32	3	0	50	0	1	11	19	0	31	0	2	12	6	0	20	0	0	7	0	0	7	108
07:30 AM	0	19	21	4	0	44	0	6	7	18	0	31	0	2	24	11	0	37	0	1	2	0	0	3	115
07:45 AM	0	15	25	6	0	46	0	1	19	13	0	33	0	5	16	10	0	31	0	2	9	0	0	11	121
Total	0	57	97	15	0	169	0	12	43	62	0	117	0	13	71	32	0	116	0	3	20	0	0	23	425
08:00 AM	0	12	25	6	0	43	0	8	12	12	0	32	0	1	17	7	0	25	0	0	6	2	0	8	108
08:15 AM	0	12	20	1	0	33	0	6	9	10	0	25	0	2	20	3	0	25	0	1	7	0	0	8	91
08:30 AM	0	9	22	2	0	33	0	7	7	9	0	23	0	3	22	6	1	32	0	2	7	4	0	13	101
08:45 AM	0	8	24	1	0	33	0	3	8	13	0	24	0	2	14	5	0	21	0	2	6	<u>1</u> 7	0	9	87
Total	0	41	91	10	0	142	0	24	36	44	0	104	0	8	73	21	1	103	0	5	26	/	0	38	387
09:00 AM	0	10	14	2	0	26	0	6	8	7	0	21	0	1	12	1	0	14	0	2	7	2	0	11	72
09:15 AM	0	11	23	2	0	36	0	4	14	8	0	26	0	6	21	4	0	31	0	4	5	1	0	10	103
09:30 AM	0	8	18	5	0	31	0	3	10	11	0	24	0	2	23	4	0	29	0	3	14	3	0	20	104
09:45 AM	0	10	19	1	0	30	0	2	13	14	0	29	0	1	19	4	0	24	0	2	12	3	0	17	100
Total	0	39	74	10	0	123	0	15	45	40	0	100	0	10	75	13	0	98	0	11	38	9	0	58	379
10:00 AM	0	12	21	3	1	37	0	4	5	12	0	21	0	3	17	2	0	22	0	1	9	2	0	12	92
10:15 AM	0	10	21	6	0	37	0	3	12	15	0	30	0	3	26	2	0	31	0	1	7	4	0	12	110
10:30 AM	0	12	23	5	0	40	0	4	8	11	0	23	1	2	21	4	0	28	0	3	13	2	0	18	109
<u> </u>	0	<u>7</u> 41	<u>18</u> 83	21	0	<u>32</u> 146	0	<u>5</u> 16	<u>3</u> 28	<u> </u>	0	<u>17</u> 91	0	<u>1</u> 9	<u>34</u> 98	<u>5</u> 13	0	40 121	0	4	<u>8</u> 37	<u>5</u> 13	0	<u>17</u> 59	<u>106</u> 417
Total		41	05	21	1	140	0	10	20	47	0	91	1	5	90	15	0	121		9	57	15	0		417
11:00 AM	0	12	17	2	0	31	0	3	8	10	0	21	0	2	21	9	0	32	0	3	9	3	0	15	99
11:15 AM	0	7	22	2	0	31	0	10	13	7	0	30	0	3	18	4	0	25	0	2	10	1	0	13	99
11:30 AM	0	8	14	4	0	26	0	3	15	14	0	32	0	2	20	3	0	25	0	5	5	5	0	15	98
11:45 AM	0	8	21	6	0	35	0	3	14	10	0	27	0	6	25	4	0	35	0	4	20	4	0	28	<u>125</u> 421
Total	0	35	74	14	0	123	0	19	50	41	0	110	0	13	84	20	0	117	0	14	44	13	0	71	421
12:00 PM	0	10	29	1	0	40	0	3	13	10	0	26	0	3	20	3	0	26	0	6	12	7	0	25	117
12:15 PM	0	12	20	7	0	39	0	2	15	11	0	28	0	1	19	6	0	26	0	5	18	2	0	25	118
12:30 PM	0	7	27	4	0	38	0	4	10	12	0	26	0	10	17	7	0	34	0	2	20	6	0	28	126
12:45 PM	0	7	16	4	0	27	0	10	12	12	0	34	0	4	20	4	0	28	0	4	4	3	0	11	100
Total	0	36	92	16	0	144	0	19	50	45	0	114	0	18	76	20	0	114	0	17	54	18	0	89	461
01:00 PM	0	12	30	3	0	45	0	3	9	15	0	27	0	8	25	8	0	41	0	6	12	3	0	21	134
01:15 PM	0	10	20	3	0	33	0	3	14	11	0	28	0	2	23	4	0	29	0	2	12	3	0	17	107
01:30 PM	0	5	30	3	0	38	0	2	10	11	0	23	0	3	27	3	0	33	0	5	10	4	0	19	113
01:45 PM	0	12	25	3	0	40	0	5	11	12	0	28	0	3	29	5	0	37	0	4	10	3	0	17	122
Total	0	39	105	12	0	156	0	13	44	49	0	106	0	16	104	20	0	140	0	17	44	13	0	74	476

PO Box 16296 St. Louis Park, MN 55416

> File Name : 4 - Hwy 61 & Shields Ave, 12-3-15, 6am-7pm Site Code : 4 Start Date : 12/3/2015 Page No : 2


Hwy 61 & Shields Ave Wabasha, MN


										G	Froups F	Printed- C	ars + - 1	Frucks											
			High	way 61					Shiel	ds Ave					Highv	vay 61					Shield	ls Ave			
				nbound					West	bound						bound					Eastb	ound			
Start Time	UTrn	Left	Thru	Right	Peds	App. Total	UTrn	Left	Thru	Right	Peds	App. Total	UTrn	Left	Thru	Right	Peds	App. Total	UTrn	Left	Thru	Right	Peds	App. Total	Int. Total
02:00 PM	0	7	22	3	0	32	0	4	5	10	0	19	0	0	21	7	0	28	0	3	8	5	0	16	95
02:15 PM	0	16	16	1	0	33	0	6	9	17	0	32	0	1	21	6	0	28	0	2	12	2	0	16	109
02:30 PM	0	12	25	4	0	41	0	5	9	14	0	28	0	1	40	5	0	46	0	2	5	2	0	9	124
02:45 PM	0	12	27	7	0	46	0	0	10	13	0	23	0	6	29	6	0	41	0	5	3	2	0	10	120
Total	0	47	90	15	0	152	0	15	33	54	0	102	0	8	111	24	0	143	0	12	28	11	0	51	448
03:00 PM	0	17	24	4	0	45	0	10	19	21	0	50	0	5	23	3	0	31	0	6	13	2	0	21	147
03:15 PM	0	37	29	2	0	68	0	6	11	21	0	38	0	1	25	3	0	29	0	2	7	7	0	16	151
03:30 PM	0	23	30	3	1	57	0	12	5	22	0	39	0	3	23	7	0	33	0	6	19	7	0	32	161
03:45 PM	0	19	35	4	0	58	0	5	2	12	0	19	0	4	33	7	0	44	0	3	11	3	0	17	138
Total	0	96	118	13	1	228	0	33	37	76	0	146	0	13	104	20	0	137	0	17	50	19	0	86	597
04:00 PM	0	24	15	1	0	40	0	10	9	18	0	37	0	0	37	4	0	41	0	6	19	4	0	29	147
04:15 PM	0	25	38	1	0	64	0	7	8	15	0	30	0	3	33	5	0	41	0	2	9	3	0	14	149
04:30 PM	0	15	30	5	0	50	0	6	2	19	0	27	0	2	30	1	0	33	0	3	16	3	0	22	132
04:45 PM	0	21	29	1	0	51	0	11	6	17	0	34	0	2	26	3	0	31	0	4	10	3	0	17	133
Total	0	85	112	8	0	205	0	34	25	69	0	128	0	7	126	13	0	146	0	15	54	13	0	82	561
05:00 PM	0	16	21	2	0	39	0	8	3	21	0	32	0	3	23	3	0	29	0	4	14	6	0	24	124
05:15 PM	0	12	28	1	0	41	0	4	3	8	0	15	0	3	20	3	0	26	0	1	7	3	0	11	93
05:30 PM	0	12	18	0	0	30	0	5	2	12	0	19	0	2	26	6	0	34	0	1	3	5	0	9	92
05:45 PM	0	8	16	2	0	26	0	2	2	7	0	11	0	3	23	1	0	27	0	2	8	1	0	11	75
Total	0	48	83	5	0	136	0	19	10	48	0	77	0	11	92	13	0	116	0	8	32	15	0	55	384
06:00 PM	0	6	29	0	0	35	0	5	1	6	0	12	0	1	25	5	0	31	0	1	4	1	0	6	84
06:15 PM	0	13	21	2	0	36	0	1	0	8	0	9	0	0	15	0	0	15	0	0	0	1	0	1	61
06:30 PM	0	13	16	1	0	30	0	1	3	9	0	13	0	2	18	2	0	22	0	2	3	4	0	9	74
06:45 PM	0	8	22	2	0	32	0	2	3	3	0	8	0	0	11	0	0	11	0	0	2	2	0	4	55
Total	0	40	88	5	0	133	0	9	7	26	0	42	0	3	69	7	0	79	0	3	9	8	0	20	274
Grand Total	0	621	1155	148	2	1926	0	237	417	641	0	1295	1	131	1141	247	1	1521	0	131	437	140	0	708	5450
Apprch %	0	32.2	60	7.7	0.1		0	18.3	32.2	49.5	0		0.1	8.6	75	16.2	0.1		0	18.5	61.7	19.8	0		
Total %	0	11.4	21.2	2.7	0	35.3	0	4.3	7.7	11.8	0	23.8	0	2.4	20.9	4.5	0	27.9	0	2.4	8	2.6	0	13	
Cars +	0	574	959	96	2	1631	0	214	331	577	0	1122	0	114	942	224	1	1281	0	84	355	125	0	564	4598
% Cars +	0	92.4	83	64.9	100	84.7	0	90.3	79.4	90	0	86.6	0	87	82.6	90.7	100	84.2	0	64.1	81.2	89.3	0	79.7	84.4
Trucks	0	47	196	52	0	295	0	23	86	64	0	173	1	17	199	23	0	240	0	47	82	15	0	144	852
% Trucks	0	7.6	17	35.1	0	15.3	0	9.7	20.6	10	0	13.4	100	13	17.4	9.3	0	15.8	0	35.9	18.8	10.7	0	20.3	15.6

PO Box 16296 St. Louis Park, MN 55416

> File Name : 4 - Hwy 61 & Shields Ave, 12-3-15, 6am-7pm Site Code : 4 Start Date : 12/3/2015 Page No : 3

PO Box 16296 St. Louis Park, MN 55416

> File Name : 4 - Hwy 61 & Shields Ave, 12-3-15, 6am-7pm Site Code : 4 Start Date : 12/3/2015 Page No : 4

Highway 61 Shields Ave Highway 61 Shields Ave Southbound Northbound Westbound Eastbound Start Time UTrn Left Thru Right Peds App. Total UTrn Left Peds App. Total UTrn Left Thru Right Peds UTrn Left Right Peds Thru Right App. Total Thru App. Total Int. Total Peak Hour Analysis From 06:00 AM to 09:45 AM - Peak 1 of 1 Peak Hour for Entire Intersection Begins at 07:15 AM 07:15 AM 07:30 AM 07:45 AM 08:00 AM **Total Volume** % App. Total 33.3 56.3 10.4 12.6 38.6 48.8 8.8 61.1 30.1 10.3 82.8 6.9 PHF .000 .803 .805 .792 .000 .915 .000 .500 .645 .816 .000 .000 .773 .000 .764 .000 .375 .667 .250 .000 .659 .934 Peak Hour Analysis From 10:00 AM to 01:45 PM - Peak 1 of 1 Peak Hour for Entire Intersection Begins at 11:45 AM 11:45 AM 12:00 PM 12:15 PM 12:30 PM Total Volume 24.3 63.8 11.8 11.2 48.6 40.2 16.5 66.9 16.5 17.9 % App. Total PHF .000 .771 .643 .000 .950 .000 .750 .000 .955 .000 .000 .000 .708 .875 .000 .836 .867 .896 .500 .810 .714 .864 .679 .946 .964 Peak Hour Analysis From 02:00 PM to 06:45 PM - Peak 1 of 1 Peak Hour for Entire Intersection Begins at 03:00 PM 03:00 PM 03:15 PM 03:30 PM 03:45 PM **Total Volume** % App. Total 42.1 51.8 5.7 0.4 22.6 25.3 52.1 9.5 75.9 14.6 19.8 58.1 22.1 .838 .000 .000 .730 .000 .714 .000 .778 .000 .672 .927 PHF .000 .649 .843 .813 .250 .688 .864 .650 .788 .000 .708 .658 .679 .487

Hwy 61 & Shields Ave Wabasha, MN

Intersection Safety Screening

Intersection: 5th Grant Ave and Barge Site Road

Crash Data, 2019-2021.

Crashes by Crash Severity	
Fatal	0
Incapacitating Injury	0
Non-incapacitating Injury	0
Possible Injury	0
Property Damage	0
Total Crashes	0

Intersection Characteristics									
400									
Thru / stop									
Suburban									
40 mph									

Annual crash cost = \$0

Statewide Comparison

Total Crash Rate										
Observed	0.00									
Statewide Average	0.19									
Critical Rate	3.01									
Critical Index	0.00									

Urban Thru / Stop

Fatal & Serious Injury Crash Rate										
Observed	0.00									
Statewide Average	0.36									
Critical Rate	126.07									
Critical Index	0.00									

The observed crash rate is the number of crashes per million entering vehicles (MEV). The critical rate is a statistical comparison based on similar intersections statewide. An observed crash rate greater than the critical rate indicates that the intersection operates outside the expected, normal range. The critical index reports the magnitude of this difference.

The observed total crash rate for this period is 0.00 per MEV; this is 100% below the critical rate. Based on similar statewide intersections, an additional 2 crashes over the three years would indicate this intersection operaters outside the normal range.

The observed fatal and serious injury crash rate for this period is 0.00 per 100 MEV; this is 100% below the critical rate. The intersection operates within the normal range.

Intersection Safety Screening

Intersection: Highway 61 and CR 10

Crash Data, 2019-2021.

Crashes by Crash Severity									
Fatal	0								
Incapacitating Injury	0								
Non-incapacitating Injury	0								
Possible Injury	0								
Property Damage	0								
Total Crashes	0								

Intersection Characteristics									
Entering Volume	5,239								
Traffic Control	Thru / stop								
Environment	Suburban								
Speed Limit	55 mph								

Annual crash cost = \$0

Statewide Comparison

Total Crash RateObserved0.00Statewide Average0.19Critical Rate0.74Critical Index0.00

Urban Thru / Stop

Fatal & Serious Injury Crash Rate										
Observed	0.00									
Statewide Average	0.36									
Critical Rate	12.27									
Critical Index	0.00									

The observed crash rate is the number of crashes per million entering vehicles (MEV). The critical rate is a statistical comparison based on similar intersections statewide. An observed crash rate greater than the critical rate indicates that the intersection operates outside the expected, normal range. The critical index reports the magnitude of this difference.

The observed total crash rate for this period is 0.00 per MEV; this is 100% below the critical rate. Based on similar statewide intersections, an additional 5 crashes over the three years would indicate this intersection operaters outside the normal range.

The observed fatal and serious injury crash rate for this period is 0.00 per 100 MEV; this is 100% below the critical rate. The intersection operates within the normal range.

Intersection Safety Screening

Intersection: Highway 61 and Shields Ave

Crash Data, 2019-2021.

Crashes by Crash Severity									
Fatal	0								
Incapacitating Injury	0								
Non-incapacitating Injury	1								
Possible Injury	1								
Property Damage	2								
Total Crashes	4								

Intersection Characteristics									
Entering Volume	8,200								
Traffic Control	Thru / stop								
Environment	Suburban								
Speed Limit	55 mph								

Annual crash cost = \$89,400

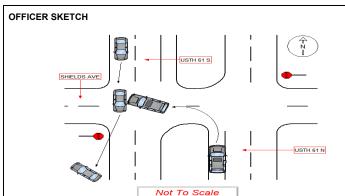
Statewide Comparison

Total Crash Rate										
Observed	0.45									
Statewide Average	0.19									
Critical Rate	0.61									
Critical Index	0.74									

Urban Thru / Stop

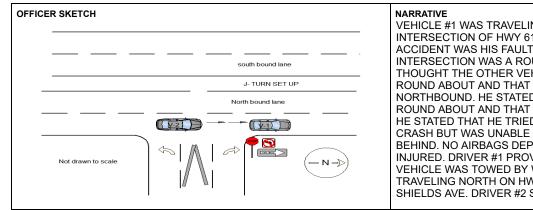
Fatal & Serious Injur	y Crash Rate
Observed	0.00
Statewide Average	0.36
Critical Rate	8.48
Critical Index	0.00

The observed crash rate is the number of crashes per million entering vehicles (MEV). The critical rate is a statistical comparison based on similar intersections statewide. An observed crash rate greater than the critical rate indicates that the intersection operates outside the expected, normal range. The critical index reports the magnitude of this difference.


The observed total crash rate for this period is 0.45 per MEV; this is 26% below the critical rate. Based on similar statewide intersections, an additional 2 crashes over the three years would indicate this intersection operaters outside the normal range.

The observed fatal and serious injury crash rate for this period is 0.00 per 100 MEV; this is 100% below the critical rate. The intersection operates within the normal range.

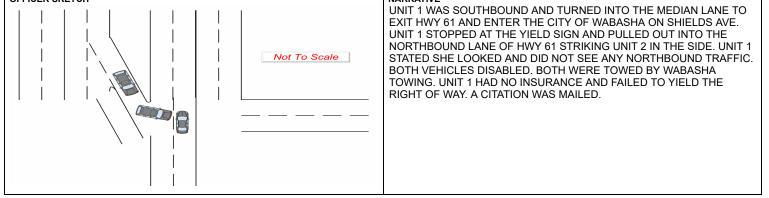
Crash Detail Report - Short Form TH 61 and Shields Ave


		ROUTE NA	AME		ROUTE ID	cc	DUNTY		CITY					
00735404	02-USTH	0061	59.8	06	USTH 61			020000000	0000061-D 79	-Wabasha		Wabasha		
INTERSECT WIT	Γ H	#	[‡] VEH	# KILL	DATE	TIME	DAY	LAT	LONG	UTM X UTM		WORK ZONE TYPE		
		2	2	0 07/2		19 14:34 Sun 44		44.376392	-92.047027	575919.7	491411	9.9 Lane Closure		
BASIC TYPE		CRASH SE	CRASH SEVERITY FIRST HARMFUL							LIGHT COND	ITION	WEATHER PRIMARY		
Left Turn B - Minor Injury				Motor	· Vehicle	In Tra	nsport		Clear					
		Unit	1			Unit 2		U	nit 3		Unit 4			
	Unit Type Motor Vehicle in Transport					otor Vehi	cle in ⁻	Transport						
	Vehicle Typ	 Sport Utili 	ty Veh	icle	Pa	ssenger	Car							
Dire	ction of Trave	I Northbour	nd		So	uthboun	d							
	Manueve	r Turning Le	eft		Mc	ving Fo	rward							
	Age/Sex 21 M					М								
Physical Cond Apparently Normal					Ар	parently	Norm	al						
Contributing Factor 1 Failure to Yield Right-of-Way					Way No	Clear C	ontrib	uting Action						

NARRATIVE

BAUER WAS THE DRIVER OF THE CHEVROLET TRAVELING NORTHBOUND USTH 61 ATTEMPTING TO MAKE A LEFT TURN ONTO SHIELDS AVE. GERSON WAS THE DRIVER OF THE TOYOTA TRAVELING SOUTHBOUND USTH 61. THE AREA IS AN ACTIVE CONSTRUCTION ZONE. BAUER STATED THERE WAS A VEHICLE IN THE SOUTHBOUND LEFT TURN LANE. BAUER DID NOT SEE GERSON TRAVELING SOUTHBOUND AND PERCEIVED SOUTHBOUND LANE TO BE CLEAR OF TRAFFIC AND STARTED TO MAKE A LEFT TURN. GERSON STEERED TO THE RIGHT IN ORDER TO AVOID A COLLISION. BAUER'S CHEVROLET COLLIDED WITH THE DRIVERS SIDE OF GERSON'S TOYOTA. GERSON'S TOYOTA RAN OF THE ROAD TO THE RIGHT SIDE AND ROLLED ONCE, COMING TO REST BACK ON ITS WHEELS. BAUER WAS NOT INJURED IN THE CRASH. WAS BELTED. NO AIRBAG DEPLOYMENT. GERSON SUSTAINED MINOR INJURIES AND WAS TRANSPORTED TO THE WABASHA HOSPITAL VIA GROUND AMBULANCE. ONCE AT THE

INCIDENT ID	ROUTE SYS	ROUTE NUM	MEA	SURE	ROUTE NAME			ROUTE ID	ROUTE ID CO				CITY	
00781833	02-USTH	0061	061 59.842 UST			1	02000000	0000061-I 79-Wabasha				Wabasha		
INTERSECT WI	TĤ		# VEH	# KILL	DATE	TIME	DAY	LAT	LONG		UTM X	UTM Y	WORK ZONE TYPE	
			2	0	01/20/20	16:16	Mon	44.377618	-92.04831	9	575815.3	491425	5.0 NOT APPLICABLE	
BASIC TYPE		CRASH S	EVERIT	(FIRST	RST HARMFUL			LIGHT CONDITION			ITION	WEATHER PRIMARY	
Rear End		C - Possi	ble Inju	iry	Moto	r Vehicle	e In Tra	nsport			Daylight		Clear	
					Unit 2									
			Unit	1				Unit 3				Unit 4		
	Unit Type	Motor Ve	hicle in	Transpo	ort M	otor Veh	Fransport							
	Vehicle Type	e Passeng	er Car		Pa	Passenger Car								
Dire	ection of Trave	Westbou	nd		W	Westbound								
	Manueve	r Turning F	Right		M	oving Fo	rward							
Age/Sex 25 M					59	F								
Physical Cond Apparently Normal				Ap	parently	al								
Contributing Factor 1 Other Contributing Action			n No	clear C	Contribu	uting Action								
	-			-				-						



NARRATIVE VEHICLE #1 WAS TRAVELING ON SHIELDS AVE COMING TO THE INTERSECTION OF HWY 61. DRIVER OF VEHICLE #1 STATED THAT THE ACCIDENT WAS HIS FAULT. HE STATED THAT HE BELIEVED THE INTERSECTION WAS A ROUND ABOUT. DRIVER #1 STATED HE THOUGHT THE OTHER VEHICLE WAS SLOWING DOWN SINCE IT WAS A ROUND ABOUT AND THAT HE PULLED OUT ON TO HIGHWAY 61 NORTHBOUND. HE STATED HE THEN REALIZED THAT IT WAS NOT A ROUND ABOUT AND THAT THE CAR BEHIND HIM WAS STILL COMING. HE STATED THAT HE TRIED TO ACCELERATE QUICKLY TO AVOID THE CRASH BUT WAS UNABLE TO DO SO AND WAS STRUCK FROM BEHIND. NO AIRBAGS DEPLOYED AND HE ADVISED THAT HE WAS NOT INJURED. DRIVER #1 PROVIDED INSURANCE INFORMATION AND HIS VEHICLE WAS TOWED BY WABASHA TOWING. VEHICLE #2 WAS TRAVELING NORTH ON HWY 61 COMING TO THE INTERSECTION AT SHIELDS AVE. DRIVER #2 STATED THAT SHE SAW THE VEHICLE PULL

Crash Detail Report - Short Form TH 61 and Shields Ave

	ROUTE SYS	ROUTE NUM	MEAS					ROUTE ID				CITY		
0841541	02-USTH	0061	59.8		USTH	-		020000000		79-Wabasha		Vabasha		
				# KILL	DATE		DAY	LAT	LONG		UTM Y	WORK ZONE TYPE		
SHIELDS AVE BASIC TYPE	-	CRASH SE		0	09/18/2	20 16:27 RST HARMFU	Fri	44.377721	-92.04847		4914266	.2 NOT APPLICABLE		
		N - Prop [otor Vehicle		nonort						
Rear End		IN - Prop L	Jamag	e Only	IVIC	DIOF VENICIE	in Tra	ansport		Daylight				
			Unit				Unit			Unit 3		Unit 4		
	Unit Type	Motor Vel	nicle in	Transpo	ort	Motor Vehi	cle in	Transport						
	Vehicle Type	e Pickup				Pickup								
Dire	ction of Trave	I Northbou	nd			Northbound	d							
	Manueve	r Entering	Traffic I	Lane		Moving For	rward							
	Age/Sex	k 20 M				68 M								
	Physical Cond		v Norm	nal		Apparently	Norm	al						
	•		•			••••••								
Contrit	outing Factor '	1 Failure to	rieid f	kignt-of-	way	Failure to 1		ld Right-of-Way						
Not To S			wy et south						TO A TRAF NORTHBO SCENE ANI EARING MI A BEARING MINOR DAM DERATE D/ RD MARX (1 D THAT HE O THAT HE O THAT THE O UND LANI HE WAS UN ONT OF HIS	FIC CRASH W JND HIGHWA D SAW TWO V NNESOTA PL MINNESOTA AGE TO THE AMAGE TO THE 1/06/1951), TH WAS TRAVEL CAUSE HE W CHEVY USE TO THE NOI IABLE TO STO	/ITH NO IN Y 61 AND 3 /EHICLES, ATE NUME PLATE NU REAR CEN IE FRONT IE FRONT IE DRIVEF ING NORT AS PREPA D THE J TU RTHBOUN DP IN TIME ADE CONT	RGEANT WAGONER JURIES AT THE J TUF SHIELDS AVENUE. I A WHITE CHEVY ER EVS554 AND A RE MBER BUZ657. THE VTER OF IT AND THE RIGHT. I SPOKE WITH OF THE GMC. MR. HBOUND ON HIGHWA RING TO TURN. MR. JRN TO TURN FROM D, PULLED IN FRONT MR. MARX STATED ACT WITH THE REAR		
0809789	04-CSAH	0030	MEAS 5.567			E NAME .DS AVE		ROUTE ID 0400006595		79-Wabasha		CITY Wabasha		
NTERSECT WIT				# KILL	DATE	TIME	DAY	LAT	LONG			WORK ZONE TYPE		
			2	0	05/10/2	20 15:35	Sun	44.377701	-92.04843		.1 NOT APPLICABLE			
BASIC TYPE		CRASH SE				RST HARMFU		LIGHT CONDITION WEATH						
ngle		N - Prop [Damag	e Only	Mo	otor Vehicle	In Tra	ansport		Daylight		Cloudy		
	Linit Turn	e Motor Vel	Unit		ort	Motor Vehi	Unit :			Unit 3		Unit 4		
	Unit Type			•				папэроп						
	Vehicle Type	-	•	icie		Passenger								
Direction of Travel Eastbound					Northboun									
						Moving For	rward							
3						21 F								
Physical Cond Apparently Normal						Apparently	Norm	al						
Contributing Factor 1 Failure to Yield Right-of-Way								uting Action						
Contrik		1									1			
Contrik							1	ARRATIVE						

Crash Detail Report - Short Form TH 61 and Shields Ave

Selection Filter:

WORK AREA: County('659523')	- FILTER: Year('2019','2020','2021') - SPATIAL FILTER APPLIED
Analyst:	Notes:
Kelsey Retherford	

2: TH 61 & CR 10/5th Grant Blvd

Lane Group	EBT	WBT	NBL	NBT	NBR	SBL	SBT	SBR	All
Future Volume (vph)	19	17	10	142	2	25	161	1	377
Control Delay / Veh (s/v)	10	10	8	0	0	8	0	0	2
Queue Delay / Veh (s/v)	0	0	0	0	0	0	0	0	0
Total Delay / Veh (s/v)	10	10	8	0	0	8	0	0	2
Total Delay (hr)	0	0	0	0	0	0	0	0	0
Stops / Veh	1.00	1.00	1.60	0.00	0.00	1.52	0.00	0.00	0.24
Stops (#)	19	17	16	0	0	38	0	0	90
Average Speed (mph)	24	31	43	55	55	42	55	55	49
Total Travel Time (hr)	0	0	0	1	0	0	1	0	3
Distance Traveled (mi)	3	12	4	60	1	10	64	0	155
Fuel Consumed (gal)	0	1	0	2	0	1	2	0	7
Fuel Economy (mpg)	NA	NA	NA	29.9	NA	9.2	29.9	NA	23.1
CO Emissions (kg)	0.02	0.04	0.03	0.14	0.00	0.08	0.15	0.00	0.47
NOx Emissions (kg)	0.00	0.01	0.01	0.03	0.00	0.01	0.03	0.00	0.09
VOC Emissions (kg)	0.01	0.01	0.01	0.03	0.00	0.02	0.03	0.00	0.11
Unserved Vehicles (#)	0	0	0	0	0	0	0	0	0
Vehs dilemma zone (#)	0	0	0	0	0	0	0	0	0

4: Shields Ave & TH 61

Lane Group	EBR	WBR	NBL	NBT	NBR	SBL	SBT	SBR	All	
Future Volume (vph)	31	140	11	84	63	67	109	75	580	
Control Delay / Veh (s/v)	9	10	8	0	0	8	0	0	4	
Queue Delay / Veh (s/v)	0	0	0	0	0	0	0	0	0	
Total Delay / Veh (s/v)	9	10	8	0	0	8	0	0	4	
Total Delay (hr)	0	0	0	0	0	0	0	0	1	
Stops / Veh	1.00	1.00	1.55	0.00	0.00	1.58	0.00	0.00	0.51	
Stops (#)	31	140	17	0	0	106	0	0	294	
Average Speed (mph)	18	28	32	55	55	31	55	55	37	
Total Travel Time (hr)	0	1	0	0	0	0	0	0	3	
Distance Traveled (mi)	4	33	2	14	11	10	17	12	103	
Fuel Consumed (gal)	0	3	0	0	0	2	1	0	8	
Fuel Economy (mpg)	NA	11.7	NA	NA	NA	4.3	NA	NA	13.1	
CO Emissions (kg)	0.03	0.20	0.03	0.03	0.03	0.17	0.04	0.03	0.55	
NOx Emissions (kg)	0.01	0.04	0.01	0.01	0.00	0.03	0.01	0.01	0.11	
VOC Emissions (kg)	0.01	0.05	0.01	0.01	0.01	0.04	0.01	0.01	0.13	
Unserved Vehicles (#)	0	0	0	0	0	0	0	0	0	
Vehs dilemma zone (#)	0	0	0	0	0	0	0	0	0	

10:

Lane Group	EBT	WBT	All
Future Volume (vph)	30	17	47
Control Delay / Veh (s/v)	0	0	0
Queue Delay / Veh (s/v)	0	0	0
Total Delay / Veh (s/v)	0	0	0
Total Delay (hr)	0	0	0
Stops / Veh	0.00	0.00	0.00
Stops (#)	0	0	0
Average Speed (mph)	33	40	34
Total Travel Time (hr)	1	0	1
Distance Traveled (mi)	21	5	26
Fuel Consumed (gal)	1	0	1
Fuel Economy (mpg)	NA	NA	25.9
CO Emissions (kg)	0.06	0.01	0.07
NOx Emissions (kg)	0.01	0.00	0.01
VOC Emissions (kg)	0.01	0.00	0.02
Unserved Vehicles (#)	0	0	0
Vehs dilemma zone (#)	0	0	0

22: TH 61

Lane Group	NBU	NBT	SBU	SBT	All
Future Volume (vph)	72	152	10	179	413
Control Delay / Veh (s/v)	0	0	0	0	0
Queue Delay / Veh (s/v)	0	0	0	0	0
Total Delay / Veh (s/v)	0	0	0	0	0
Total Delay (hr)	0	0	0	0	0
Stops / Veh	0.00	0.00	0.00	0.00	0.00
Stops (#)	0	0	0	0	0
Average Speed (mph)	55	55	55	55	55
Total Travel Time (hr)	0	0	0	0	1
Distance Traveled (mi)	11	24	1	24	61
Fuel Consumed (gal)	0	1	0	1	2
Fuel Economy (mpg)	NA	NA	NA	NA	29.9
CO Emissions (kg)	0.03	0.06	0.00	0.06	0.14
NOx Emissions (kg)	0.01	0.01	0.00	0.01	0.03
VOC Emissions (kg)	0.01	0.01	0.00	0.01	0.03
Unserved Vehicles (#)	0	0	0	0	0
Vehs dilemma zone (#)	0	0	0	0	0

23: TH 61

Lane Group	NBT	SBU	SBT	All
Future Volume (vph)	129	29	111	269
Control Delay / Veh (s/v)	0	0	0	0
Queue Delay / Veh (s/v)	0	0	0	0
Total Delay / Veh (s/v)	0	0	0	0
Total Delay (hr)	0	0	0	0
Stops / Veh	0.00	0.00	0.00	0.00
Stops (#)	0	0	0	0
Average Speed (mph)	55	55	55	55
Total Travel Time (hr)	1	0	0	1
Distance Traveled (mi)	36	5	19	59
Fuel Consumed (gal)	1	0	1	2
Fuel Economy (mpg)	29.9	NA	NA	29.9
CO Emissions (kg)	0.08	0.01	0.04	0.14
NOx Emissions (kg)	0.02	0.00	0.01	0.03
VOC Emissions (kg)	0.02	0.00	0.01	0.03
Unserved Vehicles (#)	0	0	0	0
Vehs dilemma zone (#)	0	0	0	0

2

Intersection

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		۲.	^	1	۲.	††	1
Traffic Vol, veh/h	3	3	13	2	1	14	10	142	2	25	161	1
Future Vol, veh/h	3	3	13	2	1	14	10	142	2	25	161	1
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	280	-	265	300	-	250
Veh in Median Storage	, # -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	75	75	65	50	25	58	62	84	50	69	79	25
Heavy Vehicles, %	0	3	7	15	0	7	10	12	0	6	12	0
Mvmt Flow	4	4	20	4	4	24	16	169	4	36	204	4

Major/Minor	Minor2		Ν	/linor1		ľ	Major1		Ν	1ajor2			
Conflicting Flow All	395	481	102	377	481	85	208	0	0	173	0	0	
Stage 1	276	276	-	201	201	-	-	-	-	-	-	-	
Stage 2	119	205	-	176	280	-	-	-	-	-	-	-	
Critical Hdwy	7.5	6.56	7.04	7.8	6.5	7.04	4.3	-	-	4.22	-	-	
Critical Hdwy Stg 1	6.5	5.56	-	6.8	5.5	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	6.5	5.56	-	6.8	5.5	-	-	-	-	-	-	-	
Follow-up Hdwy	3.5	4.03	3.37	3.65	4	3.37	2.3	-	-	2.26	-	-	
Pot Cap-1 Maneuver	544	481	918	524	487	941	1304	-	-	1372	-	-	
Stage 1	712	678	-	746	739	-	-	-	-	-	-	-	
Stage 2	879	728	-	772	683	-	-	-	-	-	-	-	
Platoon blocked, %								-	-		-	-	
Mov Cap-1 Maneuver	511	463	918	494	468	941	1304	-	-	1372	-	-	
Mov Cap-2 Maneuver	511	463	-	494	468	-	-	-	-	-	-	-	
Stage 1	703	660	-	737	730	-	-	-	-	-	-	-	
Stage 2	841	719	-	731	665	-	-	-	-	-	-	-	

Approach	EB	WB	NB	SB	
HCM Control Delay, s	10.1	9.9	0.7	1.1	
HCM LOS	В	А			

Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1\	NBLn1	SBL	SBT	SBR
Capacity (veh/h)	1304	-	-	732	760	1372	-	-
HCM Lane V/C Ratio	0.012	-	-	0.038	0.042	0.026	-	-
HCM Control Delay (s)	7.8	-	-	10.1	9.9	7.7	-	-
HCM Lane LOS	А	-	-	В	А	А	-	-
HCM 95th %tile Q(veh)	0	-	-	0.1	0.1	0.1	-	-

4.4

Intersection

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
				VVDL									
Lane Configurations			n –			n –	1	ТТ	ſ	1	ТТ		
Traffic Vol, veh/h	0	0	31	0	0	140	11	84	63	67	109	75	
Future Vol, veh/h	0	0	31	0	0	140	11	84	63	67	109	75	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None	
Storage Length	-	-	0	-	-	0	265	-	250	250	-	250	
Veh in Median Storage,	, # -	0	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	38	67	25	50	65	82	50	72	77	80	81	79	
Heavy Vehicles, %	36	19	11	10	21	10	13	17	9	7	17	35	
Mvmt Flow	0	0	124	0	0	171	22	117	82	84	135	95	

Major/Minor	Minor2		Ν	linor1		1	Major1		Ν	lajor2			
Conflicting Flow All	-	-	68	-	-	59	230	0	0	199	0	0	
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-	
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-	
Critical Hdwy	-	-	7.12	-	-	7.1	4.36	-	-	4.24	-	-	
Critical Hdwy Stg 1	-	-	-	-	-	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	-	-	-	-	-	-	
Follow-up Hdwy	-	-	3.41	-	-	3.4	2.33	-	-	2.27	-	-	
Pot Cap-1 Maneuver	0	0	953	0	0	969	1259	-	-	1335	-	-	
Stage 1	0	0	-	0	0	-	-	-	-	-	-	-	
Stage 2	0	0	-	0	0	-	-	-	-	-	-	-	
Platoon blocked, %								-	-		-	-	
Mov Cap-1 Maneuver	r -	-	953	-	-	969	1259	-	-	1335	-	-	
Mov Cap-2 Maneuver	r –	-	-	-	-	-	-	-	-	-	-	-	
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-	
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-	
										~-			_

Approach	EB	WB	NB	SB	
HCM Control Delay, s	9.3	9.5	0.8	2.1	
HCM LOS	А	А			

Minor Lane/Major Mvmt	NBL	NBT	NBR E	BLn1V	VBLn1	SBL	SBT	SBR
Capacity (veh/h)	1259	-	-	953	969	1335	-	-
HCM Lane V/C Ratio	0.017	-	-	0.13	0.176	0.063	-	-
HCM Control Delay (s)	7.9	-	-	9.3	9.5	7.9	-	-
HCM Lane LOS	А	-	-	Α	А	Α	-	-
HCM 95th %tile Q(veh)	0.1	-	-	0.4	0.6	0.2	-	-

Intersection						
Int Delay, s/veh	0					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		ŧ	et		Y	
Traffic Vol, veh/h	0	30	17	0	0	0
Future Vol, veh/h	0	30	17	0	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage	, # -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	92	75	71	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	40	24	0	0	0

Major/Minor	Major1	Ν	/lajor2	1	Minor2	
Conflicting Flow All	24	0	-	0	64	24
Stage 1	-	-	-	-	24	-
Stage 2	-	-	-	-	40	-
Critical Hdwy	4.12	-	-	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	2.218	-	-	-	3.518	
Pot Cap-1 Maneuver	1591	-	-	-	942	1052
Stage 1	-	-	-	-	999	-
Stage 2	-	-	-	-	982	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	1591	-	-	-	942	1052
Mov Cap-2 Maneuver	-	-	-	-	942	-
Stage 1	-	-	-	-	999	-
Stage 2	-	-	-	-	982	-
Approach	EB		WB		SB	
HCM Control Delay, s	0		0		0	
HCM LOS					А	
Minor Lane/Major Mvn	nt	EBL	EBT	WBT	WBR	SBLn1
Capacity (veh/h)		1591	-	-	-	-
HCM Lane V/C Ratio		-	-	-	-	-
HCM Control Delay (s))	0	-	-	-	0
HCM Lane LOS		А	-	-	-	А
HCM 95th %tile Q(veh)	0	-	-	-	-

1.7

Intersection

••													<u></u>		
Movement	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR	NEL	NET	NER	SWL	SWT	SWR	
Lane Configurations	a.		- 11		a d		- 11				1			1	
Traffic Vol, veh/h	72	0	152	0	10	0	179	0	0	0	0	0	0	0	
Future Vol, veh/h	72	0	152	0	10	0	179	0	0	0	0	0	0	0	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Free	Stop	Stop	Stop	Stop	Stop	Stop								
RT Channelized	-	-	-	None	-	-	-	None	-	-	None	-	-	None	
Storage Length	-	0	-	-	-	0	-	-	-	-	0	-	-	0	
Veh in Median Storage,	# -	-	0	-	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	-	0	-	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92	92	92	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	78	0	165	0	11	0	195	0	0	0	0	0	0	0	

Major/Minor	Major1			Μ	lajor2			Mir	nor2		Μ	linor1			
Conflicting Flow All	195	-	0	-	165	-	-	0	-	-	98	-	-	83	
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Critical Hdwy	6.44	-	-	-	6.44	-	-	-	-	-	6.94	-	-	6.94	
Critical Hdwy Stg 1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Follow-up Hdwy	2.52	-	-	-	2.52	-	-	-	-	-	3.32	-	-	3.32	
Pot Cap-1 Maneuver	1078	0	-	0	1126	0	-	0	0	0	939	0	0	960	
Stage 1	-	0	-	0	-	0	-	0	0	0	-	0	0	-	
Stage 2	-	0	-	0	-	0	-	0	0	0	-	0	0	-	
Platoon blocked, %			-				-								
Mov Cap-1 Maneuver	1078	-	-	-	1126	-	-	-	-	-	939	-	-	960	
Mov Cap-2 Maneuver	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	

Approach	NB	SB	NE	SW	
HCM Control Delay, s	2.8	0.4	0	0	
HCM LOS			А	А	

Minor Lane/Major Mvmt	NELn1	NBU	NBT	SBU	SBTSW	VLn1
Capacity (veh/h)	-	1078	-	1126	-	-
HCM Lane V/C Ratio	-	0.073	-	0.01	-	-
HCM Control Delay (s)	0	8.6	-	8.2	-	0
HCM Lane LOS	A	А	-	А	-	А
HCM 95th %tile Q(veh)	-	0.2	-	0	-	-

Intersection							
Int Delay, s/veh	0.9						
Movement	NBT	NBR	SBU	SBL	SBT	SWL	SWR
Lane Configurations	- † †		đ		- 11		1
Traffic Vol, veh/h	129	0	29	0	111	0	0
Future Vol, veh/h	129	0	29	0	111	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	-	None	-	None
Storage Length	-	-	-	0	-	-	0
Veh in Median Storage	e, # 0	-	-	-	0	0	-
Grade, %	0	-	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2	2
Mvmt Flow	140	0	32	0	121	0	0

Major/Minor	Major1		Major2		Ν	1inor1	
Conflicting Flow All	0	-	140	-	-	-	70
Stage 1	-	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-	-
Critical Hdwy	-	-	6.44	-	-	-	6.94
Critical Hdwy Stg 1	-	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-	-
Follow-up Hdwy	-	-	2.52	-	-	-	3.32
Pot Cap-1 Maneuver	-	0	1167	0	-	0	978
Stage 1	-	0	-	0	-	0	-
Stage 2	-	0	-	0	-	0	-
Platoon blocked, %	-				-		
Mov Cap-1 Maneuver		-	1167	-	-	-	978
Mov Cap-2 Maneuver		-	-	-	-	-	-
Stage 1	-	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-	-
Approach	NB		SB			SW	
HCM Control Delay, s	s 0		1.7			0	
HCM LOS						А	
Minor Long/Major My		NDT	CDU	ODTO///	n 1		
Minor Lane/Major Mv	mt	NBT	SBU	SBTSWI			
Capacity (veh/h)		-	1167	-	-		
HCM Lane V/C Ratio		-	0.027	-	-		
HCM Control Delay (s	5)	-	8.2	-	0		
HCM Lane LOS		-	A	-	А		
HCM 95th %tile Q(ve	h)	-	0.1	-	-		

2: TH 61 & CR 10/5th Grant Blvd

Lane Group	EBT	WBT	NBL	NBT	NBR	SBL	SBT	SBR	All
Future Volume (vph)	19	27	10	142	12	25	161	1	397
Control Delay / Veh (s/v)	10	11	8	0	0	8	0	0	2
Queue Delay / Veh (s/v)	0	0	0	0	0	0	0	0	0
Total Delay / Veh (s/v)	10	11	8	0	0	8	0	0	2
Total Delay (hr)	0	0	0	0	0	0	0	0	0
Stops / Veh	1.00	1.00	1.60	0.00	0.00	1.56	0.00	0.00	0.25
Stops (#)	19	27	16	0	0	39	0	0	101
Average Speed (mph)	24	31	43	55	55	42	55	55	48
Total Travel Time (hr)	0	1	0	1	0	0	1	0	3
Distance Traveled (mi)	3	19	4	60	5	10	64	0	166
Fuel Consumed (gal)	0	1	0	2	0	1	2	0	7
Fuel Economy (mpg)	NA	19.3	NA	29.9	NA	9.1	29.9	NA	23.0
CO Emissions (kg)	0.02	0.07	0.03	0.14	0.01	0.08	0.15	0.00	0.50
NOx Emissions (kg)	0.00	0.01	0.01	0.03	0.00	0.01	0.03	0.00	0.10
VOC Emissions (kg)	0.01	0.02	0.01	0.03	0.00	0.02	0.03	0.00	0.12
Unserved Vehicles (#)	0	0	0	0	0	0	0	0	0
Vehs dilemma zone (#)	0	0	0	0	0	0	0	0	0

4: Shields Ave & TH 61

Lane Group	EBR	WBR	NBL	NBT	NBR	SBL	SBT	SBR	All	
Future Volume (vph)	41	140	11	94	63	67	109	85	610	
Control Delay / Veh (s/v)	10	10	8	0	0	8	0	0	4	
Queue Delay / Veh (s/v)	0	0	0	0	0	0	0	0	0	
Total Delay / Veh (s/v)	10	10	8	0	0	8	0	0	4	
Total Delay (hr)	0	0	0	0	0	0	0	0	1	
Stops / Veh	1.00	1.00	1.55	0.00	0.00	1.58	0.00	0.00	0.50	
Stops (#)	41	140	17	0	0	106	0	0	304	
Average Speed (mph)	18	28	32	55	55	31	55	55	37	
Total Travel Time (hr)	0	1	0	0	0	0	0	0	3	
Distance Traveled (mi)	5	33	2	16	11	10	17	13	107	
Fuel Consumed (gal)	1	3	0	1	0	2	1	0	8	
Fuel Economy (mpg)	NA	11.7	NA	NA	NA	4.3	NA	NA	13.3	
CO Emissions (kg)	0.04	0.20	0.03	0.04	0.03	0.17	0.04	0.03	0.56	
NOx Emissions (kg)	0.01	0.04	0.01	0.01	0.00	0.03	0.01	0.01	0.11	
VOC Emissions (kg)	0.01	0.05	0.01	0.01	0.01	0.04	0.01	0.01	0.13	
Unserved Vehicles (#)	0	0	0	0	0	0	0	0	0	
Vehs dilemma zone (#)	0	0	0	0	0	0	0	0	0	

1	Ω	•
- 1	υ	

Lane Group	EBT	WBT	SBL	All
Future Volume (vph)	40	17	10	67
Control Delay / Veh (s/v)	1	0	8	2
Queue Delay / Veh (s/v)	0	0	0	0
Total Delay / Veh (s/v)	1	0	8	2
Total Delay (hr)	0	0	0	0
Stops / Veh	0.30	0.00	1.00	0.33
Stops (#)	12	0	10	22
Average Speed (mph)	33	40	14	33
Total Travel Time (hr)	1	0	0	1
Distance Traveled (mi)	29	5	1	34
Fuel Consumed (gal)	1	0	0	1
Fuel Economy (mpg)	23.5	NA	NA	22.9
CO Emissions (kg)	0.08	0.01	0.01	0.10
NOx Emissions (kg)	0.02	0.00	0.00	0.02
VOC Emissions (kg)	0.02	0.00	0.00	0.02
Unserved Vehicles (#)	0	0	0	0
Vehs dilemma zone (#)	0	0	0	0

22: TH 61

Lane Group	NBU	NBT	SBU	SBT	All
Future Volume (vph)	72	162	10	189	433
Control Delay / Veh (s/v)	0	0	0	0	0
Queue Delay / Veh (s/v)	0	0	0	0	0
Total Delay / Veh (s/v)	0	0	0	0	0
Total Delay (hr)	0	0	0	0	0
Stops / Veh	0.00	0.00	0.00	0.00	0.00
Stops (#)	0	0	0	0	0
Average Speed (mph)	55	55	55	55	55
Total Travel Time (hr)	0	0	0	0	1
Distance Traveled (mi)	11	25	1	26	63
Fuel Consumed (gal)	0	1	0	1	2
Fuel Economy (mpg)	NA	NA	NA	NA	29.9
CO Emissions (kg)	0.03	0.06	0.00	0.06	0.15
NOx Emissions (kg)	0.01	0.01	0.00	0.01	0.03
VOC Emissions (kg)	0.01	0.01	0.00	0.01	0.03
Unserved Vehicles (#)	0	0	0	0	0
Vehs dilemma zone (#)	0	0	0	0	0

23: TH 61

Lane Group	NBT	SBU	SBT	All
Future Volume (vph)	129	39	111	279
Control Delay / Veh (s/v)	0	0	0	0
Queue Delay / Veh (s/v)	0	0	0	0
Total Delay / Veh (s/v)	0	0	0	0
Total Delay (hr)	0	0	0	0
Stops / Veh	0.00	0.00	0.00	0.00
Stops (#)	0	0	0	0
Average Speed (mph)	55	55	55	55
Total Travel Time (hr)	1	0	0	1
Distance Traveled (mi)	36	7	19	61
Fuel Consumed (gal)	1	0	1	2
Fuel Economy (mpg)	29.9	NA	NA	29.9
CO Emissions (kg)	0.08	0.02	0.04	0.14
NOx Emissions (kg)	0.02	0.00	0.01	0.03
VOC Emissions (kg)	0.02	0.00	0.01	0.03
Unserved Vehicles (#)	0	0	0	0
Vehs dilemma zone (#)	0	0	0	0

2.4

Intersection

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		۲.	<u>Λ</u>	1	۲	^	1
Traffic Vol, veh/h	3	3	13	12	1	14	10	142	12	25	161	1
Future Vol, veh/h	3	3	13	12	1	14	10	142	12	25	161	1
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	280	-	265	300	-	250
Veh in Median Storage	, # -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	75	75	65	50	25	58	62	84	50	69	79	25
Heavy Vehicles, %	0	3	7	15	0	7	10	12	83	6	12	0
Mvmt Flow	4	4	20	24	4	24	16	169	24	36	204	4

Major/Minor	Minor2		Ν	/linor1		ľ	Major1		Ν	lajor2			
Conflicting Flow All	395	501	102	377	481	85	208	0	0	193	0	0	
Stage 1	276	276	-	201	201	-	-	-	-	-	-	-	
Stage 2	119	225	-	176	280	-	-	-	-	-	-	-	
Critical Hdwy	7.5	6.56	7.04	7.8	6.5	7.04	4.3	-	-	4.22	-	-	
Critical Hdwy Stg 1	6.5	5.56	-	6.8	5.5	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	6.5	5.56	-	6.8	5.5	-	-	-	-	-	-	-	
Follow-up Hdwy	3.5	4.03	3.37	3.65	4	3.37	2.3	-	-	2.26	-	-	
Pot Cap-1 Maneuver	544	468	918	524	487	941	1304	-	-	1349	-	-	
Stage 1	712	678	-	746	739	-	-	-	-	-	-	-	
Stage 2	879	714	-	772	683	-	-	-	-	-	-	-	
Platoon blocked, %								-	-		-	-	
Mov Cap-1 Maneuver	511	450	918	494	468	941	1304	-	-	1349	-	-	
Mov Cap-2 Maneuver	511	450	-	494	468	-	-	-	-	-	-	-	
Stage 1	703	660	-	737	730	-	-	-	-	-	-	-	
Stage 2	841	705	-	731	665	-	-	-	-	-	-	-	

Approach	EB	WB	NB	SB	
HCM Control Delay, s	10.2	11.2	0.6	1.1	
HCM LOS	В	В			

Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1V	WBLn1	SBL	SBT	SBR
Capacity (veh/h)	1304	-	-	727	630	1349	-	-
HCM Lane V/C Ratio	0.012	-	-	0.039	0.083	0.027	-	-
HCM Control Delay (s)	7.8	-	-	10.2	11.2	7.7	-	-
HCM Lane LOS	А	-	-	В	В	Α	-	-
HCM 95th %tile Q(veh)	0	-	-	0.1	0.3	0.1	-	-

4.6

Intersection

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
				VVDL									
Lane Configurations			<u>ر</u>			r	<u> </u>	TT.	<u>۲</u>	<u></u>		r	
Traffic Vol, veh/h	0	0	41	0	0	140	11	94	63	67	109	85	
Future Vol, veh/h	0	0	41	0	0	140	11	94	63	67	109	85	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None	
Storage Length	-	-	0	-	-	0	265	-	250	250	-	250	
Veh in Median Storage	, # -	0	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	38	67	25	50	65	82	50	72	77	80	81	79	
Heavy Vehicles, %	36	19	33	10	21	10	13	26	9	7	17	35	
Mvmt Flow	0	0	164	0	0	171	22	131	82	84	135	108	

Major/Minor	Minor2		Ν	linor1		ľ	Major1		Ν	1ajor2			
Conflicting Flow All	-	-	68	-	-	66	243	0	0	213	0	0	
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-	
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-	
Critical Hdwy	-	-	7.56	-	-	7.1	4.36	-	-	4.24	-	-	
Critical Hdwy Stg 1	-	-	-	-	-	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	-	-	-	-	-	-	
Follow-up Hdwy	-	-	3.63	-	-	3.4	2.33	-	-	2.27	-	-	
Pot Cap-1 Maneuver	0	0	890	0	0	959	1244	-	-	1319	-	-	
Stage 1	0	0	-	0	0	-	-	-	-	-	-	-	
Stage 2	0	0	-	0	0	-	-	-	-	-	-	-	
Platoon blocked, %								-	-		-	-	
Mov Cap-1 Maneuver	· -	-	890	-	-	959	1244	-	-	1319	-	-	
Mov Cap-2 Maneuver	• -	-	-	-	-	-	-	-	-	-	-	-	
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-	
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-	
				14/5						~ ~ ~			_

Approach	EB	WB	NB	SB	
HCM Control Delay, s	10	9.6	0.7	2	
HCM LOS	В	А			

Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1V	WBLn1	SBL	SBT	SBR
Capacity (veh/h)	1244	-	-	890	959	1319	-	-
HCM Lane V/C Ratio	0.018	-	-	0.184	0.178	0.063	-	-
HCM Control Delay (s)	7.9	-	-	10	9.6	7.9	-	-
HCM Lane LOS	А	-	-	В	А	А	-	-
HCM 95th %tile Q(veh)	0.1	-	-	0.7	0.6	0.2	-	-

Intersection						
	0.4					
Int Delay, s/veh	2.1					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		÷	et -		Y	
Traffic Vol, veh/h	10	30	17	0	0	10
Future Vol, veh/h	10	30	17	0	0	10
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage,	, # -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	92	75	71	92	92	92
Heavy Vehicles, %	95	2	2	2	2	2
Mvmt Flow	11	40	24	0	0	11
Major/Minor	Inior1	Ν	Jaiar?	Λ	linor?	

Major/Minor	Major1	Ν	/lajor2		Minor2	
Conflicting Flow All	24	0	-	0	86	24
Stage 1	-	-	-	-	24	-
Stage 2	-	-	-	-	62	-
Critical Hdwy	5.05	-	-	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	3.055	-	-	-	3.518	3.318
Pot Cap-1 Maneuver	1151	-	-	-	915	1052
Stage 1	-	-	-	-	999	-
Stage 2	-	-	-	-	961	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	1151	-	-	-	906	1052
Mov Cap-2 Maneuver	• -	-	-	-	906	-
Stage 1	-	-	-	-	989	-
Stage 2	-	-	-	-	961	-
Approach	EB		WB		SB	
			0		8.5	
HCM Control Delay, s HCM LOS	5 I. <i>I</i>		U		6.5 A	
					A	
Minor Lane/Major Mvr	mt	EBL	EBT	WBT	WBR	SBLn1
Capacity (veh/h)		1151	-	-	-	1052
HCM Lane V/C Ratio		0.009	-	-	-	0.01
HCM Control Delay (s	3)	8.2	0	-	-	8.5
HCM Lane LOS		А	А	-	-	А
HCM 95th %tile Q(veh	h)	0	-	-	-	0

Int	ore	ect	nn
	1013	COL	

,															
Movement	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR	NEL	NET	NER	SWL	SWT	SWR	
Lane Configurations	đ		- 11		đ		- 11				1			1	
Traffic Vol, veh/h	72	0	162	0	10	0	189	0	0	0	0	0	0	0	
Future Vol, veh/h	72	0	162	0	10	0	189	0	0	0	0	0	0	0	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Free	Stop	Stop	Stop	Stop	Stop	Stop								
RT Channelized	-	-	-	None	-	-	-	None	-	-	None	-	-	None	
Storage Length	-	0	-	-	-	0	-	-	-	-	0	-	-	0	
Veh in Median Storage,	# -	-	0	-	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	-	0	-	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92	92	92	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	78	0	176	0	11	0	205	0	0	0	0	0	0	0	
Mvmt Flow	78	0	176	0	11	0	205	0	0	0	0	0	0	0	

Major/Minor	Major1			Ν	lajor2			Mir	nor2		Μ	linor1			
Conflicting Flow All	205	-	0	-	176	-	-	0	-	-	103	-	-	88	
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Critical Hdwy	6.44	-	-	-	6.44	-	-	-	-	-	6.94	-	-	6.94	
Critical Hdwy Stg 1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Follow-up Hdwy	2.52	-	-	-	2.52	-	-	-	-	-	3.32	-	-	3.32	
Pot Cap-1 Maneuver	1063	0	-	0	1108	0	-	0	0	0	932	0	0	953	
Stage 1	-	0	-	0	-	0	-	0	0	0	-	0	0	-	
Stage 2	-	0	-	0	-	0	-	0	0	0	-	0	0	-	
Platoon blocked, %			-				-								
Mov Cap-1 Maneuver	1063	-	-	-	1108	-	-	-	-	-	932	-	-	953	
Mov Cap-2 Maneuver	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	

Approach	NB	SB	NE	SW	
HCM Control Delay, s	2.7	0.4	0	0	
HCM LOS			А	А	

Minor Lane/Major Mvmt	NELn1	NBU	NBT	SBU	SBTSV	VLn1
Capacity (veh/h)	-	1063	-	1108	-	-
HCM Lane V/C Ratio	-	0.074	-	0.01	-	-
HCM Control Delay (s)	0	8.7	-	8.3	-	0
HCM Lane LOS	A	А	-	А	-	А
HCM 95th %tile Q(veh)	-	0.2	-	0	-	-

Intersection							
Int Delay, s/veh	1.1						
Movement	NBT	NBR	SBU	SBL	SBT	SWL	SWR
Lane Configurations	- 11		A		- 11		1
Traffic Vol, veh/h	129	0	39	0	111	0	0
Future Vol, veh/h	129	0	39	0	111	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	-	None	-	None
Storage Length	-	-	-	0	-	-	0
Veh in Median Storage	e, # 0	-	-	-	0	0	-
Grade, %	0	-	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2	2
Mvmt Flow	140	0	42	0	121	0	0

Major/Minor	Major1		Major2		Ν	1inor1	
Conflicting Flow All	0	-	140	-	-	-	70
Stage 1	-	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-	-
Critical Hdwy	-	-	6.44	-	-	-	6.94
Critical Hdwy Stg 1	-	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-	-
Follow-up Hdwy	-	-	2.52	-	-	-	3.32
Pot Cap-1 Maneuver	-	0	1167	0	-	0	978
Stage 1	-	0	-	0	-	0	-
Stage 2	-	0	-	0	-	0	-
Platoon blocked, %	-				-		
Mov Cap-1 Maneuver		-	1167	-	-	-	978
Mov Cap-2 Maneuver	· -	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-	-
Approach	NB		SB			SW	
HCM Control Delay, s	; 0		2.1			0	
HCM LOS	-					A	
Minor Lane/Major Mvr	nt	NBT	SBU	SBTSWI	n1		
Capacity (veh/h)		-	1167	-			
HCM Lane V/C Ratio			0.036	-	-		
HCM Control Delay (s	:)	_	8.2	-	0		
HCM Lane LOS	,	_	A	_	A		
HCM 95th %tile Q(vel	n)	_	0.1	-	-		
	''		0.1				

2: TH 61 & CR 10/5th Grant Blvd

Lane Group	EBT	WBT	NBL	NBT	NBR	SBL	SBT	SBR	All
Future Volume (vph)	28	29	23	232	1	12	245	1	571
Control Delay / Veh (s/v)	11	12	8	0	0	8	0	0	2
Queue Delay / Veh (s/v)	0	0	0	0	0	0	0	0	0
Total Delay / Veh (s/v)	11	12	8	0	0	8	0	0	2
Total Delay (hr)	0	0	0	0	0	0	0	0	0
Stops / Veh	1.00	1.00	1.65	0.00	0.00	1.58	0.00	0.00	0.20
Stops (#)	28	29	38	0	0	19	0	0	114
Average Speed (mph)	23	30	42	55	55	42	55	55	49
Total Travel Time (hr)	0	1	0	2	0	0	2	0	5
Distance Traveled (mi)	5	21	10	98	0	5	97	0	236
Fuel Consumed (gal)	1	1	1	3	0	1	3	0	10
Fuel Economy (mpg)	NA	19.2	9.1	29.9	NA	NA	29.9	NA	24.2
CO Emissions (kg)	0.04	0.08	0.07	0.23	0.00	0.04	0.23	0.00	0.68
NOx Emissions (kg)	0.01	0.01	0.01	0.04	0.00	0.01	0.04	0.00	0.13
VOC Emissions (kg)	0.01	0.02	0.02	0.05	0.00	0.01	0.05	0.00	0.16
Unserved Vehicles (#)	0	0	0	0	0	0	0	0	0
Vehs dilemma zone (#)	0	0	0	0	0	0	0	0	0

4: Shields Ave & TH 61

Lane Group	EBR	WBR	NBL	NBT	NBR	SBL	SBT	SBR	All	
Future Volume (vph)	95	161	14	168	77	106	189	55	865	
Control Delay / Veh (s/v)	10	10	8	0	0	8	0	0	4	
Queue Delay / Veh (s/v)	0	0	0	0	0	0	0	0	0	
Total Delay / Veh (s/v)	10	10	8	0	0	8	0	0	4	
Total Delay (hr)	0	0	0	0	0	0	0	0	1	
Stops / Veh	1.00	1.00	1.64	0.00	0.00	1.70	0.00	0.00	0.53	
Stops (#)	95	161	23	0	0	180	0	0	459	
Average Speed (mph)	18	30	32	55	55	30	55	55	36	
Total Travel Time (hr)	1	2	0	1	0	1	1	0	5	
Distance Traveled (mi)	12	55	2	29	13	17	29	9	166	
Fuel Consumed (gal)	1	4	1	1	0	4	1	0	12	
Fuel Economy (mpg)	9.9	14.2	NA	NA	NA	4.1	NA	NA	13.4	
CO Emissions (kg)	0.08	0.27	0.04	0.07	0.03	0.29	0.07	0.02	0.86	
NOx Emissions (kg)	0.02	0.05	0.01	0.01	0.01	0.06	0.01	0.00	0.17	
VOC Emissions (kg)	0.02	0.06	0.01	0.02	0.01	0.07	0.02	0.00	0.20	
Unserved Vehicles (#)	0	0	0	0	0	0	0	0	0	
Vehs dilemma zone (#)	0	0	0	0	0	0	0	0	0	

Lane Group	NBU	NBT	SBU	SBT	All
Future Volume (vph)	77	252	7	273	609
Control Delay / Veh (s/v)	0	0	0	0	0
Queue Delay / Veh (s/v)	0	0	0	0	0
Total Delay / Veh (s/v)	0	0	0	0	0
Total Delay (hr)	0	0	0	0	0
Stops / Veh	0.00	0.00	0.00	0.00	0.00
Stops (#)	0	0	0	0	0
Average Speed (mph)	55	55	55	55	55
Total Travel Time (hr)	0	1	0	1	2
Distance Traveled (mi)	12	39	1	37	89
Fuel Consumed (gal)	0	1	0	1	3
Fuel Economy (mpg)	NA	29.9	NA	29.9	29.9
CO Emissions (kg)	0.03	0.09	0.00	0.09	0.21
NOx Emissions (kg)	0.01	0.02	0.00	0.02	0.04
VOC Emissions (kg)	0.01	0.02	0.00	0.02	0.05
Unserved Vehicles (#)	0	0	0	0	0
Vehs dilemma zone (#)	0	0	0	0	0

	NDT	0011	ODT	A 11
Lane Group	NBT	SBU	SBT	All
Future Volume (vph)	185	74	210	469
Control Delay / Veh (s/v)	0	0	0	0
Queue Delay / Veh (s/v)	0	0	0	0
Total Delay / Veh (s/v)	0	0	0	0
Total Delay (hr)	0	0	0	0
Stops / Veh	0.00	0.00	0.00	0.00
Stops (#)	0	0	0	0
Average Speed (mph)	55	55	55	55
Total Travel Time (hr)	1	0	1	2
Distance Traveled (mi)	51	13	36	99
Fuel Consumed (gal)	2	0	1	3
Fuel Economy (mpg)	29.9	NA	29.9	29.9
CO Emissions (kg)	0.12	0.03	0.08	0.23
NOx Emissions (kg)	0.02	0.01	0.02	0.05
VOC Emissions (kg)	0.03	0.01	0.02	0.05
Unserved Vehicles (#)	0	0	0	0
Vehs dilemma zone (#)	0	0	0	0

20).
20).

Lane Group	EBT	WBT	All
Future Volume (vph)	15	29	44
Control Delay / Veh (s/v)	0	0	0
Queue Delay / Veh (s/v)	0	0	0
Total Delay / Veh (s/v)	0	0	0
Total Delay (hr)	0	0	0
Stops / Veh	0.00	0.00	0.00
Stops (#)	0	0	0
Average Speed (mph)	33	40	36
Total Travel Time (hr)	0	0	1
Distance Traveled (mi)	11	9	19
Fuel Consumed (gal)	0	0	1
Fuel Economy (mpg)	NA	NA	NA
CO Emissions (kg)	0.03	0.02	0.05
NOx Emissions (kg)	0.01	0.00	0.01
VOC Emissions (kg)	0.01	0.00	0.01
Unserved Vehicles (#)	0	0	0
Vehs dilemma zone (#)	0	0	0

11/28/2022

Intersection

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		٦	^	1	٦	^	1
Traffic Vol, veh/h	2	2	24	3	5	21	23	232	1	12	245	1
Future Vol, veh/h	2	2	24	3	5	21	23	232	1	12	245	1
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	280	-	265	300	-	250
Veh in Median Storage,	, # -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	50	50	75	38	62	66	72	85	25	60	69	25
Heavy Vehicles, %	0	3	7	15	0	7	10	12	0	6	12	0
Mvmt Flow	4	4	32	8	8	32	32	273	4	20	355	4

Major/Minor	Minor2		Ν	/linor1		1	Major1		Ν	lajor2			
Conflicting Flow All	600	736	178	557	736	137	359	0	0	277	0	0	
Stage 1	395	395	-	337	337	-	-	-	-	-	-	-	
Stage 2	205	341	-	220	399	-	-	-	-	-	-	-	
Critical Hdwy	7.5	6.56	7.04	7.8	6.5	7.04	4.3	-	-	4.22	-	-	
Critical Hdwy Stg 1	6.5	5.56	-	6.8	5.5	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	6.5	5.56	-	6.8	5.5	-	-	-	-	-	-	-	
Follow-up Hdwy	3.5	4.03	3.37	3.65	4	3.37	2.3	-	-	2.26	-	-	
Pot Cap-1 Maneuver	389	343	819	386	349	871	1141	-	-	1254	-	-	
Stage 1	607	601	-	616	645	-	-	-	-	-	-	-	
Stage 2	784	635	-	726	606	-	-	-	-	-	-	-	
Platoon blocked, %								-	-		-	-	
Mov Cap-1 Maneuver	356	328	819	355	334	871	1141	-	-	1254	-	-	
Mov Cap-2 Maneuver	356	328	-	355	334	-	-	-	-	-	-	-	
Stage 1	590	591	-	599	627	-	-	-	-	-	-	-	
Stage 2	725	617	-	682	596	-	-	-	-	-	-	-	

Approach	EB	WB	NB	SB	
HCM Control Delay, s	11	11.8	0.9	0.4	
HCM LOS	В	В			

Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1V	WBLn1	SBL	SBT	SBR
Capacity (veh/h)	1141	-	-	640	576	1254	-	-
HCM Lane V/C Ratio	0.028	-	-	0.063	0.083	0.016	-	-
HCM Control Delay (s)	8.2	-	-	11	11.8	7.9	-	-
HCM Lane LOS	А	-	-	В	В	Α	-	-
HCM 95th %tile Q(veh)	0.1	-	-	0.2	0.3	0	-	-

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	2
Lane Configurations			1			1	٦	^	1	٦	^	1	r –
Traffic Vol, veh/h	0	0	95	0	0	161	14	168	77	106	189	55	;
Future Vol, veh/h	0	0	95	0	0	161	14	168	77	106	189	55	;
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0)
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	;
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None	,
Storage Length	-	-	0	-	-	0	265	-	250	250	-	250)
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	-
Peak Hour Factor	71	66	68	69	49	86	65	79	71	65	84	81	l
Heavy Vehicles, %	36	19	11	10	21	10	13	17	9	7	17	35	;
Mvmt Flow	0	0	140	0	0	187	22	213	108	163	225	68	}

Major/Minor	Minor2		Ν	1inor1		1	Major1		Ν	lajor2			
Conflicting Flow All	-	-	113	-	-	107	293	0	0	321	0	0	
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-	
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-	
Critical Hdwy	-	-	7.12	-	-	7.1	4.36	-	-	4.24	-	-	
Critical Hdwy Stg 1	-	-	-	-	-	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	-	-	-	-	-	-	
Follow-up Hdwy	-	-	3.41	-	-	3.4	2.33	-	-	2.27	-	-	
Pot Cap-1 Maneuver	0	0	890	0	0	901	1189	-	-	1200	-	-	
Stage 1	0	0	-	0	0	-	-	-	-	-	-	-	
Stage 2	0	0	-	0	0	-	-	-	-	-	-	-	
Platoon blocked, %								-	-		-	-	
Mov Cap-1 Maneuver	-	-	890	-	-	901	1189	-	-	1200	-	-	
Mov Cap-2 Maneuver	-	-	-	-	-	-	-	-	-	-	-	-	
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-	
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-	
Approach	EB			WB			NB			SB			
HCM Control Delay, s	9.8			10			0.5			3			

HCM LOS A B

Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1V	VBLn1	SBL	SBT	SBR
Capacity (veh/h)	1189	-	-	890	901	1200	-	-
HCM Lane V/C Ratio	0.018	-	-	0.157	0.208	0.136	-	-
HCM Control Delay (s)	8.1	-	-	9.8	10	8.5	-	-
HCM Lane LOS	А	-	-	А	В	Α	-	-
HCM 95th %tile Q(veh)	0.1	-	-	0.6	0.8	0.5	-	-

Inter	rsection
mitor	3000001

Movement	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR	NEL	NET	NER	SWL	SWT	SWR	
Lane Configurations	đ		- 11		đ		- 11				1			1	
Traffic Vol, veh/h	77	0	252	0	7	0	273	0	0	0	0	0	0	0	
Future Vol, veh/h	77	0	252	0	7	0	273	0	0	0	0	0	0	0	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Free	Stop	Stop	Stop	Stop	Stop	Stop								
RT Channelized	-	-	-	None	-	-	-	None	-	-	None	-	-	None	
Storage Length	-	0	-	-	-	0	-	-	-	-	0	-	-	0	
Veh in Median Storage,	# -	-	0	-	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	-	0	-	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92	92	92	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	84	0	274	0	8	0	297	0	0	0	0	0	0	0	

Major/Minor	Major1			Ν	lajor2			Mir	nor2		М	inor1			
Conflicting Flow All	297	-	0	-	274	-	-	0	-	-	149	-	-	137	
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Critical Hdwy	6.44	-	-	-	6.44	-	-	-	-	-	6.94	-	-	6.94	
Critical Hdwy Stg 1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Follow-up Hdwy	2.52	-	-	-	2.52	-	-	-	-	-	3.32	-	-	3.32	
Pot Cap-1 Maneuver	930	0	-	0	962	0	-	0	0	0	871	0	0	886	
Stage 1	-	0	-	0	-	0	-	0	0	0	-	0	0	-	
Stage 2	-	0	-	0	-	0	-	0	0	0	-	0	0	-	
Platoon blocked, %			-				-								
Mov Cap-1 Maneuver	930	-	-	-	962	-	-	-	-	-	871	-	-	886	
Mov Cap-2 Maneuver	• -	-	-	-	-	-	-	-	-	-	-	-	-	-	
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	

Approach	NB	SB	NE	SW	
HCM Control Delay, s	2.2	0.2	0	0	
HCM LOS			А	А	

Minor Lane/Major Mvmt	NELn1	NBU	NBT	SBU	SBTSW	VLn1
Capacity (veh/h)	-	930	-	962	-	-
HCM Lane V/C Ratio	-	0.09	-	800.0	-	-
HCM Control Delay (s)	0	9.3	-	8.8	-	0
HCM Lane LOS	А	Α	-	А	-	Α
HCM 95th %tile Q(veh)	-	0.3	-	0	-	-

Intersection							
Int Delay, s/veh	1.4						
Movement	NBT	NBR	SBU	SBL	SBT	SWL	SWR
Lane Configurations	- 11		đ		- 11		1
Traffic Vol, veh/h	185	0	74	0	210	0	0
Future Vol, veh/h	185	0	74	0	210	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	-	None	-	None
Storage Length	-	-	-	0	-	-	0
Veh in Median Storage	e, # 0	-	-	-	0	0	-
Grade, %	0	-	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2	2
Mvmt Flow	201	0	80	0	228	0	0

Major/Minor	Major1		Major2		N	linor1		
Conflicting Flow All	0	-	201	-	-	-	101	
Stage 1	-	-	-	-	-	-	-	
Stage 2	-	-	-	-	-	-	-	
Critical Hdwy	-	-	6.44	-	-	-	6.94	
Critical Hdwy Stg 1	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	-	
Follow-up Hdwy	-	-	2.52	-	-	-	3.32	
Pot Cap-1 Maneuver	-	0	1069	0	-	0	935	
Stage 1	-	0	-	0	-	0	-	
Stage 2	-	0	-	0	-	0	-	
Platoon blocked, %	-				-			
Mov Cap-1 Maneuver		-	1069	-	-	-	935	
Mov Cap-2 Maneuver	-	-	-	-	-	-	-	
Stage 1	-	-	-	-	-	-	-	
Stage 2	-	-	-	-	-	-	-	
Approach	NB		SB			SW		
HCM Control Delay, s	0		2.3			0		
HCM LOS						А		
Minor Lane/Major Mvr	nt	NBT	SBU	SBTSWL	.n1			
Capacity (veh/h)		-	1069	-	-			
HCM Lane V/C Ratio		_	0.075	-	_			
HCM Control Delay (s)	-	8.6	-	0			
HCM Lane LOS	/	-	A	-	Ă			
HCM 95th %tile Q(veh	1)	-	0.2	-	-			
	.,		0.2					

Intersection						
Int Delay, s/veh	0					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		- द	el 👘		۰¥	
Traffic Vol, veh/h	0	15	29	0	0	0
Future Vol, veh/h	0	15	29	0	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage	, # -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	92	75	72	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	20	40	0	0	0

Major/Minor	Major1	Ν	lajor2	ſ	Minor2	
Conflicting Flow All	40	0	-	0	60	40
Stage 1	-	-	-	-	40	-
Stage 2	-	-	-	-	20	-
Critical Hdwy	4.12	-	-	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	2.218	-	-	-	3.518	
Pot Cap-1 Maneuver	1570	-	-	-	947	1031
Stage 1	-	-	-	-	982	-
Stage 2	-	-	-	-	1003	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver		-	-	-	947	1031
Mov Cap-2 Maneuver	r -	-	-	-	947	-
Stage 1	-	-	-	-	982	-
Stage 2	-	-	-	-	1003	-
Approach	EB		WB		SB	
HCM Control Delay, s	s 0		0		0	
HCM LOS					А	
Minor Lane/Major Mv	mt	EBL	EBT	WBT	WBR	SBI n1
Capacity (veh/h)		1570		-	-	-
HCM Lane V/C Ratio		-	-	_	_	-
HCM Control Delay (s		0	-	-	-	0
HCM Lane LOS	-	Ă	-	-	-	Ă
HCM 95th %tile Q(ve	h)	0	-	-	-	-

2: TH 61 & CR 10/5th Grant Blvd

Lane Group	EBT	WBT	NBL	NBT	NBR	SBL	SBT	SBR	All
Future Volume (vph)	28	39	23	232	11	12	245	1	591
Control Delay / Veh (s/v)	11	17	8	0	0	8	0	0	2
Queue Delay / Veh (s/v)	0	0	0	0	0	0	0	0	0
Total Delay / Veh (s/v)	11	17	8	0	0	8	0	0	2
Total Delay (hr)	0	0	0	0	0	0	0	0	0
Stops / Veh	1.00	1.00	1.65	0.00	0.00	1.58	0.00	0.00	0.21
Stops (#)	28	39	38	0	0	19	0	0	124
Average Speed (mph)	23	28	42	55	55	42	55	55	48
Total Travel Time (hr)	0	1	0	2	0	0	2	0	5
Distance Traveled (mi)	5	28	10	98	5	5	97	0	247
Fuel Consumed (gal)	1	1	1	3	0	1	3	0	10
Fuel Economy (mpg)	NA	18.7	9.1	29.9	NA	NA	29.9	NA	24.0
CO Emissions (kg)	0.04	0.10	0.07	0.23	0.01	0.04	0.23	0.00	0.72
NOx Emissions (kg)	0.01	0.02	0.01	0.04	0.00	0.01	0.04	0.00	0.14
VOC Emissions (kg)	0.01	0.02	0.02	0.05	0.00	0.01	0.05	0.00	0.17
Unserved Vehicles (#)	0	0	0	0	0	0	0	0	0
Vehs dilemma zone (#)	0	0	0	0	0	0	0	0	0

4: Shields Ave & TH 61

Lane Group	EBR	WBR	NBL	NBT	NBR	SBL	SBT	SBR	All	
Future Volume (vph)	105	161	14	178	77	106	189	65	895	
Control Delay / Veh (s/v)	10	10	8	0	0	9	0	0	4	
Queue Delay / Veh (s/v)	0	0	0	0	0	0	0	0	0	
Total Delay / Veh (s/v)	10	10	8	0	0	9	0	0	4	
Total Delay (hr)	0	0	0	0	0	0	0	0	1	
Stops / Veh	1.00	1.00	1.64	0.00	0.00	1.70	0.00	0.00	0.52	
Stops (#)	105	161	23	0	0	180	0	0	469	
Average Speed (mph)	18	30	32	55	55	30	55	55	36	
Total Travel Time (hr)	1	2	0	1	0	1	1	0	5	
Distance Traveled (mi)	13	55	2	30	13	17	29	10	170	
Fuel Consumed (gal)	1	4	1	1	0	4	1	0	13	
Fuel Economy (mpg)	9.8	14.2	NA	29.9	NA	4.1	NA	NA	13.5	
CO Emissions (kg)	0.09	0.27	0.04	0.07	0.03	0.29	0.07	0.02	0.88	
NOx Emissions (kg)	0.02	0.05	0.01	0.01	0.01	0.06	0.01	0.00	0.17	
VOC Emissions (kg)	0.02	0.06	0.01	0.02	0.01	0.07	0.02	0.01	0.20	
Unserved Vehicles (#)	0	0	0	0	0	0	0	0	0	
Vehs dilemma zone (#)	0	0	0	0	0	0	0	0	0	

Lane Group	NBU	NBT	SBU	SBT	All
Future Volume (vph)	77	262	7	283	629
Control Delay / Veh (s/v)	0	0	0	0	0
Queue Delay / Veh (s/v)	0	0	0	0	0
Total Delay / Veh (s/v)	0	0	0	0	0
Total Delay (hr)	0	0	0	0	0
Stops / Veh	0.00	0.00	0.00	0.00	0.00
Stops (#)	0	0	0	0	0
Average Speed (mph)	55	55	55	55	55
Total Travel Time (hr)	0	1	0	1	2
Distance Traveled (mi)	12	41	1	38	92
Fuel Consumed (gal)	0	1	0	1	3
Fuel Economy (mpg)	NA	29.9	NA	29.9	29.9
CO Emissions (kg)	0.03	0.10	0.00	0.09	0.22
NOx Emissions (kg)	0.01	0.02	0.00	0.02	0.04
VOC Emissions (kg)	0.01	0.02	0.00	0.02	0.05
Unserved Vehicles (#)	0	0	0	0	0
Vehs dilemma zone (#)	0	0	0	0	0

	NDT	0011	ODT	A 11
Lane Group	NBT	SBU	SBT	All
Future Volume (vph)	185	84	210	479
Control Delay / Veh (s/v)	0	0	0	0
Queue Delay / Veh (s/v)	0	0	0	0
Total Delay / Veh (s/v)	0	0	0	0
Total Delay (hr)	0	0	0	0
Stops / Veh	0.00	0.00	0.00	0.00
Stops (#)	0	0	0	0
Average Speed (mph)	55	55	55	55
Total Travel Time (hr)	1	0	1	2
Distance Traveled (mi)	51	14	36	101
Fuel Consumed (gal)	2	0	1	3
Fuel Economy (mpg)	29.9	NA	29.9	29.9
CO Emissions (kg)	0.12	0.03	0.08	0.24
NOx Emissions (kg)	0.02	0.01	0.02	0.05
VOC Emissions (kg)	0.03	0.01	0.02	0.05
Unserved Vehicles (#)	0	0	0	0
Vehs dilemma zone (#)	0	0	0	0

20	•
-20	

20.				
				•••
Lane Group	EBT	WBT	SBL	All
Future Volume (vph)	25	29	10	64
Control Delay / Veh (s/v)	2	0	9	2
Queue Delay / Veh (s/v)	0	0	0	0
Total Delay / Veh (s/v)	2	0	9	2
Total Delay (hr)	0	0	0	0
Stops / Veh	0.40	0.00	1.00	0.31
Stops (#)	10	0	10	20
Average Speed (mph)	32	40	13	33
Total Travel Time (hr)	1	0	0	1
Distance Traveled (mi)	18	9	1	27
Fuel Consumed (gal)	1	0	0	1
Fuel Economy (mpg)	NA	NA	NA	22.8
CO Emissions (kg)	0.05	0.02	0.01	0.08
NOx Emissions (kg)	0.01	0.00	0.00	0.02
VOC Emissions (kg)	0.01	0.00	0.00	0.02
Unserved Vehicles (#)	0	0	0	0
Vehs dilemma zone (#)	0	0	0	0

11/28/2022

Intersection

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		۲.	<u>Λ</u>	1	۲	<u>Λ</u>	1
Traffic Vol, veh/h	2	2	24	13	5	21	23	232	11	12	245	1
Future Vol, veh/h	2	2	24	13	5	21	23	232	11	12	245	1
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	280	-	265	300	-	250
Veh in Median Storage,	, # -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	50	50	75	38	62	66	72	85	25	60	69	25
Heavy Vehicles, %	0	3	7	85	0	7	10	12	89	6	12	0
Mvmt Flow	4	4	32	34	8	32	32	273	44	20	355	4

Major/Minor	Minor2		Ν	/linor1			Major1		Ν	1ajor2			
Conflicting Flow All	600	776	178	557	736	137	359	0	0	317	0	0	
Stage 1	395	395	-	337	337	-	-	-	-	-	-	-	
Stage 2	205	381	-	220	399	-	-	-	-	-	-	-	
Critical Hdwy	7.5	6.56	7.04	9.2	6.5	7.04	4.3	-	-	4.22	-	-	
Critical Hdwy Stg 1	6.5	5.56	-	8.2	5.5	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	6.5	5.56	-	8.2	5.5	-	-	-	-	-	-	-	
Follow-up Hdwy	3.5	4.03	3.37	4.35	4	3.37	2.3	-	-	2.26	-	-	
Pot Cap-1 Maneuver	389	325	819	274	349	871	1141	-	-	1211	-	-	
Stage 1	607	601	-	468	645	-	-	-	-	-	-	-	
Stage 2	784	609	-	571	606	-	-	-	-	-	-	-	
Platoon blocked, %								-	-		-	-	
Mov Cap-1 Maneuver	356	310	819	252	333	871	1141	-	-	1211	-	-	
Mov Cap-2 Maneuver	356	310	-	252	333	-	-	-	-	-	-	-	
Stage 1	590	591	-	455	627	-	-	-	-	-	-	-	
Stage 2	725	592	-	536	596	-	-	-	-	-	-	-	

Approach	EB	WB	NB	SB	
HCM Control Delay, s	11.1	16.9	0.8	0.4	
HCM LOS	В	С			

Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1V	WBLn1	SBL	SBT	SBR
Capacity (veh/h)	1141	-	-	633	377	1211	-	-
HCM Lane V/C Ratio	0.028	-	-	0.063	0.197	0.017	-	-
HCM Control Delay (s)	8.2	-	-	11.1	16.9	8	-	-
HCM Lane LOS	А	-	-	В	С	Α	-	-
HCM 95th %tile Q(veh)	0.1	-	-	0.2	0.7	0.1	-	-

Intersection

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
				VVDL									
Lane Configurations			n –				1	ТТ	ſ	1	TT		
Traffic Vol, veh/h	0	0	105	0	0	161	14	178	77	106	189	65	
Future Vol, veh/h	0	0	105	0	0	161	14	178	77	106	189	65	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None										
Storage Length	-	-	0	-	-	0	265	-	250	250	-	250	
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	71	66	68	69	49	86	65	79	71	65	84	81	
Heavy Vehicles, %	36	19	19	10	21	10	13	22	9	7	17	35	
Mvmt Flow	0	0	154	0	0	187	22	225	108	163	225	80	

Major/Minor	Minor2		Ν	linor1		M	/lajor1		Ν	lajor2			
Conflicting Flow All	-	-	113	-	-	113	305	0	0	333	0	0	
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-	
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-	
Critical Hdwy	-	-	7.28	-	-	7.1	4.36	-	-	4.24	-	-	
Critical Hdwy Stg 1	-	-	-	-	-	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	-	-	-	-	-	-	
Follow-up Hdwy	-	-	3.49	-	-	3.4	2.33	-	-	2.27	-	-	
Pot Cap-1 Maneuver	0	0	867	0	0	893	1177	-	-	1188	-	-	
Stage 1	0	0	-	0	0	-	-	-	-	-	-	-	
Stage 2	0	0	-	0	0	-	-	-	-	-	-	-	
Platoon blocked, %								-	-		-	-	
Mov Cap-1 Maneuver	r –	-	867	-	-	893	1177	-	-	1188	-	-	
Mov Cap-2 Maneuver	r -	-	-	-	-	-	-	-	-	-	-	-	
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-	
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-	

Approach	EB	WB	NB	SB	
HCM Control Delay, s	10.1	10.1	0.5	3	
HCM LOS	В	В			

Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1V	/BLn1	SBL	SBT	SBR
Capacity (veh/h)	1177	-	-	867	893	1188	-	-
HCM Lane V/C Ratio	0.018	-	-	0.178	0.21	0.137	-	-
HCM Control Delay (s)	8.1	-	-	10.1	10.1	8.5	-	-
HCM Lane LOS	А	-	-	В	В	Α	-	-
HCM 95th %tile Q(veh)	0.1	-	-	0.6	0.8	0.5	-	-

Into	rsection	
inte	13000001	

Movement	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR	NEL	NET	NER	SWL	SWT	SWR	
Lane Configurations	t d		- 11		đ		- 11				1			1	
Traffic Vol, veh/h	77	0	262	0	7	0	283	0	0	0	0	0	0	0	
Future Vol, veh/h	77	0	262	0	7	0	283	0	0	0	0	0	0	0	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Free	Stop	Stop	Stop	Stop	Stop	Stop								
RT Channelized	-	-	-	None	-	-	-	None	-	-	None	-	-	None	
Storage Length	-	0	-	-	-	0	-	-	-	-	0	-	-	0	
Veh in Median Storage,	# -	-	0	-	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	-	0	-	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92	92	92	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	84	0	285	0	8	0	308	0	0	0	0	0	0	0	

Major/Minor	Major1			Ν	lajor2			Mir	nor2		Μ	linor1			
Conflicting Flow All	308	-	0	-	285	-	-	0	-	-	154	-	-	143	
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Critical Hdwy	6.44	-	-	-	6.44	-	-	-	-	-	6.94	-	-	6.94	
Critical Hdwy Stg 1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Follow-up Hdwy	2.52	-	-	-	2.52	-	-	-	-	-	3.32	-	-	3.32	
Pot Cap-1 Maneuver	915	0	-	0	946	0	-	0	0	0	864	0	0	879	
Stage 1	-	0	-	0	-	0	-	0	0	0	-	0	0	-	
Stage 2	-	0	-	0	-	0	-	0	0	0	-	0	0	-	
Platoon blocked, %			-				-								
Mov Cap-1 Maneuver		-	-	-	946	-	-	-	-	-	864	-	-	879	
Mov Cap-2 Maneuver	· _	-	-	-	-	-	-	-	-	-	-	-	-	-	
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	

Approach	NB	SB	NE	SW	
HCM Control Delay, s	2.1	0.2	0	0	
HCM LOS			А	А	

Minor Lane/Major Mvmt	NELn1	NBU	NBT	SBU	SBTSV	VLn1
Capacity (veh/h)	-	915	-	946	-	-
HCM Lane V/C Ratio	-	0.091	-	0.008	-	-
HCM Control Delay (s)	0	9.3	-	8.8	-	0
HCM Lane LOS	A	А	-	Α	-	А
HCM 95th %tile Q(veh)	-	0.3	-	0	-	-

Intersection							
Int Delay, s/veh	1.6						
Movement	NBT	NBR	SBU	SBL	SBT	SWL	SWR
Lane Configurations	- 11		đ		- 11		1
Traffic Vol, veh/h	185	0	84	0	210	0	0
Future Vol, veh/h	185	0	84	0	210	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	-	None	-	None
Storage Length	-	-	-	0	-	-	0
Veh in Median Storage	e, # 0	-	-	-	0	0	-
Grade, %	0	-	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	15	2	2	2	2
Mvmt Flow	201	0	91	0	228	0	0

Major/Minor	Major1		Major2		Ν	1inor1	
Conflicting Flow All	0	-	201	-	-	-	101
Stage 1	-	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-	-
Critical Hdwy	-	-	6.7	-	-	-	6.94
Critical Hdwy Stg 1	-	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-	-
Follow-up Hdwy	-	-	2.65	-	-	-	3.32
Pot Cap-1 Maneuver	-	0	1005	0	-	0	935
Stage 1	-	0	-	0	-	0	-
Stage 2	-	0	-	0	-	0	-
Platoon blocked, %	-				-		
Mov Cap-1 Maneuver		-	1005	-	-	-	935
Mov Cap-2 Maneuver	• •	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-	-
Approach	NB		SB			SW	
HCM Control Delay, s	s 0		2.6			0	
HCM LOS						А	
Minor Lane/Major Mvr	mt	NBT	SBU	SBTSW	n1		
	int		1005	001000			
Capacity (veh/h) HCM Lane V/C Ratio		-	0.091	-	-		
HCM Control Delay (s	•)	-	8.9	-	0		
HCM Lane LOS)	-	0.9 A	-	A		
HCM 95th %tile Q(vel	h)	-	0.3	-	~		
	1)	-	0.5	-	-		

Intersection						
Int Delay, s/veh	2.4					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	LDL	<u>्व</u>	1001 1	VUIN	¥	JUIN
Traffic Vol, veh/h	10	€ 15	29	0	- T	10
	10	15	29 29	0	0	10
Future Vol, veh/h						
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage	e,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	92	75	72	92	92	92
Heavy Vehicles, %	95	2	2	2	2	95
Mvmt Flow	11	20	40	0	0	11
N A - ' /N A'				-		
	Major1		Major2		Minor2	
Conflicting Flow All	40	0	Major2	0	82	40
Conflicting Flow All Stage 1					82 40	40 -
Conflicting Flow All Stage 1 Stage 2	40	0	-	0	82 40 42	-
Conflicting Flow All Stage 1	40	0	-	0 -	82 40 42 6.42	-
Conflicting Flow All Stage 1 Stage 2	40	0	-	0 - -	82 40 42	-
Conflicting Flow All Stage 1 Stage 2 Critical Hdwy	40 - - 5.05	0 - -	-	0 - - -	82 40 42 6.42	- - 7.15
Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2	40 - 5.05 -	0 - -	-	0 - - - -	82 40 42 6.42 5.42	- - 7.15 -
Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy	40 - 5.05 - 3.055	0 - - - -		0 - - - -	82 40 42 6.42 5.42 5.42 3.518	- 7.15 - 4.155
Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuver	40 - - 5.05 -	0 - - - - -		0 - - - - -	82 40 42 6.42 5.42 5.42 3.518 920	- - 7.15 -
Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuver Stage 1	40 - 5.05 - 3.055 1133	0 - - - - -	- - - - - - - -	0 - - - - - -	82 40 6.42 5.42 5.42 3.518 920 982	- 7.15 - 4.155 819
Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2	40 - 5.05 - 3.055 1133 -	0		0	82 40 42 6.42 5.42 5.42 3.518 920	- 7.15 - 4.155 819 -
Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, %	40 - 5.05 - 3.055 1133 -	0		0	82 40 42 6.42 5.42 5.42 3.518 920 982 980	- 7.15 - 4.155 819 -
Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver	40 - 5.05 - 3.055 1133 - - 1133	0	- - - - - - - - - - - - - - - - - - -	0	82 40 42 5.42 5.42 3.518 920 982 980 911	- 7.15 - 4.155 819 - - 819
Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver	40 - 5.05 - 3.055 1133 -	0		0	82 40 42 5.42 5.42 3.518 920 982 980 911 911	- 7.15 - 4.155 819 - - - 819
Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1	40 - 5.05 - 3.055 1133 - - 1133 - -	0	- - - - - - - - - - - - - - - - - - -	0	82 40 42 5.42 5.42 5.42 3.518 920 982 980 911 911 911 972	- 7.15 - 4.155 819 - - - 819 -
Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver	40 - 5.05 - 3.055 1133 - - 1133	0	- - - - - - - - - - - - - - - - - - -	0	82 40 42 5.42 5.42 3.518 920 982 980 911 911	- 7.15 - 4.155 819 - - - 819
Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1	40 - 5.05 - 3.055 1133 - - 1133 - -	0	- - - - - - - - - - - - - - - - - - -	0	82 40 42 5.42 5.42 5.42 3.518 920 982 980 911 911 911 972	- 7.15 - 4.155 819 - - - 819 -

Approach	EB	WB	SB
HCM Control Delay, s	2.9	0	9.5
HCM LOS			А

Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR SE	3Ln1
Capacity (veh/h)	1133	-	-	-	819
HCM Lane V/C Ratio	0.01	-	-	- 0	.013
HCM Control Delay (s)	8.2	0	-	-	9.5
HCM Lane LOS	А	А	-	-	А
HCM 95th %tile Q(veh)	0	-	-	-	0

2: TH 61 & CR 10/5th Grant Blvd

Lane Group	EBT	WBT	NBL	NBT	NBR	SBL	SBT	SBR	All
Future Volume (vph)	21	18	11	155	2	27	176	1	411
Control Delay / Veh (s/v)	10	10	8	0	0	8	0	0	2
Queue Delay / Veh (s/v)	0	0	0	0	0	0	0	0	0
Total Delay / Veh (s/v)	10	10	8	0	0	8	0	0	2
Total Delay (hr)	0	0	0	0	0	0	0	0	0
Stops / Veh	1.00	1.00	1.55	0.00	0.00	1.56	0.00	0.00	0.24
Stops (#)	21	18	17	0	0	42	0	0	98
Average Speed (mph)	24	31	43	55	55	42	55	55	49
Total Travel Time (hr)	0	0	0	1	0	0	1	0	3
Distance Traveled (mi)	3	13	5	65	1	11	70	0	168
Fuel Consumed (gal)	0	1	0	2	0	1	2	0	7
Fuel Economy (mpg)	NA	NA	NA	29.9	NA	9.1	29.9	NA	23.1
CO Emissions (kg)	0.03	0.05	0.03	0.15	0.00	0.08	0.16	0.00	0.51
NOx Emissions (kg)	0.01	0.01	0.01	0.03	0.00	0.02	0.03	0.00	0.10
VOC Emissions (kg)	0.01	0.01	0.01	0.04	0.00	0.02	0.04	0.00	0.12
Unserved Vehicles (#)	0	0	0	0	0	0	0	0	0
Vehs dilemma zone (#)	0	0	0	0	0	0	0	0	0

4: Shields Ave & TH 61

Lane Group	EBR	WBR	NBL	NBT	NBR	SBL	SBT	SBR	All	
Future Volume (vph)	32	152	12	104	66	76	131	81	654	
Control Delay / Veh (s/v)	9	10	8	0	0	8	0	0	4	
Queue Delay / Veh (s/v)	0	0	0	0	0	0	0	0	0	
Total Delay / Veh (s/v)	9	10	8	0	0	8	0	0	4	
Total Delay (hr)	0	0	0	0	0	0	0	0	1	
Stops / Veh	1.00	1.00	1.58	0.00	0.00	1.59	0.00	0.00	0.50	
Stops (#)	32	152	19	0	0	121	0	0	324	
Average Speed (mph)	18	27	32	55	55	31	55	55	37	
Total Travel Time (hr)	0	1	0	0	0	0	0	0	3	
Distance Traveled (mi)	4	36	2	18	11	12	20	13	116	
Fuel Consumed (gal)	0	3	0	1	0	3	1	0	9	
Fuel Economy (mpg)	NA	11.7	NA	NA	NA	4.3	NA	NA	13.2	
CO Emissions (kg)	0.03	0.22	0.03	0.04	0.03	0.19	0.05	0.03	0.61	
NOx Emissions (kg)	0.01	0.04	0.01	0.01	0.01	0.04	0.01	0.01	0.12	
VOC Emissions (kg)	0.01	0.05	0.01	0.01	0.01	0.04	0.01	0.01	0.14	
Unserved Vehicles (#)	0	0	0	0	0	0	0	0	0	
Vehs dilemma zone (#)	0	0	0	0	0	0	0	0	0	

- 1	0	
- 1	U	1

Lane Group	EBT	WBT	All
Future Volume (vph)	32	18	50
Control Delay / Veh (s/v)	0	0	0
Queue Delay / Veh (s/v)	0	0	0
Total Delay / Veh (s/v)	0	0	0
Total Delay (hr)	0	0	0
Stops / Veh	0.00	0.00	0.00
Stops (#)	0	0	0
Average Speed (mph)	33	40	34
Total Travel Time (hr)	1	0	1
Distance Traveled (mi)	23	5	28
Fuel Consumed (gal)	1	0	1
Fuel Economy (mpg)	NA	NA	25.9
CO Emissions (kg)	0.06	0.01	0.08
NOx Emissions (kg)	0.01	0.00	0.01
VOC Emissions (kg)	0.01	0.00	0.02
Unserved Vehicles (#)	0	0	0
Vehs dilemma zone (#)	0	0	0

Lane Group	NBU	NBT	SBU	SBT	All
Future Volume (vph)	75	181	10	213	479
Control Delay / Veh (s/v)	0	0	0	0	0
Queue Delay / Veh (s/v)	0	0	0	0	0
Total Delay / Veh (s/v)	0	0	0	0	0
Total Delay (hr)	0	0	0	0	0
Stops / Veh	0.00	0.00	0.00	0.00	0.00
Stops (#)	0	0	0	0	0
Average Speed (mph)	55	55	55	55	55
Total Travel Time (hr)	0	1	0	1	1
Distance Traveled (mi)	12	28	1	29	70
Fuel Consumed (gal)	0	1	0	1	2
Fuel Economy (mpg)	NA	NA	NA	NA	29.9
CO Emissions (kg)	0.03	0.07	0.00	0.07	0.16
NOx Emissions (kg)	0.01	0.01	0.00	0.01	0.03
VOC Emissions (kg)	0.01	0.02	0.00	0.02	0.04
Unserved Vehicles (#)	0	0	0	0	0
Vehs dilemma zone (#)	0	0	0	0	0

Lane Group	NBT	SBU	SBT	All
Future Volume (vph)	152	30	133	315
Control Delay / Veh (s/v)	0	0	0	0
Queue Delay / Veh (s/v)	0	0	0	0
Total Delay / Veh (s/v)	0	0	0	0
Total Delay (hr)	0	0	0	0
Stops / Veh	0.00	0.00	0.00	0.00
Stops (#)	0	0	0	0
Average Speed (mph)	55	55	55	55
Total Travel Time (hr)	1	0	0	1
Distance Traveled (mi)	42	5	23	70
Fuel Consumed (gal)	1	0	1	2
Fuel Economy (mpg)	29.9	NA	NA	29.9
CO Emissions (kg)	0.10	0.01	0.05	0.16
NOx Emissions (kg)	0.02	0.00	0.01	0.03
VOC Emissions (kg)	0.02	0.00	0.01	0.04
Unserved Vehicles (#)	0	0	0	0
Vehs dilemma zone (#)	0	0	0	0

2

Intersection

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		۲.	† †	1	٦	^	1
Traffic Vol, veh/h	3	3	15	2	1	15	11	155	2	27	176	1
Future Vol, veh/h	3	3	15	2	1	15	11	155	2	27	176	1
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	280	-	265	300	-	250
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	75	75	65	50	25	58	62	84	50	69	79	25
Heavy Vehicles, %	0	3	7	15	0	7	10	12	0	6	12	0
Mvmt Flow	4	4	23	4	4	26	18	185	4	39	223	4

Major/Minor	Minor2		Ν	/linor1		ľ	Major1		Ν	lajor2			
Conflicting Flow All	432	526	112	413	526	93	227	0	0	189	0	0	
Stage 1	301	301	-	221	221	-	-	-	-	-	-	-	
Stage 2	131	225	-	192	305	-	-	-	-	-	-	-	
Critical Hdwy	7.5	6.56	7.04	7.8	6.5	7.04	4.3	-	-	4.22	-	-	
Critical Hdwy Stg 1	6.5	5.56	-	6.8	5.5	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	6.5	5.56	-	6.8	5.5	-	-	-	-	-	-	-	
Follow-up Hdwy	3.5	4.03	3.37	3.65	4	3.37	2.3	-	-	2.26	-	-	
Pot Cap-1 Maneuver	512	453	904	493	460	930	1282	-	-	1354	-	-	
Stage 1	689	661	-	725	724	-	-	-	-	-	-	-	
Stage 2	865	714	-	755	666	-	-	-	-	-	-	-	
Platoon blocked, %								-	-		-	-	
Mov Cap-1 Maneuver	478	434	904	461	440	930	1282	-	-	1354	-	-	
Mov Cap-2 Maneuver	478	434	-	461	440	-	-	-	-	-	-	-	
Stage 1	679	642	-	715	714	-	-	-	-	-	-	-	
Stage 2	824	704	-	710	647	-	-	-	-	-	-	-	

Approach	EB	WB	NB	SB	
HCM Control Delay, s	10.2	10.1	0.7	1.1	
HCM LOS	В	В			

Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1V	WBLn1	SBL	SBT	SBR
Capacity (veh/h)	1282	-	-	721	743	1354	-	-
HCM Lane V/C Ratio	0.014	-	-	0.043	0.046	0.029	-	-
HCM Control Delay (s)	7.8	-	-	10.2	10.1	7.7	-	-
HCM Lane LOS	А	-	-	В	В	А	-	-
HCM 95th %tile Q(veh)	0	-	-	0.1	0.1	0.1	-	-

Intersection

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations			1			1	٦	^	1	٦	^	1
Traffic Vol, veh/h	0	0	32	0	0	152	12	104	66	76	131	81
Future Vol, veh/h	0	0	32	0	0	152	12	104	66	76	131	81
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	0	-	-	0	265	-	250	250	-	250
Veh in Median Storage	, # -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	38	67	25	50	65	82	50	72	77	80	81	79
Heavy Vehicles, %	36	19	11	10	21	10	13	17	9	7	17	35
Mvmt Flow	0	0	128	0	0	185	24	144	86	95	162	103

Major/Minor	Minor2		Ν	1inor1		1	Major1		Ν	1ajor2			
Conflicting Flow All	-	-	81	-	-	72	265	0	0	230	0	0	
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-	
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-	
Critical Hdwy	-	-	7.12	-	-	7.1	4.36	-	-	4.24	-	-	
Critical Hdwy Stg 1	-	-	-	-	-	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	-	-	-	-	-	-	
Follow-up Hdwy	-	-	3.41	-	-	3.4	2.33	-	-	2.27	-	-	
Pot Cap-1 Maneuver	0	0	934	0	0	950	1220	-	-	1299	-	-	
Stage 1	0	0	-	0	0	-	-	-	-	-	-	-	
Stage 2	0	0	-	0	0	-	-	-	-	-	-	-	
Platoon blocked, %								-	-		-	-	
Mov Cap-1 Maneuver	r -	-	934	-	-	950	1220	-	-	1299	-	-	
Mov Cap-2 Maneuver	r –	-	-	-	-	-	-	-	-	-	-	-	
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-	
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-	
Approach	EB			WB			NB			SB			

Approach	EB	WB	NB	SB	
HCM Control Delay, s	9.5	9.7	0.8	2.1	
HCM LOS	А	A			

Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1V	VBLn1	SBL	SBT	SBR
Capacity (veh/h)	1220	-	-	934	950	1299	-	-
HCM Lane V/C Ratio	0.02	-	-	0.137	0.195	0.073	-	-
HCM Control Delay (s)	8	-	-	9.5	9.7	8	-	-
HCM Lane LOS	А	-	-	А	А	Α	-	-
HCM 95th %tile Q(veh)	0.1	-	-	0.5	0.7	0.2	-	-

Intersection						
Int Delay, s/veh	0					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
	LDL			VUDIN		
Lane Configurations		्स	₽		Y	
Traffic Vol, veh/h	0	32	18	0	0	0
Future Vol, veh/h	0	32	18	0	0	0
Conflicting Peds, #/h	r 0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	_
Veh in Median Storag	ne.# -	0	0	-	0	-
Grade, %		0	0	-	0	-
Peak Hour Factor	92	75	71	92	92	92
	-	2	2		92 2	92 2
Heavy Vehicles, %	2			2		
Mvmt Flow	0	43	25	0	0	0
Major/Minor	Major1	Ν	/lajor2	Ν	Ainor2	
Conflicting Flow All	25	0		0	68	25
Stage 1		-	-	-	25	
Stage 2	-	-	_	-	43	-
Critical Hdwy	4.12	_	-	-	6.42	6.22
Critical Hdwy Stg 1	7.12				5.42	0.22
	-	-	-	-		
Critical Hdwy Stg 2	-	-	-	-	5.42	-

Pot Cap-1 Maneuver	1589	-	-	-	937	1051			
Stage 1	-	-	-	-	998	-			
Stage 2	-	-	-	-	979	-			
Platoon blocked, %		-	-	-					
Mov Cap-1 Maneuver	1589	-	-	-	937	1051			
Mov Cap-2 Maneuver	-	-	-	-	937	-			
Stage 1	-	-	-	-	998	-			
Stage 2	-	-	-	-	979	-			
Approach	EB		WB		SB				
HCM Control Delay, s	0		0		0			 	
HCM LOS	U		U		Ă				

Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR SE	3Ln1
Capacity (veh/h)	1589	-	-	-	-
HCM Lane V/C Ratio	-	-	-	-	-
HCM Control Delay (s)	0	-	-	-	0
HCM Lane LOS	А	-	-	-	А
HCM 95th %tile Q(veh)	0	-	-	-	-

-

- 3.518 3.318

-

2.218

Follow-up Hdwy

Inter	rsection
mitor	3000001

•															
Movement	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR	NEL	NET	NER	SWL	SWT	SWR	
Lane Configurations	đ		- 11		đ		- 11				1			1	
Traffic Vol, veh/h	75	0	181	0	10	0	213	0	0	0	0	0	0	0	
Future Vol, veh/h	75	0	181	0	10	0	213	0	0	0	0	0	0	0	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Free	Stop	Stop	Stop	Stop	Stop	Stop								
RT Channelized	-	-	-	None	-	-	-	None	-	-	None	-	-	None	
Storage Length	-	0	-	-	-	0	-	-	-	-	0	-	-	0	
Veh in Median Storage	,# -	-	0	-	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	-	0	-	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92	92	92	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	82	0	197	0	11	0	232	0	0	0	0	0	0	0	

Major/Minor	Major1			Μ	ajor2			Mir	nor2		Μ	linor1			
Conflicting Flow All	232	-	0	-	197	-	-	0	-	-	116	-	-	99	
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Critical Hdwy	6.44	-	-	-	6.44	-	-	-	-	-	6.94	-	-	6.94	
Critical Hdwy Stg 1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Follow-up Hdwy	2.52	-	-	-	2.52	-	-	-	-	-	3.32	-	-	3.32	
Pot Cap-1 Maneuver	1022	0	-	0	1075	0	-	0	0	0	914	0	0	937	
Stage 1	-	0	-	0	-	0	-	0	0	0	-	0	0	-	
Stage 2	-	0	-	0	-	0	-	0	0	0	-	0	0	-	
Platoon blocked, %			-				-								
Mov Cap-1 Maneuver	1022	-	-	-	1075	-	-	-	-	-	914	-	-	937	
Mov Cap-2 Maneuver	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	

Approach	NB	SB	NE	SW	
HCM Control Delay, s	2.6	0.4	0	0	
HCM LOS			А	А	

Minor Lane/Major Mvmt	NELn1	NBU	NBT	SBU	SBTSW	VLn1
Capacity (veh/h)	-	1022	-	1075	-	-
HCM Lane V/C Ratio	-	0.08	-	0.01	-	-
HCM Control Delay (s)	0	8.8	-	8.4	-	0
HCM Lane LOS	А	А	-	А	-	А
HCM 95th %tile Q(veh)	-	0.3	-	0	-	-

Intersection							
Int Delay, s/veh	0.8						
Movement	NBT	NBR	SBU	SBL	SBT	SWL	SWR
Lane Configurations	- † †		đ		- 11		1
Traffic Vol, veh/h	152	0	30	0	133	0	0
Future Vol, veh/h	152	0	30	0	133	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	-	None	-	None
Storage Length	-	-	-	0	-	-	0
Veh in Median Storage	e, # 0	-	-	-	0	0	-
Grade, %	0	-	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2	2
Mvmt Flow	165	0	33	0	145	0	0

Major/Minor	Major1		Major2		N	1inor1	
Conflicting Flow All	0	-	165	-	-	-	83
Stage 1	-	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-	-
Critical Hdwy	-	-	6.44	-	-	-	6.94
Critical Hdwy Stg 1	-	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-	-
Follow-up Hdwy	-	-	2.52	-	-	-	3.32
Pot Cap-1 Maneuver	-	0	1126	0	-	0	960
Stage 1	-	0	-	0	-	0	-
Stage 2	-	0	-	0	-	0	-
Platoon blocked, %	-				-		
Mov Cap-1 Maneuver		-	1126	-	-	-	960
Mov Cap-2 Maneuver	r -	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-	-
Approach	NB		SB			SW	
HCM Control Delay, s	s 0		1.5			0	
HCM LOS						А	
Minor Lane/Major Mv	mt	NBT	SBU	SBTSW	l n1		
	m	INDI					
Capacity (veh/h)		-	1126	-	-		
HCM Lane V/C Ratio		-	0.029	-	-		
HCM Control Delay (5)	-	8.3	-	0		
HCM Lane LOS	b)	-	A 0.1	-	A		
HCM 95th %tile Q(ve	n)	-	U. I	-	-		

2: TH 61 & CR 10/5th Grant Blvd

Lane Group	EBT	WBT	NBL	NBT	NBR	SBL	SBT	SBR	All
Future Volume (vph)	21	28	11	155	12	27	176	1	431
Control Delay / Veh (s/v)	10	12	8	0	0	8	0	0	2
Queue Delay / Veh (s/v)	0	0	0	0	0	0	0	0	0
Total Delay / Veh (s/v)	10	12	8	0	0	8	0	0	2
Total Delay (hr)	0	0	0	0	0	0	0	0	0
Stops / Veh	1.00	1.00	1.55	0.00	0.00	1.56	0.00	0.00	0.25
Stops (#)	21	28	17	0	0	42	0	0	108
Average Speed (mph)	24	31	43	55	55	42	55	55	48
Total Travel Time (hr)	0	1	0	1	0	0	1	0	4
Distance Traveled (mi)	3	20	5	65	5	11	70	0	180
Fuel Consumed (gal)	0	1	0	2	0	1	2	0	8
Fuel Economy (mpg)	NA	19.2	NA	29.9	NA	9.1	29.9	NA	23.0
CO Emissions (kg)	0.03	0.07	0.03	0.15	0.01	0.08	0.16	0.00	0.54
NOx Emissions (kg)	0.01	0.01	0.01	0.03	0.00	0.02	0.03	0.00	0.11
VOC Emissions (kg)	0.01	0.02	0.01	0.04	0.00	0.02	0.04	0.00	0.13
Unserved Vehicles (#)	0	0	0	0	0	0	0	0	0
Vehs dilemma zone (#)	0	0	0	0	0	0	0	0	0

4: Shields Ave & TH 61

Lane Group	EBR	WBR	NBL	NBT	NBR	SBL	SBT	SBR	All	
Future Volume (vph)	42	152	12	114	66	76	131	91	684	
Control Delay / Veh (s/v)	10	10	8	0	0	8	0	0	4	
Queue Delay / Veh (s/v)	0	0	0	0	0	0	0	0	0	
Total Delay / Veh (s/v)	10	10	8	0	0	8	0	0	4	
Total Delay (hr)	0	0	0	0	0	0	0	0	1	
Stops / Veh	1.00	1.00	1.58	0.00	0.00	1.61	0.00	0.00	0.49	
Stops (#)	42	152	19	0	0	122	0	0	335	
Average Speed (mph)	18	27	32	55	55	31	55	55	37	
Total Travel Time (hr)	0	1	0	0	0	0	0	0	3	
Distance Traveled (mi)	5	36	2	19	11	12	20	14	120	
Fuel Consumed (gal)	1	3	0	1	0	3	1	0	9	
Fuel Economy (mpg)	NA	11.6	NA	NA	NA	4.3	NA	NA	13.3	
CO Emissions (kg)	0.04	0.22	0.03	0.05	0.03	0.19	0.05	0.03	0.63	
NOx Emissions (kg)	0.01	0.04	0.01	0.01	0.01	0.04	0.01	0.01	0.12	
VOC Emissions (kg)	0.01	0.05	0.01	0.01	0.01	0.05	0.01	0.01	0.15	
Unserved Vehicles (#)	0	0	0	0	0	0	0	0	0	
Vehs dilemma zone (#)	0	0	0	0	0	0	0	0	0	

1	Ω	•
- 1	υ	

Lane Group	EBT	WBT	SBL	All
Future Volume (vph)	42	18	10	70
Control Delay / Veh (s/v)	1	0	8	2
Queue Delay / Veh (s/v)	0	0	0	0
Total Delay / Veh (s/v)	1	0	8	2
Total Delay (hr)	0	0	0	0
Stops / Veh	0.24	0.00	1.00	0.29
Stops (#)	10	0	10	20
Average Speed (mph)	33	40	14	33
Total Travel Time (hr)	1	0	0	1
Distance Traveled (mi)	30	5	1	36
Fuel Consumed (gal)	1	0	0	2
Fuel Economy (mpg)	23.9	NA	NA	23.3
CO Emissions (kg)	0.09	0.01	0.01	0.11
NOx Emissions (kg)	0.02	0.00	0.00	0.02
VOC Emissions (kg)	0.02	0.00	0.00	0.03
Unserved Vehicles (#)	0	0	0	0
Vehs dilemma zone (#)	0	0	0	0

Lane Group	NBU	NBT	SBU	SBT	All
Future Volume (vph)	75	191	10	223	499
Control Delay / Veh (s/v)	0	0	0	0	0
Queue Delay / Veh (s/v)	0	0	0	0	0
Total Delay / Veh (s/v)	0	0	0	0	0
Total Delay (hr)	0	0	0	0	0
Stops / Veh	0.00	0.00	0.00	0.00	0.00
Stops (#)	0	0	0	0	0
Average Speed (mph)	55	55	55	55	55
Total Travel Time (hr)	0	1	0	1	1
Distance Traveled (mi)	12	30	1	30	73
Fuel Consumed (gal)	0	1	0	1	2
Fuel Economy (mpg)	NA	NA	NA	29.9	29.9
CO Emissions (kg)	0.03	0.07	0.00	0.07	0.17
NOx Emissions (kg)	0.01	0.01	0.00	0.01	0.03
VOC Emissions (kg)	0.01	0.02	0.00	0.02	0.04
Unserved Vehicles (#)	0	0	0	0	0
Vehs dilemma zone (#)	0	0	0	0	0

Lane Group	NBT	SBU	SBT	All
Future Volume (vph)	152	40	133	325
Control Delay / Veh (s/v)	0	0	0	0
Queue Delay / Veh (s/v)	0	0	0	0
Total Delay / Veh (s/v)	0	0	0	0
Total Delay (hr)	0	0	0	0
Stops / Veh	0.00	0.00	0.00	0.00
Stops (#)	0	0	0	0
Average Speed (mph)	55	55	55	55
Total Travel Time (hr)	1	0	0	1
Distance Traveled (mi)	42	7	23	71
Fuel Consumed (gal)	1	0	1	2
Fuel Economy (mpg)	29.9	NA	NA	29.9
CO Emissions (kg)	0.10	0.02	0.05	0.17
NOx Emissions (kg)	0.02	0.00	0.01	0.03
VOC Emissions (kg)	0.02	0.00	0.01	0.04
Unserved Vehicles (#)	0	0	0	0
Vehs dilemma zone (#)	0	0	0	0

Intersection

N		CDT			WDT			NDT			ODT	000
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		- 44			- 44		<u>۲</u>	- 11	1	- ኘ	- 11	1
Traffic Vol, veh/h	3	3	15	12	1	15	11	155	12	27	176	1
Future Vol, veh/h	3	3	15	12	1	15	11	155	12	27	176	1
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	280	-	265	300	-	250
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	75	75	65	50	25	58	62	84	50	69	79	25
Heavy Vehicles, %	0	3	7	15	0	7	10	12	0	6	12	0
Mvmt Flow	4	4	23	24	4	26	18	185	24	39	223	4

Major/Minor	Minor2		Ν	/linor1		1	Major1		Ν	/lajor2			
Conflicting Flow All	432	546	112	413	526	93	227	0	0	209	0	0	
Stage 1	301	301	-	221	221	-	-	-	-	-	-	-	
Stage 2	131	245	-	192	305	-	-	-	-	-	-	-	
Critical Hdwy	7.5	6.56	7.04	7.8	6.5	7.04	4.3	-	-	4.22	-	-	
Critical Hdwy Stg 1	6.5	5.56	-	6.8	5.5	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	6.5	5.56	-	6.8	5.5	-	-	-	-	-	-	-	
Follow-up Hdwy	3.5	4.03	3.37	3.65	4	3.37	2.3	-	-	2.26	-	-	
Pot Cap-1 Maneuver	512	441	904	493	460	930	1282	-	-	1330	-	-	
Stage 1	689	661	-	725	724	-	-	-	-	-	-	-	
Stage 2	865	700	-	755	666	-	-	-	-	-	-	-	
Platoon blocked, %								-	-		-	-	
Mov Cap-1 Maneuver	· 478	422	904	461	440	930	1282	-	-	1330	-	-	
Mov Cap-2 Maneuver	· 478	422	-	461	440	-	-	-	-	-	-	-	
Stage 1	679	642	-	715	714	-	-	-	-	-	-	-	
Stage 2	824	690	-	710	647	-	-	-	-	-	-	-	

Approach	EB	WB	NB	SB	
HCM Control Delay, s	10.3	11.5	0.6	1.1	
HCM LOS	В	В			

Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1V	WBLn1	SBL	SBT	SBR
Capacity (veh/h)	1282	-	-	716	605	1330	-	-
HCM Lane V/C Ratio	0.014	-	-	0.043	0.089	0.029	-	-
HCM Control Delay (s)	7.8	-	-	10.3	11.5	7.8	-	-
HCM Lane LOS	А	-	-	В	В	Α	-	-
HCM 95th %tile Q(veh)	0	-	-	0.1	0.3	0.1	-	-

Intersection

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
	LDL	LDI		VVDL	VVDT					JDL		
Lane Configurations			- T			- T	- 1	- † †	- T	- T	- 11	- T
Traffic Vol, veh/h	0	0	42	0	0	152	12	114	66	76	131	91
Future Vol, veh/h	0	0	42	0	0	152	12	114	66	76	131	91
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	0	-	-	0	265	-	250	250	-	250
Veh in Median Storage	,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	38	67	25	50	65	82	50	72	77	80	81	79
Heavy Vehicles, %	36	19	30	10	21	10	13	24	9	7	17	35
Mvmt Flow	0	0	168	0	0	185	24	158	86	95	162	115

Major/Minor	Minor2		N	linor1		ľ	Major1		Ν	/lajor2			
Conflicting Flow All	-	-	81	-	-	79	277	0	0	244	0	0	
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-	
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-	
Critical Hdwy	-	-	7.5	-	-	7.1	4.36	-	-	4.24	-	-	
Critical Hdwy Stg 1	-	-	-	-	-	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	-	-	-	-	-	-	
Follow-up Hdwy	-	-	3.6	-	-	3.4	2.33	-	-	2.27	-	-	
Pot Cap-1 Maneuver	0	0	879	0	0	940	1207	-	-	1284	-	-	
Stage 1	0	0	-	0	0	-	-	-	-	-	-	-	
Stage 2	0	0	-	0	0	-	-	-	-	-	-	-	
Platoon blocked, %								-	-		-	-	
Mov Cap-1 Maneuver	r -	-	879	-	-	940	1207	-	-	1284	-	-	
Mov Cap-2 Maneuve	r –	-	-	-	-	-	-	-	-	-	-	-	
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-	
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-	

Approach	EB	WB	NB	SB	
HCM Control Delay, s	10.1	9.8	0.7	2.1	
HCM LOS	В	А			

Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1V	VBLn1	SBL	SBT	SBR
Capacity (veh/h)	1207	-	-	879	940	1284	-	-
HCM Lane V/C Ratio	0.02	-	-	0.191	0.197	0.074	-	-
HCM Control Delay (s)	8	-	-	10.1	9.8	8	-	-
HCM Lane LOS	А	-	-	В	А	Α	-	-
HCM 95th %tile Q(veh)	0.1	-	-	0.7	0.7	0.2	-	-

Intersection						
Int Delay, s/veh	1.9					
•		EDT			CDL	000
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	40	्री	₽	•	۰Y	40
Traffic Vol, veh/h	10	32	18	0	0	10
Future Vol, veh/h	10	32	18	0	0	10
Conflicting Peds, #/hr		0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storag	e, # -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	92	75	71	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	11	43	25	0	0	11
Major/Minor	Major1	N	Acier?	,	liner?	
Major/Minor	Major1		/lajor2		Minor2	05
Conflicting Flow All	25	0	-	0	90	25
Stage 1	-	-	-	-	25	-
Stage 2	-	-	-	-	65	-
Critical Hdwy	4.12	-	-	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	2.218	-	-	-	3.518	
Pot Cap-1 Maneuver	1589	-	-	-	910	1051
Stage 1	-	-	-	-	998	-
Stage 2	-	-	-	-	958	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	1589	-	-	-	904	1051
Mov Cap-2 Maneuver		-	-	-	904	-
Stage 1	-	-	-	-	991	-
Stage 2	-	-	-	-	958	-
0						
Approach	ED		WB		CD	
Approach	EB	_		_	SB	
HCM Control Delay, s	1.5		0		8.5	
HCM LOS					A	
Minor Lane/Major Mvr	nt	EBL	EBT	WBT	WBR	SBI n1
Capacity (veh/h)		1589	201			1051
HCM Lane V/C Ratio		0.007	-	-	-	0.01
HCM Control Delay (s)	7.3	0	-	-	8.5
HCM Lane LOS	7		-			
	-)	A	A	-	-	A
HCM 95th %tile Q(veh	I)	0	-	-	-	0

Int	ore	ect	nn
	1013	COL	

•															
Movement	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR	NEL	NET	NER	SWL	SWT	SWR	
Lane Configurations	đ		- 11		đ		- 11				1			1	
Traffic Vol, veh/h	75	0	191	0	10	0	223	0	0	0	0	0	0	0	
Future Vol, veh/h	75	0	191	0	10	0	223	0	0	0	0	0	0	0	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Free	Stop	Stop	Stop	Stop	Stop	Stop								
RT Channelized	-	-	-	None	-	-	-	None	-	-	None	-	-	None	
Storage Length	-	0	-	-	-	0	-	-	-	-	0	-	-	0	
Veh in Median Storage,	,# -	-	0	-	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	-	0	-	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92	92	92	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	82	0	208	0	11	0	242	0	0	0	0	0	0	0	

Major/Minor	Major1			Ν	1ajor2			Mir	nor2		М	inor1			
Conflicting Flow All	242	-	0	-	208	-	-	0	-	-	121	-	-	104	
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Critical Hdwy	6.44	-	-	-	6.44	-	-	-	-	-	6.94	-	-	6.94	
Critical Hdwy Stg 1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Follow-up Hdwy	2.52	-	-	-	2.52	-	-	-	-	-	3.32	-	-	3.32	
Pot Cap-1 Maneuver	1007	0	-	0	1058	0	-	0	0	0	908	0	0	931	
Stage 1	-	0	-	0	-	0	-	0	0	0	-	0	0	-	
Stage 2	-	0	-	0	-	0	-	0	0	0	-	0	0	-	
Platoon blocked, %			-				-								
Mov Cap-1 Maneuver	1007	-	-	-	1058	-	-	-	-	-	908	-	-	931	
Mov Cap-2 Maneuver	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	

Approach	NB	SB	NE	SW	
HCM Control Delay, s	2.5	0.4	0	0	
HCM LOS			А	А	

Minor Lane/Major Mvmt	NELn1	NBU	NBT	SBU	SBTSW	VLn1
Capacity (veh/h)	-	1007	-	1058	-	-
HCM Lane V/C Ratio	-	0.081	-	0.01	-	-
HCM Control Delay (s)	0	8.9	-	8.4	-	0
HCM Lane LOS	A	А	-	А	-	Α
HCM 95th %tile Q(veh)	-	0.3	-	0	-	-

1

Intersection

Movement	NBT	NBR	SBU	SBL	SBT	SWL	SWR
Lane Configurations	- 11		đ		- 11		1
Traffic Vol, veh/h	152	0	40	0	133	0	0
Future Vol, veh/h	152	0	40	0	133	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	-	None	-	None
Storage Length	-	-	-	0	-	-	0
Veh in Median Storage,	,# 0	-	-	-	0	0	-
Grade, %	0	-	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2	2
Mvmt Flow	165	0	43	0	145	0	0

Major/Minor	Major1	_	Major2		N/	linor1	
					IV		83
Conflicting Flow All	0	-	165	-	-	-	03
Stage 1	-	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-	- -
Critical Hdwy	-	-	6.44	-	-	-	6.94
Critical Hdwy Stg 1	-	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-	-
Follow-up Hdwy	-	-	2.52	-	-	-	3.32
Pot Cap-1 Maneuver	-	0	1126	0	-	0	960
Stage 1	-	0	-	0	-	0	-
Stage 2	-	0	-	0	-	0	-
Platoon blocked, %	-				-		
Mov Cap-1 Maneuver		-	1126	-	-	-	960
Mov Cap-2 Maneuver		-	-	-	-	-	-
Stage 1	-	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-	-
Approach	NB		SB			SW	
HCM Control Delay, s			1.9			0	
HCM LOS	5 0		1.9			A	
						A	
Minor Lane/Major Mvi	mt	NBT	SBU	SBTSWL	.n1		
Capacity (veh/h)		-	1126	-	-		
HCM Lane V/C Ratio		-	0.039	-	-		
HCM Control Delay (s	5)	-	8.3	-	0		
HCM Lane LOS		-	A	-	Ă		
HCM 95th %tile Q(vel	h)	-	0.1	-	-		
	,		v . 1				

2: TH 61 & CR 10/5th Grant Blvd

Lane Group	EBT	WBT	NBL	NBT	NBR	SBL	SBT	SBR	All
Future Volume (vph)	30	32	27	254	1	13	267	1	625
Control Delay / Veh (s/v)	12	14	8	0	0	8	0	0	2
Queue Delay / Veh (s/v)	0	0	0	0	0	0	0	0	0
Total Delay / Veh (s/v)	12	14	8	0	0	8	0	0	2
Total Delay (hr)	0	0	0	0	0	0	0	0	0
Stops / Veh	1.00	1.00	1.67	0.00	0.00	1.62	0.00	0.00	0.20
Stops (#)	30	32	45	0	0	21	0	0	128
Average Speed (mph)	22	30	42	55	55	42	55	55	49
Total Travel Time (hr)	0	1	0	2	0	0	2	0	5
Distance Traveled (mi)	5	23	11	107	0	5	106	0	259
Fuel Consumed (gal)	1	1	1	4	0	1	4	0	11
Fuel Economy (mpg)	NA	19.1	9.0	29.9	NA	NA	29.9	NA	24.0
CO Emissions (kg)	0.04	0.08	0.09	0.25	0.00	0.04	0.25	0.00	0.75
NOx Emissions (kg)	0.01	0.02	0.02	0.05	0.00	0.01	0.05	0.00	0.15
VOC Emissions (kg)	0.01	0.02	0.02	0.06	0.00	0.01	0.06	0.00	0.17
Unserved Vehicles (#)	0	0	0	0	0	0	0	0	0
Vehs dilemma zone (#)	0	0	0	0	0	0	0	0	0

4: Shields Ave & TH 61

Lane Group	EBR	WBR	NBL	NBT	NBR	SBL	SBT	SBR	All	
Future Volume (vph)	104	176	15	206	80	120	227	60	988	
Control Delay / Veh (s/v)	10	10	8	0	0	9	0	0	4	
Queue Delay / Veh (s/v)	0	0	0	0	0	0	0	0	0	
Total Delay / Veh (s/v)	10	10	8	0	0	9	0	0	4	
Total Delay (hr)	0	1	0	0	0	0	0	0	1	
Stops / Veh	1.00	1.00	1.67	0.00	0.00	1.75	0.00	0.00	0.52	
Stops (#)	104	176	25	0	0	210	0	0	515	
Average Speed (mph)	18	30	32	55	55	30	55	55	37	
Total Travel Time (hr)	1	2	0	1	0	1	1	0	5	
Distance Traveled (mi)	13	60	3	35	14	19	35	9	188	
Fuel Consumed (gal)	1	4	1	1	0	5	1	0	14	
Fuel Economy (mpg)	9.8	14.1	NA	29.9	NA	3.9	29.9	NA	13.4	
CO Emissions (kg)	0.09	0.30	0.04	0.08	0.03	0.33	0.08	0.02	0.98	
NOx Emissions (kg)	0.02	0.06	0.01	0.02	0.01	0.06	0.02	0.00	0.19	
VOC Emissions (kg)	0.02	0.07	0.01	0.02	0.01	0.08	0.02	0.01	0.23	
Unserved Vehicles (#)	0	0	0	0	0	0	0	0	0	
Vehs dilemma zone (#)	0	0	0	0	0	0	0	0	0	

Lane Group	NBU	NBT	SBU	SBT	All
Future Volume (vph)	81	301	7	326	715
Control Delay / Veh (s/v)	0	0	0	0	0
Queue Delay / Veh (s/v)	0	0	0	0	0
Total Delay / Veh (s/v)	0	0	0	0	0
Total Delay (hr)	0	0	0	0	0
Stops / Veh	0.00	0.00	0.00	0.00	0.00
Stops (#)	0	0	0	0	0
Average Speed (mph)	55	55	55	55	55
Total Travel Time (hr)	0	1	0	1	2
Distance Traveled (mi)	13	47	1	44	105
Fuel Consumed (gal)	0	2	0	1	4
Fuel Economy (mpg)	NA	29.9	NA	29.9	29.9
CO Emissions (kg)	0.03	0.11	0.00	0.10	0.24
NOx Emissions (kg)	0.01	0.02	0.00	0.02	0.05
VOC Emissions (kg)	0.01	0.03	0.00	0.02	0.06
Unserved Vehicles (#)	0	0	0	0	0
Vehs dilemma zone (#)	0	0	0	0	0

Lane Group	NBT	SBU	SBT	All
Future Volume (vph)	221	80	251	552
Control Delay / Veh (s/v)	0	0	0	0
Queue Delay / Veh (s/v)	0	0	0	0
Total Delay / Veh (s/v)	0	0	0	0
Total Delay (hr)	0	0	0	0
Stops / Veh	0.00	0.00	0.00	0.00
Stops (#)	0	0	0	0
Average Speed (mph)	55	55	55	55
Total Travel Time (hr)	1	0	1	2
Distance Traveled (mi)	61	14	43	117
Fuel Consumed (gal)	2	0	1	4
Fuel Economy (mpg)	29.9	NA	29.9	29.9
CO Emissions (kg)	0.14	0.03	0.10	0.27
NOx Emissions (kg)	0.03	0.01	0.02	0.05
VOC Emissions (kg)	0.03	0.01	0.02	0.06
Unserved Vehicles (#)	0	0	0	0
Vehs dilemma zone (#)	0	0	0	0

20).
20).

Lane Group	EBT	WBT	All
Future Volume (vph)	17	32	49
Control Delay / Veh (s/v)	0	0	0
Queue Delay / Veh (s/v)	0	0	0
Total Delay / Veh (s/v)	0	0	0
Total Delay (hr)	0	0	0
Stops / Veh	0.00	0.00	0.00
Stops (#)	0	0	0
Average Speed (mph)	33	40	36
Total Travel Time (hr)	0	0	1
Distance Traveled (mi)	12	9	22
Fuel Consumed (gal)	0	0	1
Fuel Economy (mpg)	NA	NA	NA
CO Emissions (kg)	0.03	0.02	0.06
NOx Emissions (kg)	0.01	0.00	0.01
VOC Emissions (kg)	0.01	0.01	0.01
Unserved Vehicles (#)	0	0	0
Vehs dilemma zone (#)	0	0	0

2

11/28/2022

Intersection

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		٦	† †	1	٦	† †	1
Traffic Vol, veh/h	3	3	24	3	6	23	27	254	1	13	267	1
Future Vol, veh/h	3	3	24	3	6	23	27	254	1	13	267	1
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	280	-	265	300	-	250
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	50	50	75	38	62	66	72	85	25	60	69	25
Heavy Vehicles, %	0	3	7	85	0	7	10	12	89	6	12	0
Mvmt Flow	6	6	32	8	10	35	38	299	4	22	387	4

Major/Minor	Minor2		Ν	/linor1		ľ	Major1		Ν	lajor2			
Conflicting Flow All	662	810	194	616	810	150	391	0	0	303	0	0	
Stage 1	431	431	-	375	375	-	-	-	-	-	-	-	
Stage 2	231	379	-	241	435	-	-	-	-	-	-	-	
Critical Hdwy	7.5	6.56	7.04	9.2	6.5	7.04	4.3	-	-	4.22	-	-	
Critical Hdwy Stg 1	6.5	5.56	-	8.2	5.5	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	6.5	5.56	-	8.2	5.5	-	-	-	-	-	-	-	
Follow-up Hdwy	3.5	4.03	3.37	4.35	4	3.37	2.3	-	-	2.26	-	-	
Pot Cap-1 Maneuver	351	311	799	243	316	854	1109	-	-	1226	-	-	
Stage 1	578	579	-	438	621	-	-	-	-	-	-	-	
Stage 2	757	610	-	551	584	-	-	-	-	-	-	-	
Platoon blocked, %								-	-		-	-	
Mov Cap-1 Maneuver	r 316	295	799	221	300	854	1109	-	-	1226	-	-	
Mov Cap-2 Maneuver	r 316	295	-	221	300	-	-	-	-	-	-	-	
Stage 1	558	569	-	423	600	-	-	-	-	-	-	-	
Stage 2	690	589	-	514	573	-	-	-	-	-	-	-	

Approach	EB	WB	NB	SB	
HCM Control Delay, s	12.1	13.4	0.9	0.4	
HCM LOS	В	В			

Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1V	WBLn1	SBL	SBT	SBR
Capacity (veh/h)	1109	-	-	554	482	1226	-	-
HCM Lane V/C Ratio	0.034	-	-	0.079	0.109	0.018	-	-
HCM Control Delay (s)	8.4	-	-	12.1	13.4	8	-	-
HCM Lane LOS	А	-	-	В	В	Α	-	-
HCM 95th %tile Q(veh)	0.1	-	-	0.3	0.4	0.1	-	-

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations			1			1	۲	† †	1	۲	1	1
Traffic Vol, veh/h	0	0	104	0	0	176	15	206	80	120	227	60
Future Vol, veh/h	0	0	104	0	0	176	15	206	80	120	227	60
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	0	-	-	0	265	-	250	250	-	250
Veh in Median Storage,	, # -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	71	66	68	69	49	86	65	79	71	65	84	81
Heavy Vehicles, %	36	19	11	10	21	10	13	17	9	7	17	35
Mvmt Flow	0	0	153	0	0	205	23	261	113	185	270	74

Major/Minor	Minor2		Ν	1inor1		1	Major1		Ν	1ajor2			
Conflicting Flow All	-	-	135	-	-	131	344	0	0	374	0	0	
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-	
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-	
Critical Hdwy	-	-	7.12	-	-	7.1	4.36	-	-	4.24	-	-	
Critical Hdwy Stg 1	-	-	-	-	-	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	-	-	-	-	-	-	
Follow-up Hdwy	-	-	3.41	-	-	3.4	2.33	-	-	2.27	-	-	
Pot Cap-1 Maneuver	0	0	861	0	0	869	1136	-	-	1146	-	-	
Stage 1	0	0	-	0	0	-	-	-	-	-	-	-	
Stage 2	0	0	-	0	0	-	-	-	-	-	-	-	
Platoon blocked, %								-	-		-	-	
Mov Cap-1 Maneuver	-	-	861	-	-	869	1136	-	-	1146	-	-	
Mov Cap-2 Maneuver	-	-	-	-	-	-	-	-	-	-	-	-	
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-	
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-	
Approach	EB			WB			NB			SB			
HCM Control Delay, s	10.1			10.4			0.5			3.1			

HCM LOS B B

Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1V	VBLn1	SBL	SBT	SBR
Capacity (veh/h)	1136	-	-	861	869	1146	-	-
HCM Lane V/C Ratio	0.02	-	-	0.178	0.236	0.161	-	-
HCM Control Delay (s)	8.2	-	-	10.1	10.4	8.7	-	-
HCM Lane LOS	А	-	-	В	В	А	-	-
HCM 95th %tile Q(veh)	0.1	-	-	0.6	0.9	0.6	-	-

Interse	ction
	0000

•															
Movement	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR	NEL	NET	NER	SWL	SWT	SWR	
Lane Configurations	đ		- 11		đ		- 11				1			1	
Traffic Vol, veh/h	81	0	301	0	7	0	326	0	0	0	0	0	0	0	
Future Vol, veh/h	81	0	301	0	7	0	326	0	0	0	0	0	0	0	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Free	Stop	Stop	Stop	Stop	Stop	Stop								
RT Channelized	-	-	-	None	-	-	-	None	-	-	None	-	-	None	
Storage Length	-	0	-	-	-	0	-	-	-	-	0	-	-	0	
Veh in Median Storage,	# -	-	0	-	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	-	0	-	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92	92	92	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	88	0	327	0	8	0	354	0	0	0	0	0	0	0	

Major/Minor	Major1			N	lajor2			Mir	nor2		М	inor1			
Conflicting Flow All	354	-	0	-	327	-	-	0	-	-	177	-	-	164	
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Critical Hdwy	6.44	-	-	-	6.44	-	-	-	-	-	6.94	-	-	6.94	
Critical Hdwy Stg 1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Follow-up Hdwy	2.52	-	-	-	2.52	-	-	-	-	-	3.32	-	-	3.32	
Pot Cap-1 Maneuver	856	0	-	0	890	0	-	0	0	0	835	0	0	852	
Stage 1	-	0	-	0	-	0	-	0	0	0	-	0	0	-	
Stage 2	-	0	-	0	-	0	-	0	0	0	-	0	0	-	
Platoon blocked, %			-				-								
Mov Cap-1 Maneuver	856	-	-	-	890	-	-	-	-	-	835	-	-	852	
Mov Cap-2 Maneuver	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	

Approach	NB	SB	NE	SW	
HCM Control Delay, s	2.1	0.2	0	0	
HCM LOS			А	А	

Minor Lane/Major Mvmt	NELn1	NBU	NBT	SBU	SBTSV	VLn1
Capacity (veh/h)	-	856	-	890	-	-
HCM Lane V/C Ratio	-	0.103	-	0.009	-	-
HCM Control Delay (s)	0	9.7	-	9.1	-	0
HCM Lane LOS	A	А	-	А	-	Α
HCM 95th %tile Q(veh)	-	0.3	-	0	-	-

Intersection							
Int Delay, s/veh	1.3						
Movement	NBT	NBR	SBU	SBL	SBT	SWL	SWR
Lane Configurations	- 11		đ		- 11		1
Traffic Vol, veh/h	221	0	80	0	251	0	0
Future Vol, veh/h	221	0	80	0	251	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	-	None	-	None
Storage Length	-	-	-	0	-	-	0
Veh in Median Storage	e, # 0	-	-	-	0	0	-
Grade, %	0	-	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	15	2	2	2	2
Mvmt Flow	240	0	87	0	273	0	0

Major/Minor	Major1		Major2		Ν	1inor1	
Conflicting Flow All	0	-	240	-	-	-	120
Stage 1	-	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-	-
Critical Hdwy	-	-	6.7	-	-	-	6.94
Critical Hdwy Stg 1	-	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-	-
Follow-up Hdwy	-	-	2.65	-	-	-	3.32
Pot Cap-1 Maneuver	-	0	948	0	-	0	909
Stage 1	-	0	-	0	-	0	-
Stage 2	-	0	-	0	-	0	-
Platoon blocked, %	-				-		
Mov Cap-1 Maneuver		-	948	-	-	-	909
Mov Cap-2 Maneuver	· -	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-	-
Approach	NB		SB			SW	
HCM Control Delay, s	; 0		2.2			0	
HCM LOS						А	
Minor Lane/Major Mvi	mt	NBT	SBU	SBTSW	l n1		
	int		948				
Capacity (veh/h) HCM Lane V/C Ratio		-	940 0.092	-	-		
HCM Control Delay (s	•)	-	9.2	-	0		
HCM Lane LOS)	-	9.2 A	-	A		
HCM 95th %tile Q(vel	h)	-	0.3	-	A		
	1)	-	0.5	-	-		

Intersection						
Int Delay, s/veh	0					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		्र	4		- ¥	
Traffic Vol, veh/h	0	17	32	0	0	0
Future Vol, veh/h	0	17	32	0	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage	e, # -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	92	75	72	92	92	92
Heavy Vehicles, %	95	2	2	2	2	95
Mvmt Flow	0	23	44	0	0	0
Major/Minor	Major1	ľ	Major2	Ν	/linor2	
Conflicting Flow All		0		0	67	11

Conflicting Flow All	44	0	-	0	67	44
Stage 1	-	-	-	-	44	-
Stage 2	-	-	-	-	23	-
Critical Hdwy	5.05	-	-	-	6.42	7.15
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	3.055	-	-	-	3.518	4.155
Pot Cap-1 Maneuver	1129	-	-	-	938	814
Stage 1	-	-	-	-	978	-
Stage 2	-	-	-	-	1000	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver		-	-	-	938	814
Mov Cap-2 Maneuver	_	-	-	-	938	-
Stage 1	-	-	-	-	978	-
Stage 2	-	-	-	-	1000	-
Approach	EB		WB		SB	
HCM Control Delay, s			0		0	
HCM LOS	0		0		A	
					A	
Minor Lane/Major Mvn	nt	EBL	EBT	WBT	WBR	SBLn1
Capacity (veh/h)		1129	-	-	-	-
HCM Lane V/C Ratio		-	-	-	-	-
HCM Control Delay (s	5)	0	-	-	-	0
HCM Lane LOS		А	-	-	-	А
HCM 95th %tile Q(veh	ו)	0	-	-	-	-

2: TH 61 & CR 10/5th Grant Blvd

Lane Group	EBT	WBT	NBL	NBT	NBR	SBL	SBT	SBR	All
Future Volume (vph)	30	42	27	254	11	13	267	1	645
Control Delay / Veh (s/v)	12	19	8	0	0	8	0	0	2
Queue Delay / Veh (s/v)	0	0	0	0	0	0	0	0	0
Total Delay / Veh (s/v)	12	19	8	0	0	8	0	0	2
Total Delay (hr)	0	0	0	0	0	0	0	0	0
Stops / Veh	1.00	1.00	1.67	0.00	0.00	1.62	0.00	0.00	0.21
Stops (#)	30	42	45	0	0	21	0	0	138
Average Speed (mph)	22	28	42	55	55	42	55	55	48
Total Travel Time (hr)	0	1	0	2	0	0	2	0	6
Distance Traveled (mi)	5	30	11	107	5	5	106	0	270
Fuel Consumed (gal)	1	2	1	4	0	1	4	0	11
Fuel Economy (mpg)	NA	18.5	9.0	29.9	NA	NA	29.9	NA	23.8
CO Emissions (kg)	0.04	0.11	0.09	0.25	0.01	0.04	0.25	0.00	0.79
NOx Emissions (kg)	0.01	0.02	0.02	0.05	0.00	0.01	0.05	0.00	0.15
VOC Emissions (kg)	0.01	0.03	0.02	0.06	0.00	0.01	0.06	0.00	0.18
Unserved Vehicles (#)	0	0	0	0	0	0	0	0	0
Vehs dilemma zone (#)	0	0	0	0	0	0	0	0	0

4: Shields Ave & TH 61

Lane Group	EBR	WBR	NBL	NBT	NBR	SBL	SBT	SBR	All	
Future Volume (vph)	114	176	15	216	80	120	227	70	1018	
Control Delay / Veh (s/v)	10	10	8	0	0	9	0	0	4	
Queue Delay / Veh (s/v)	0	0	0	0	0	0	0	0	0	
Total Delay / Veh (s/v)	10	10	8	0	0	9	0	0	4	
Total Delay (hr)	0	1	0	0	0	0	0	0	1	
Stops / Veh	1.00	1.00	1.67	0.00	0.00	1.76	0.00	0.00	0.52	
Stops (#)	114	176	25	0	0	211	0	0	526	
Average Speed (mph)	18	30	32	55	55	30	55	55	36	
Total Travel Time (hr)	1	2	0	1	0	1	1	0	5	
Distance Traveled (mi)	14	60	3	37	14	19	35	11	192	
Fuel Consumed (gal)	1	4	1	1	0	5	1	0	14	
Fuel Economy (mpg)	9.8	14.1	NA	29.9	NA	3.9	29.9	NA	13.5	
CO Emissions (kg)	0.10	0.30	0.04	0.09	0.03	0.33	0.08	0.03	1.00	
NOx Emissions (kg)	0.02	0.06	0.01	0.02	0.01	0.06	0.02	0.00	0.19	
VOC Emissions (kg)	0.02	0.07	0.01	0.02	0.01	0.08	0.02	0.01	0.23	
Unserved Vehicles (#)	0	0	0	0	0	0	0	0	0	
Vehs dilemma zone (#)	0	0	0	0	0	0	0	0	0	

22: TH 61

Lane Group	NBU	NBT	SBU	SBT	All
Future Volume (vph)	81	311	7	336	735
Control Delay / Veh (s/v)	0	0	0	0	0
Queue Delay / Veh (s/v)	0	0	0	0	0
Total Delay / Veh (s/v)	0	0	0	0	0
Total Delay (hr)	0	0	0	0	0
Stops / Veh	0.00	0.00	0.00	0.00	0.00
Stops (#)	0	0	0	0	0
Average Speed (mph)	55	55	55	55	55
Total Travel Time (hr)	0	1	0	1	2
Distance Traveled (mi)	13	49	1	46	108
Fuel Consumed (gal)	0	2	0	2	4
Fuel Economy (mpg)	NA	29.9	NA	29.9	29.9
CO Emissions (kg)	0.03	0.11	0.00	0.11	0.25
NOx Emissions (kg)	0.01	0.02	0.00	0.02	0.05
VOC Emissions (kg)	0.01	0.03	0.00	0.02	0.06
Unserved Vehicles (#)	0	0	0	0	0
Vehs dilemma zone (#)	0	0	0	0	0

23: TH 61

	NET	0011	007	
Lane Group	NBT	SBU	SBT	All
Future Volume (vph)	221	90	251	562
Control Delay / Veh (s/v)	0	0	0	0
Queue Delay / Veh (s/v)	0	0	0	0
Total Delay / Veh (s/v)	0	0	0	0
Total Delay (hr)	0	0	0	0
Stops / Veh	0.00	0.00	0.00	0.00
Stops (#)	0	0	0	0
Average Speed (mph)	55	55	55	55
Total Travel Time (hr)	1	0	1	2
Distance Traveled (mi)	61	15	43	119
Fuel Consumed (gal)	2	1	1	4
Fuel Economy (mpg)	29.9	NA	29.9	29.9
CO Emissions (kg)	0.14	0.04	0.10	0.28
NOx Emissions (kg)	0.03	0.01	0.02	0.05
VOC Emissions (kg)	0.03	0.01	0.02	0.06
Unserved Vehicles (#)	0	0	0	0
Vehs dilemma zone (#)	0	0	0	0

20	•
-20	

11/28/2022

11/28/2022

Intersection

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		۲	^	1	۲	<u>Λ</u>	1
Traffic Vol, veh/h	3	3	24	13	6	23	27	254	11	13	267	1
Future Vol, veh/h	3	3	24	13	6	23	27	254	11	13	267	1
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	280	-	265	300	-	250
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	50	50	75	38	62	66	72	85	25	60	69	25
Heavy Vehicles, %	0	3	7	85	0	7	10	12	89	6	12	0
Mvmt Flow	6	6	32	34	10	35	38	299	44	22	387	4

Major/Minor	Minor2		Ν	/linor1		M	Major1		Ν	lajor2			
Conflicting Flow All	662	850	194	616	810	150	391	0	0	343	0	0	
Stage 1	431	431	-	375	375	-	-	-	-	-	-	-	
Stage 2	231	419	-	241	435	-	-	-	-	-	-	-	
Critical Hdwy	7.5	6.56	7.04	9.2	6.5	7.04	4.3	-	-	4.22	-	-	
Critical Hdwy Stg 1	6.5	5.56	-	8.2	5.5	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	6.5	5.56	-	8.2	5.5	-	-	-	-	-	-	-	
Follow-up Hdwy	3.5	4.03	3.37	4.35	4	3.37	2.3	-	-	2.26	-	-	
Pot Cap-1 Maneuver	351	294	799	243	316	854	1109	-	-	1184	-	-	
Stage 1	578	579	-	438	621	-	-	-	-	-	-	-	
Stage 2	757	586	-	551	584	-	-	-	-	-	-	-	
Platoon blocked, %								-	-		-	-	
Mov Cap-1 Maneuver	· 315	279	799	220	300	854	1109	-	-	1184	-	-	
Mov Cap-2 Maneuver	· 315	279	-	220	300	-	-	-	-	-	-	-	
Stage 1	558	568	-	423	600	-	-	-	-	-	-	-	
Stage 2	690	566	-	514	573	-	-	-	-	-	-	-	

Approach	EB	WB	NB	SB	
HCM Control Delay, s	12.2	18.5	0.8	0.4	
HCM LOS	В	С			

Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1V	WBLn1	SBL	SBT	SBR
Capacity (veh/h)	1109	-	-	546	344	1184	-	-
HCM Lane V/C Ratio	0.034	-	-	0.081	0.229	0.018	-	-
HCM Control Delay (s)	8.4	-	-	12.2	18.5	8.1	-	-
HCM Lane LOS	А	-	-	В	С	Α	-	-
HCM 95th %tile Q(veh)	0.1	-	-	0.3	0.9	0.1	-	-

Intersection

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
	EDL	EDI		VVDL	VVDI	WDR	INDL			JDL			
Lane Configurations			<u> </u>			<u> </u>	<u></u>	<u>. TT</u>	<u> </u>	<u></u>	<u>. TT</u>	<u> </u>	
Traffic Vol, veh/h	0	0	114	0	0	176	15	216	80	120	227	70	
Future Vol, veh/h	0	0	114	0	0	176	15	216	80	120	227	70	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None	
Storage Length	-	-	0	-	-	0	265	-	250	250	-	250	
Veh in Median Storage	, # -	0	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	71	66	68	69	49	86	65	79	71	65	84	81	
Heavy Vehicles, %	36	19	22	10	21	10	13	22	9	7	17	35	
Mvmt Flow	0	0	168	0	0	205	23	273	113	185	270	86	

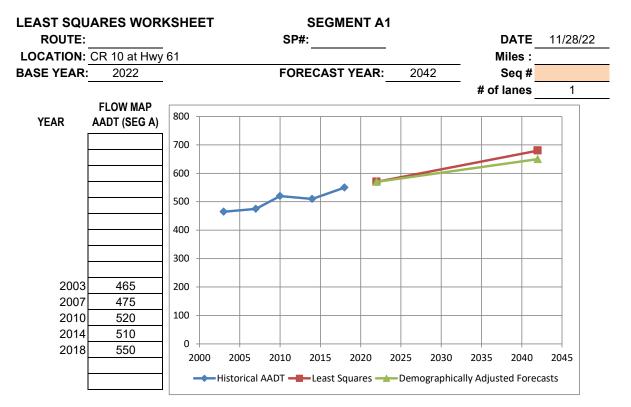
Minor2		Μ	linor1		ľ	/lajor1		N	/lajor2			
-	-	135	-	-	137	356	0	0	386	0	0	
-	-	-	-	-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	-	-	-	-	
-	-	7.34	-	-	7.1	4.36	-	-	4.24	-	-	
-	-	-	-	-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	-	-	-	-	
-	-	3.52	-	-	3.4	2.33	-	-	2.27	-	-	
0	0	829	0	0	862	1124	-	-	1134	-	-	
0	0	-	0	0	-	-	-	-	-	-	-	
0	0	-	0	0	-	-	-	-	-	-	-	
							-	-		-	-	
-	-	829	-	-	862	1124	-	-	1134	-	-	
-	-	-	-	-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	-	-	-	-	
	- - - - - 0 0 0 0	 0 0 0 0 0 0 0 0	135 7.34 7.34 3.52 0 0 829 0 0 - 0 0 - 0 0 -	135 - 7.34 - 7.34 - 	135 7.34 7.34 3.52 0 0 829 0 0 0 0 - 0 0 0 0 - 0 0 829	$\begin{array}{cccccccccccccccccccccccccccccccccccc$						

Approach	EB	WB	NB	SB	
HCM Control Delay, s	10.4	10.5	0.5	3	
HCM LOS	В	В			

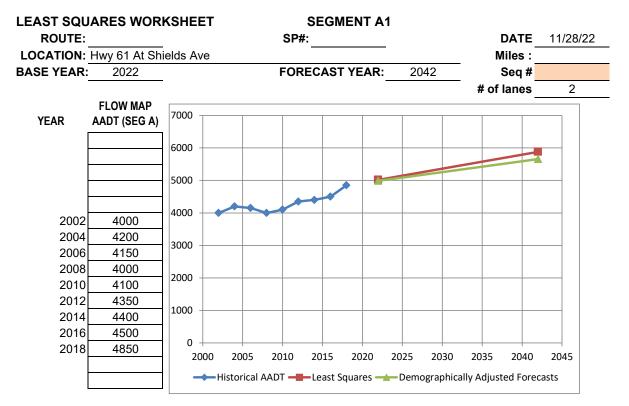
Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1V	WBLn1	SBL	SBT	SBR
Capacity (veh/h)	1124	-	-	829	862	1134	-	-
HCM Lane V/C Ratio	0.021	-	-	0.202	0.237	0.163	-	-
HCM Control Delay (s)	8.3	-	-	10.4	10.5	8.8	-	-
HCM Lane LOS	А	-	-	В	В	Α	-	-
HCM 95th %tile Q(veh)	0.1	-	-	0.8	0.9	0.6	-	-

Movement	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR	NEL	NET	NER	SWL	SWT	SWR	
Lane Configurations	đ		- 11		đ		- 11				1			1	
Traffic Vol, veh/h	81	0	311	0	7	0	336	0	0	0	0	0	0	0	
Future Vol, veh/h	81	0	311	0	7	0	336	0	0	0	0	0	0	0	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Free	Stop	Stop	Stop	Stop	Stop	Stop								
RT Channelized	-	-	-	None	-	-	-	None	-	-	None	-	-	None	
Storage Length	-	0	-	-	-	0	-	-	-	-	0	-	-	0	
Veh in Median Storage,	# -	-	0	-	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	-	0	-	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92	92	92	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	88	0	338	0	8	0	365	0	0	0	0	0	0	0	

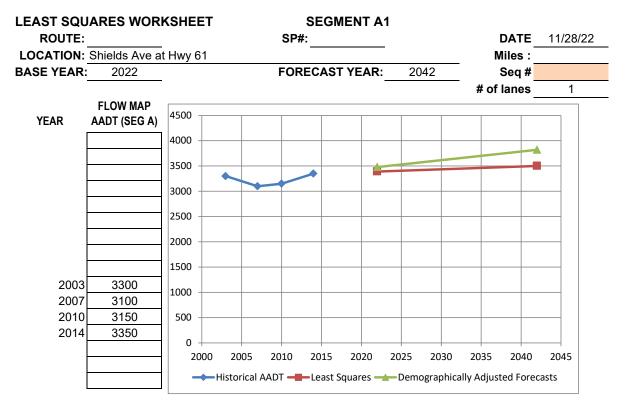
Major/Minor	Major1			Ν	lajor2			Mir	nor2		М	inor1			
Conflicting Flow All	365	-	0	-	338	-	-	0	-	-	183	-	-	169	
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Critical Hdwy	6.44	-	-	-	6.44	-	-	-	-	-	6.94	-	-	6.94	
Critical Hdwy Stg 1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Follow-up Hdwy	2.52	-	-	-	2.52	-	-	-	-	-	3.32	-	-	3.32	
Pot Cap-1 Maneuver	843	0	-	0	876	0	-	0	0	0	828	0	0	845	
Stage 1	-	0	-	0	-	0	-	0	0	0	-	0	0	-	
Stage 2	-	0	-	0	-	0	-	0	0	0	-	0	0	-	
Platoon blocked, %			-				-								
Mov Cap-1 Maneuver	843	-	-	-	876	-	-	-	-	-	828	-	-	845	
Mov Cap-2 Maneuver	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	

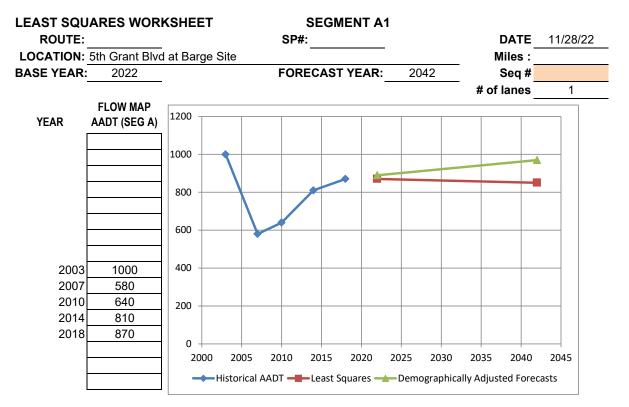

Approach	NB	SB	NE	SW	
HCM Control Delay, s	2	0.2	0	0	
HCM LOS			А	А	

Minor Lane/Major Mvmt	NELn1	NBU	NBT	SBU	SBTSW	/Ln1
Capacity (veh/h)	-	843	-	876	-	-
HCM Lane V/C Ratio	-	0.104	-	0.009	-	-
HCM Control Delay (s)	0	9.8	-	9.1	-	0
HCM Lane LOS	A	А	-	Α	-	А
HCM 95th %tile Q(veh)	-	0.3	-	0	-	-

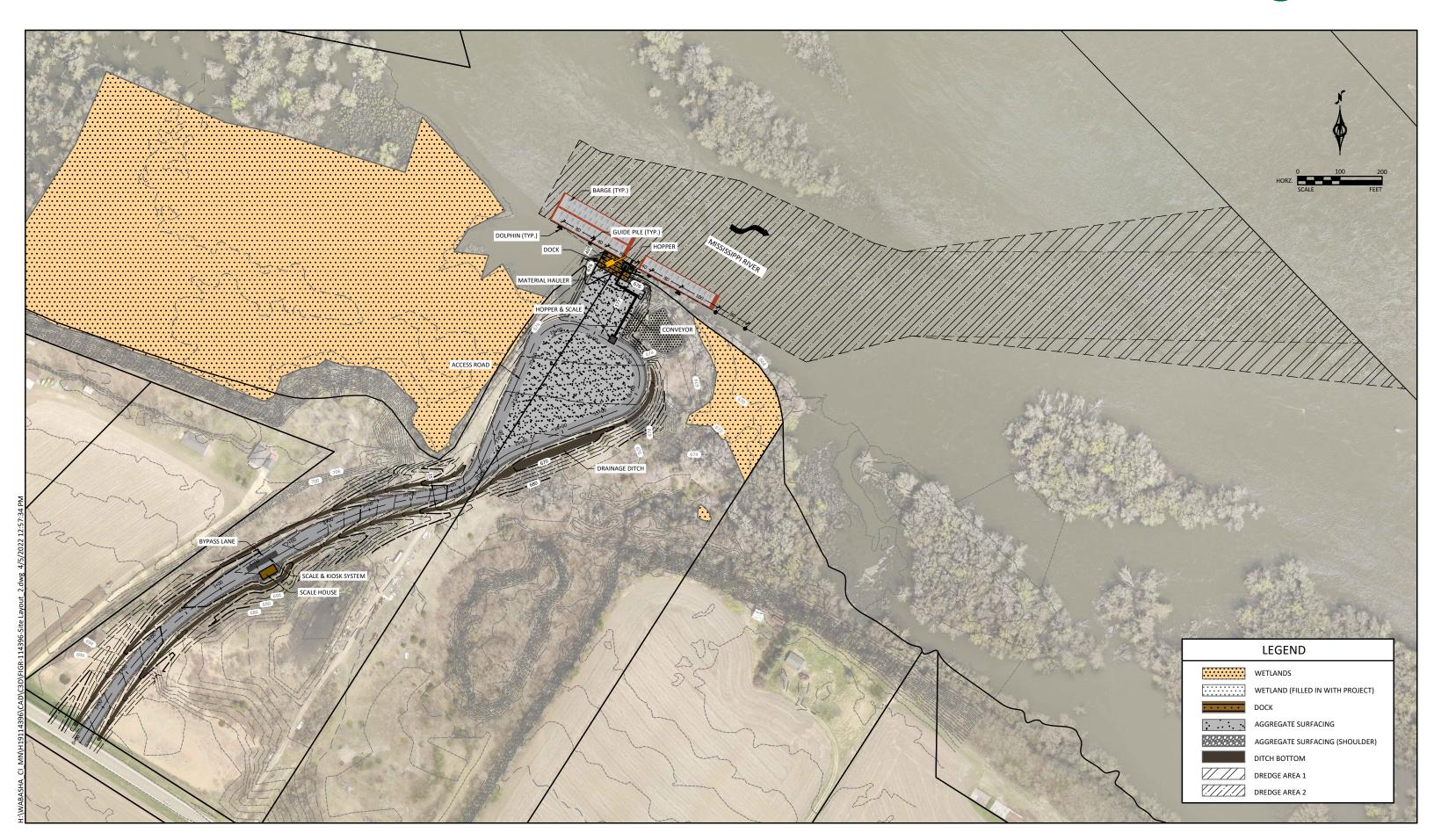

Intersection							
Int Delay, s/veh	1.5						
Movement	NBT	NBR	SBU	SBL	SBT	SWL	SWR
Lane Configurations	- 11		đ		- 11		1
Traffic Vol, veh/h	221	0	90	0	251	0	0
Future Vol, veh/h	221	0	90	0	251	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	-	None	-	None
Storage Length	-	-	-	0	-	-	0
Veh in Median Storage	e, # 0	-	-	-	0	0	-
Grade, %	0	-	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	15	2	2	2	2
Mvmt Flow	240	0	98	0	273	0	0

Major/Minor	Major1		Major2		Ν	1inor1	
Conflicting Flow All	0	-	240	-	-	-	120
Stage 1	-	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-	-
Critical Hdwy	-	-	6.7	-	-	-	6.94
Critical Hdwy Stg 1	-	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-	-
Follow-up Hdwy	-	-	2.00	-	-	-	3.32
Pot Cap-1 Maneuver	-	0	948	0	-	0	909
Stage 1	-	0	-	0	-	0	-
Stage 2	-	0	-	0	-	0	-
Platoon blocked, %	-				-		
Mov Cap-1 Maneuver		-	948	-	-	-	909
Mov Cap-2 Maneuver	-	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-	-
Approach	NB		SB			SW	
HCM Control Delay, s	0		2.4			0	
HCM LOS						А	
Minor Lane/Major Mvr	nt	NBT	SBU	SBTSW	Ln1		
Capacity (veh/h)		-	948	-	-		
HCM Lane V/C Ratio		-	0.103	-	-		
HCM Control Delay (s	;)	-	9.2	-	0		
HCM Lane LOS	,	-	А	-	А		
HCM 95th %tile Q(ver	า)	-	0.3	-	-		


Intersection						
Int Delay, s/veh	2.2					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		<u>्व</u>	1		Y	ODIX
Traffic Vol, veh/h	10	শ 17	32	0	0	10
Future Vol, veh/h	10	17	32	0	0	10
Conflicting Peds, #/hr		0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storag		0	0	-	0	-
Grade, %		0	0	-	0	-
Peak Hour Factor	92	75	72	92	92	92
Heavy Vehicles, %	95	2	2	2	2	95
Mvmt Flow	11	23	44	0	0	11
	11	20	44	0	0	11
Major/Minor	Major1	Ν	Aajor2		Minor2	
Conflicting Flow All	44	0	-	0	89	44
Stage 1	-	-	-	-	44	-
Stage 2	-	-	-	-	45	-
Critical Hdwy	5.05	-	-	-	6.42	7.15
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	3.055	-	-	-	3.518	4.155
Pot Cap-1 Maneuver	1129	-	-	-	912	814
Stage 1	-	-	-	-	978	-
Stage 2	-	-	-	-	977	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	1129	-	-	-	903	814
Mov Cap-2 Maneuver		-	-	-	903	-
Stage 1	-	-	-	-	968	-
Stage 2	-	-	-	-	977	-
Ammanah	ED				00	
Approach	EB		WB		SB	
HCM Control Delay, s	2.7		0		9.5	
HCM LOS					Α	
Minor Lane/Major Mvi	mt	EBL	EBT	WBT	WBR	SBLn1
Capacity (veh/h)		1129			-	
HCM Lane V/C Ratio		0.01	-	-		0.013
HCM Control Delay (s	;)	8.2	0	_	_	9.5
HCM Lane LOS	')	A	A	-	-	A
HCM 95th %tile Q(vel	n)	0	-	-	-	0
	'/	v				v


Year	AADT	Calc	ADT Calc				
2018	546	4	550				
2022	568		572				
2042	677		682				
Statistics	AADT			st Squares casts		Demogra Adjusted I	
R 2	0.86		YEAR	AADT		YEAR	AADT
SLOPE	5.48		2018	550		2018	550
INTERCEPT	-10515		2022	570		2022	570
Ν	5		2042	680		2042	650
	NOTE:						
County Adjustment Factors were developed to Apply to Projected AADT.				Slope Over Base Year 0.96%		Slope Over 0.7	
They are based on 1992-2007 VMT,		MT,					
	Population, Labor Force, Household, and		COUNTY		FACTOR	GROWTH PROFILE	
Em	ployment Data.	W	ABASHA	0.82		LOW GROWTH AREA	

Year	AADT	Calc	ADT Calc					
2018	4627	223	4850					
2022	4798		5022					
2042	5657		5880					
Statistics	AADT			t Squares casts		Demogra Adjusted I		
R 2	0.73		YEAR	AADT		YEAR	AADT	
SLOPE	42.92		2018	4850		2018	4850	
INTERCEPT	-81979		2022	5020		2022	4990	
Ν	9		2042	5880		2042	5660	
	NOTE:							
County Adjustment Factors were developed to Apply to Projected AADT.			Slope Over Base Year 0.85%			Slope Over 0.6		
They are based on 1992-2007 VMT,								
	Population, Labor Force, Household, and		UNTY	COUNTY	FACTOR	GROWTH PROFILE		
Em	ployment Data.	WAB	BASHA	0.8	0.82		LOW GROWTH AREA	


Year	AADT	Calc	ADT Calc				
2014	3255	95	3350				
2022	3298		3393				
2042	3405		3501				
Statistics	AADT			st Squares casts		Demogra Adjusted I	
R 2	0.04		YEAR	AADT		YEAR	AADT
SLOPE	5.38		2014	3350		2014	3350
INTERCEPT	-7590		2022	3390		2022	3480
N	4		2042	3500		2042	3820
	NOTE:						
County Adjustment Factors were developed to Apply to Projected AADT.		DT.	Slope Over Base Year 0.16%			Slope Over 0.4	
They are based on 1992-2007 VMT,							
	Population, Labor Force, Household, and		COUNTY		COUNTY FACTOR		PROFILE
Em	ployment Data.	WAE	BASHA	0.8	32	LOW GROWTH AREA	

Year	AADT	Calc	ADT Calc				
2018	774	96	870				
2022	772		867				
2042	757		853				
Statistics	AADT			t Squares casts		Demogra Adjusted I	
R 2	0.00		YEAR	AADT		YEAR	AADT
SLOPE	-0.73		2018	870		2018	870
INTERCEPT	2245		2022	870		2022	890
Ν	5		2042	850		2042	970
	NOTE:						
County Adjustment Factors were developed to Apply to Projected AADT.			Slope Over Base Year -0.08%			Slope Over 0.4	
They are based on 1992-2007 VMT,							
Population, Labor Force, Household, and		d co	COUNTY		FACTOR	GROWTH PROFILE	
Emi	ployment Data.	WA	BASHA	0.82		LOW GROWTH AREA	

USACE Dredge Material Management Plan

City of Wabasha, MN

Concept Site Layout April 2022

APPENDIX I

Scoping EAW

SCOPING DOCUMENT WABASHA BARGE FACILITY

Wabasha County

Barge facility on the Mississippi River to facilitate dredged material storage and transportation of agricultural products and shipping containers.

June 2022

Prepared by: Bolton & Menk, Inc. Prepared for: Wabasha Port Authority

WABASHA BARGE FACILITY SCOPING DOCUMENT

Table of Contents

Sco	ping EAW Document1
1	Project Title1
2	Proposer1
3	RGU1
4	Reason for EAW Preparation1
5	Project Location
6	Project Description
7	Cover Types 4
8	Permits & Approvals Required5
9	Land Use6
10	Geology, Soils, & Topography/Landforms
11	Water Resources12
12	Contamination/Hazardous Materials/Wastes17
13	Fish, Wildlife, Plant Communities, & Sensitive Ecological Resources (Rare Features) 19
14	Historic Properties
15	Visual
16	Air
17	Noise
18	Transportation
19	Cumulative Potential Effects
20	Other Potential Environmental Effects
RGL	J CERTIFICATION

Tables

Table 1: Project Magnitude	
Table 2: Cover Types	4
Table 3. Required Permits & Approvals	5
Table 4: Soil Types within the Project Area	10
Table 5. Impaired and Public Waters Within One Mile of Wabasha Barge Facility	12
Table 6: MPCA "What's In My Neighborhood" Sites within 1/2-mile	17
Table 7: Typical Construction Equipment Noise Levels at 50 Feet	
Table 8: Noise Standards (MN Statute 7030.0040)	

Appendices

Appendix A: Figures

List of Acronyms and Abbreviations

AADT	Average Annual Daily Traffic
BMP	Best Management Practices
BWSR	Minnesota Board of Water and Soil Resources
CWA	Clean Water Act
DWSMA	Drinking Water Supply Management Area
EAW	Environmental Assessment Worksheet
EIS	Environmental Impact Statement
EPA	Environmental Protection Agency
EQB	Environmental Quality Board
FEMA	Federal Emergency Management Agency
LGU	Local Government Unit
MARAD	Maritime Administration
MDH	Minnesota Department of Health
MGS	Minnesota Geologic Survey
MnDNR	Minnesota Department of Natural Resources
MN	State of Minnesota
MnDOT	Minnesota Department of Transportation
MPCA	Minnesota Pollution Control Agency
MPCA WIMN	Minnesota Pollution Control Agencies What's in My Neighborhood website
NHIS	Natural Heritage Information System
NLCD	National Land Cover Database
NPDES	National Pollutant Discharge Elimination System
NRCS	National Resource Conservation Service
NRHP	National Register of Historic Places
NWI	National Wetland Inventory
PWI	Public Waters Inventory
RGU	Responsible Governmental Unit
SHPO	State Historic Preservation Office
SSURGO	Soil Survey Geographic Database
SWPPP	Storm Water Pollution Prevention Plan
TH	Trunk Highway
TMDL	Total Maximum Daily Load
USACE	United States Army Corps of Engineers
USDA	United States Department of Agriculture
USFWS	United States Fish and Wildlife Service
WCA	Wetland Conservation Act
WIDNR	Wisconsin Department of Natural Resources

Scoping EAW Document

This EAW form is being used to identify issues or potential concerns for the Wabasha Barge Facility Environmental Impact Statement (EIS). Comments submitted to the Responsible Government Unit (RGU) during the 30-day public comment period will be reviewed and addressed in the Draft and Final EIS.

1 Project Title

Wabasha Barge Facility

2 Proposer

Organization:	Wabasha Port Authority
Contact person:	Caroline Gregerson
Title:	City Administrator
Address:	900 Hiawatha Drive E
City, State, ZIP:	Wabasha, MN 55981
Phone:	651-565-4568
Email:	cityadmin@wabasha.org

3 RGU

Organization: Same as Proposer Contact person: Title: Address: City, State, ZIP: Phone: Email:

4 Reason for EAW Preparation

Required:

EIS Scoping4410.4400 Subp. 17, Barge Fleeting FacilityMandatory EAW

Discretionary:

- Citizen petition
- Proposer initiated

5 Project Location

County City/Township Wabasha County Wabasha

County	Wabasha County		
PLS Location (¼, ¼, Section, Township, Range):	Section	Township	Range
Sect-30 Twp-111 Range-010 13.60 AC EX HWY ESMT, OUT LOTS 4 & 5	30	111N	010W
Sect-30 Twp-111 Range-010 13.15 AC EX SWLY 12.85 AC, OUT LOT 6	30	111N	010W

Watershed (82 major watershed scale):

GPS Coordinates (UTM): 44.3913760, -92.0536705

Tax Parcel Number: R27.00004.00 and R27.00005.03

See **Appendix A** for a series of figures depicting the project location and existing/proposed site conditions.

6 Project Description

a. EQB Monitor Description

Provide the brief project summary to be published in the EQB Monitor, (approximately 50 words).

This Scoping Document addresses a proposed barge facility in Wabasha, MN that will serve to transport sand from Mississippi River navigation channel dredging operations from the river to offsite locations for beneficial re-use. The project area encompasses 54.0 acres and will include infrastructure construction, including access channel dredging, a sheet pile dock wall, barge mooring and maneuvering facilities, conveyors and hoppers for material management, temporary storage area for transported dredge material, sewer and water utilities, internal access road, a weighing station, and a small operations structure (see **Appendix A** for a series of location maps and existing/proposed site condition maps). Facility operations will involve the transfer of sand from river barges to trucks for transport to off-site facilities for use as reclamation material for existing sand and gravel mines or other potential beneficial reuse.

b. Complete Description

Give a complete description of the proposed project and related new construction, including infrastructure needs. If the project is an expansion include a description of the existing facility. Emphasize: 1) construction, operation methods and features that will cause physical manipulation of the environment or will produce wastes, 2) modifications to existing equipment or industrial processes, 3) significant demolition, removal or remodeling of existing structures, and 4) timing and duration of construction activities.

Project Description (Including Context/Need)

The City of Wabasha, in cooperation with the Wabasha Port Authority, is proposing to construct a barge terminal on the Mississippi River in Wabasha, MN (UMR Mile 760). The site will be used to to facilitate the transfer of approximately 270,000 CY of sand that is annually dredged from the Mississippi River within a roughly 6-mile reach of the river centered on Wabasha. This material is dredged by the US Army Corps of Engineers (USACE) to maintain a 9-foot navigable channel along this stretch of the

Mississippi River. The Wabasha barge terminal site will facilitate the transfer of sand from river barges to trucks for transport to off-site facilities for use as reclamation material for existing sand and gravel mines or other potential beneficial reuse.

Upon environmental clearance and acquisition of all required permits, the work elements to be completed as part of the project include:

- Dredging the existing access channel on the Mississippi River to the proposed dock area
- Dredging an area to accommodate barge maneuvering and docking
- The dredged material will be used as fill material on the barge terminal site to raise the storage area above the 100-year flood elevation
- Construct the barge terminal pad and access road
- Construct a sheet pile dock face and upstream/downstream steel pipe pile clusters for barge mooring and maneuvering system
- Construct footings for conveyors and hoppers for material handling and loadout
- Install a loading truck scale and construct a scale house/field office building
- Install sewer and water utilities for field office building
- Install electrical utilities for the site

Timing and Duration of Construction Activities

Detailed construction plans have not been completed. Site design documents are anticipated to be completed in Fall/Winter 2022. The proposed letting date for construction is Summer 2023. Construction is proposed to be complete with site operations commencing in Spring 2024.

Proposed Treatment of Topic in EIS

The EIS will include a complete project description.

c. Project Magnitude

Table 1: Project Magnitude

	•
Total Project Acreage	54.0 acres
Linear project length	NA
Aggregate mining acreage	NA
Number and type of residential units	NA
Commercial building area (square feet)	NA
Industrial building area (square feet)	<1,000 sq/ft (scale house)
Institutional building area (square feet)	NA
Other uses – specify (acres)	3,200 sq/ft dock area 3.35 ac. aggregate surface (storage pad and access roads)
Structure height(s)	<20'

d. Project Purpose

Explain the project purpose; if the project will be carried out by a governmental unit, explain the need for the project and identify its beneficiaries.

The proposed barge terminal site is planned to facilitate the transfer of dredged material from the river to land as an alternative to previously proposed transfer facility locations that would have been in close proximity to and would have routed relatively high volumes of truck traffic through, residential neighborhoods in the City of Wabasha. The proposed Wabasha barge terminal is a cost-effective strategy to allow dredged material to be moved from the river to land while minimizing impacts to residential neighborhoods in the community.

Proposed Treatment of Topic in EIS

The EIS will include a complete project purpose and need statement.

e. Future Development

```
      Are future phases of this development including development on any other property planned or likely to happen?

      □ Yes
      ⊠ No

      If yes, briefly describe future phases, relationship to present project, timeline and plans for environmental review.

      f.
      Previous Development

      Is this project a subsequent stage of an earlier project?
      □ Yes
      ⊠ No
```

If yes, briefly describe the past development, timeline and any past environmental review. N/A

7 Cover Types

Estimate the acreage of the site with each of the following cover types before and after development:

The conceptual site plan, including project construction and disturbance limits, was used to define the area footprint in **Table 2** below.

	Before*	After*		Before*	After*
Wetlands	16.1	15.7	Lawn/landscaping	0	0
Deep water/streams	12.5	12.5	Impervious surface	4.5**	7.8**
Wooded/forest	9.0	6.3	Stormwater Pond/Ditch	0	0.6
Brush/Grassland	7.5	6.6	Other (barge docking area)		0.1
Cropland	4.4	4.4			
			TOTAL	54.0	54.0

Table 2: Cover Types

*Existing and proposed cover type acreage estimates are based on the National Land Cover Database (NLCD), aerial photo interpretation, wetland delineations, and the conceptual site layout. Acreages are estimates and subject to change based on further site planning and project development.

** The existing gravel driveway, which is classified as "Developed" in the NLCD, was considered an impervious surface. The proposed condition assumed the aggregate surfaces associated shown on the proposed site plan along with the remaining portions of the existing gravel driveway are consider impervious for the "After" condition.

Proposed Treatment of Topic in EIS

The EIS will provide analysis of cover type impacts within respective sections of the EIS. For example, changes in the acres of cropland or forested areas on the site will be discussed in the Farmland section and Vegetation section, respectively. Cover types that do not exist within the study area, and will not result from the proposed project, will not be discussed in the EIS (e.g., urban/suburban land). The proposed barge terminal facility site plan will be utilized to determine areas for cover type conversions, areas that may remain unaltered, stormwater treatment sites, and potential impervious surfaces.

8 Permits & Approvals Required

List all known local, state and federal permits, approvals, certifications and financial assistance for the project. Include modifications of any existing permits, governmental review of plans and all direct and indirect forms of public financial assistance including bond guarantees, Tax Increment Financing and infrastructure. All these final decisions are prohibited until all appropriate environmental review has been completed. See Minnesota Rules, Chapter 4410.3100.

Permits and Approvals

All known permits at state, federal, and local levels necessitated by the project are listed in **Table 3**, below. Public financial assistance is anticipated from the State of Minnesota through its PDAP and from the federal Department of Transportation Maritime Administration (MARAD) PIDP grant.

Government Agency	Type of Application/Permit	Status			
Federal Agencies					
U.S. Army Corns of Engineers	Clean Water Act (CWA) Notification	To be updated*			
U.S. Army Corps of Engineers	Section 10 Rivers & Harbors Appropriation Act	To be updated*			
State Agencies					
Minnesota Department of Natural Resources	Public Waters Work Permit	To be updated*			
Minnesota Board of Water and Soil Resources (BWSR)	Minnesota Wetland Conservation Act (WCA) Notification	To be updated*			
Minnesota Pollution Control Agency (MPCA)National Pollutant Discharge Elimination System (NPDES) Construction General Storm Water Permit		To be updated			
Local Agencies					
Chu of Websehe	Stormwater Permit	To be updated*			
City of Wabasha	Conditional Use Permit	To be updated*			

Table 3. Required Permits & Approvals

*To be updated: permit requirement is anticipated and will be applied for prior to project or specific phase commencing.

Proposed Treatment of Topic in EIS

The EIS will include a list of all potential agency approvals and permits potentially required for the project.

9 Land Use

a. Existing Land Use

Description

Existing land use of the site as well as areas adjacent to and near the site, including parks, trails, prime or unique farmlands.

Located on the northwestern outskirts of the City of Wabasha, the City's 2016-2035 Comprehensive Plan lists the 54.0-acre project site's existing land use as Vacant. The project site is primarily comprised of vacant woodland and appears to have been used for the dumping or storage of scrap metal, construction material, and various vehicle parts.

According to historic aerial imagery—which is available for limited years from 1939 to the present gravel mining occurred on the project site, beginning in earnest in 1949 and continuing into the early 1970s. By 2010, gravel mining had ended, and trees have reclaimed the filled gravel pits.

As shown on **Appendix A, Figure 3, "Existing Conditions,"** the project site is bounded by the Mississippi River to the north and agricultural land to the east and west. 5th Grant Boulevard West (Wabasha County Road 59), which borders the project site to the south, provides connection to downtown Wabasha and Highway 61.

Additional agricultural land is located south of the project site, across 5th Grant Boulevard West. Some of the agricultural lots adjacent to the project site contain houses, however the nearest lots to the project site that are primarily of residential use are located approximately 0.25 miles southeast of the project site.

The Riverview Cemetery is located beyond the agricultural land west of the project site, approximately 250 feet from the proposed project. An active freight railroad line operated by Canadian Pacific Railway is approximately 300 feet southwest of the project site. A small rail yard is located approximately 400 feet southeast of the project site. The Gunderson St. Elizabeth's Hospital is located approximately 0.40 miles southeast of the project site.

As shown on **Appendix A, Figure 10, "Outdoor Recreation,"** there are no identified parks, trails, or recreational resources located within the project site. The closest outdoor recreational resources are the State of Wisconsin's Nelson-Trevino Bottoms State Natural Area, located across the Mississippi River approximately 0.25 miles northeast of the project site, and the City of Wabasha's Beach Park, located approximately 0.60 miles southeast of the project site.

In July 2020, Bolton & Menk, Inc., conducted a wetland delineation that identified 16.1 acres of Type 1 Seasonally Flooded Wetlands located within the northernmost portions of the project site.

A Phase I Environmental Site Assessment was completed in January 2020 and determined that there is no potential risk for contamination due to recognized environmental conditions, current land uses, and previous land uses on the project site.

Local Plans

Describe planned land use as identified in comprehensive plan (if available) and any other applicable plan for land use, water, or resources management by a local, regional, state, or federal agency.

The current Wabasha Comprehensive Plan (2016-2035), last amended July 6, 2021, lists the future land use of the project site as "Industrial." Furthermore, Section 7.0 (Economic Development & Historic Preservation) discusses Wabasha's unique location and opportunity for development of a commercial river port facility that would be used in the ongoing efforts by the Corps of Engineers in maintaining the 9-foot navigable river channel.

Zoning

Zoning, including special districts or overlays such as shoreland, floodplain, wild and scenic rivers, critical area, agricultural preserves, etc.

The two parcels that comprise the project site are both zoned R-1, "Low-Density Residential." R-1 zoning districts are intended to allow for the use and development of residential structures, yards, and directly related complimentary uses at a lower density than traditionally developed in the originally platted cities. The parcels bordering the project site to the east and west are also zoned R-1. The parcels located across 5th Grant Boulevard West, south of the project site, are zoned I, "Industrial."

The project site is also located in a S1 Shoreland Overlay Zone. Shoreland Overlay Zoning Ordinances typically contain a variety of provisions that guide land development and activity in shorelands with the goal of protecting surface water quality, near-shore habitat, and shoreland aesthetics. S1 Shoreland Overlay Zones are intended to provide standards for shoreland areas within the city that are primarily undeveloped.

The project site is located within FEMA 100-Year Floodplain. The project site is not located within a Drinking Water Management Supply Area (DWSMA)—however, the lots directly south of the project site, across 5th Grant Boulevard West, are located within a DWSMA.

b. Project Compatibility

Discuss the project's compatibility with nearby land uses, zoning, and plans listed in Item 9a above, concentrating on implications for environmental effects.

As discussed in Item 9a, the proposed project is compatible with the nearby industrial land uses and zoning and is aligned with the industrial development goals outlined in the City of Wabasha's 2016-2035 Comprehensive Plan.

c. Project Incompatibility

Identify measures incorporated into the proposed project to mitigate any potential incompatibility as discussed in Item 9b above.

No incompatibility issues exist for the project, as discussed in Item 9a.

Proposed Treatment of Topic in EIS

The EIS will verify and summarize the existing land uses identified within the Wabasha Barge Terminal study area. The EIS will also address existing land uses adjacent to the site within a half-mile buffer area of the site. This half-mile buffer will serve as a guideline to evaluate land use compatibility and identifying environmental impacts within an area of potential impact resulting from the proposed barge terminal operations. No additional analysis is planned for the EIS regarding the description of land uses within the project area. A series of mitigation strategies will be explored to avoid and minimize impacts from the proposed operations on land uses within the area of impact.

10 Geology, Soils, & Topography/Landforms

a. Geology

Describe the geology underlying the project area and identify and map any susceptible geologic features such as sinkholes, shallow limestone formations, unconfined/shallow aquifers, or karst conditions. Discuss any limitations of these features for the project and any effects the project could have on these features. Identify any project designs or mitigation measures to address effects to geologic features.

Bedrock Geology

According to the Geologic Atlas of Wabasha County, C-14, Plate 2, bedrock geology beneath the project site consists of the Eau Claire Formation which consists of sandstone, siltstone, and shale interbedded in thin to medium beds. The sandstone is very fine grained to fine grained. The sandstone and siltstone are light to yellowish gray, variably glauconitic, and commonly contain gray to black brachiopod shell fragments. The shale is greenish gray. Unit coarsens upward, with siltstone and shale replaced in abundance by sandstone. Uppermost 10–20 feet is mostly very fine grained sandstone and minor amounts of siltstone. The unit is 125–150 feet thick. A tongue in the uppermost part of the Eau Claire Formation crops out near Wabasha.¹

Surficial Geology

The Geologic Atlas of Wabasha County, C-14, Plate 3, shows the surficial geology consists of floodplain alluvium, West Campus Formation, and Grey Cloud terrace. Floodplain alluvium is mainly fine sand and silt on floodplains; includes sand and gravel that infills modern river channels. Some depressions have been filled with thick silty to clayey sediment. Includes minor lakeshore sediment along Lake Pepin. Contacts with other map units are commonly scarps. The West Campus formation is comprised of Sand

¹ Mossler, John H. 2001. C-14 Geologic Atlas of Wabasha County, Minnesota. Plate 2-Bedrock Geology. Retrieved from University of Minnesota Digital Conservancy. Available at: https://conservancy.umn.edu/handle/11299/58557.

and gravelly sand; coarsens to cobbly gravel in places. The sediment is largely reworked from the Mississippi valley train; deposited during early, high stages of the Mississippi River and preserved in terraces above the modern floodplain. The West Campus formation is mapped at three major terrace levels in Wabasha County. The Grey Cloud terrace is 40–50 feet (12–15 m) above Lake Pepin and the present floodplain level. The terrace elevation is 700–710 feet (214–216 m) in Lake City and Wabasha. Most contacts with other map units are scarps.²

The pollution sensitivity of near surface materials has a high rating across the majority of the project site. The sensitivity to pollution of near-surface materials is an estimate of the time it takes for water to infiltrate the land surface to a depth of 10 feet. Generally, areas of course-grained material have a higher sensitivity to pollution compared to areas of fine-grained material, except where special conditions (karst, bedrock at or near the surface, mining, and peatlands) occur. No special conditions are mapped within the project site.³

While Wabasha County is located in a karst region, the project area consists of non-karsted bedrock, with Cambrian sandstones and shales as the uppermost bedrock layers. Karsted bedrock can be found in close proximity to the project area, both south and west.⁴

Aquifers

Minnesota is divided into six groundwater provinces based on bedrock and glacial geology. The aquifers within these provinces occur in two general geologic settings: bedrock, and unconsolidated sediments deposited by glaciers, streams, and lakes. The project site is located in the East-Central Province. The East-Central Province has surficial and buried sand and gravel aquifers that are common. The East-Central Province's aquifers are underlain by thick and extensive sandstone and carbonate (Paleozoic) and (Precambrian) sandstone aquifers.⁵

Geologic conditions and groundwater information can be seen in Appendix A, Figure 6, "Geologic Conditions/Groundwater."

Proposed Treatment of Topic in EIS

The EIS will include an evaluation of the geologic conditions at the Wabasha Barge study area, including an assessment of potential impacts to bedrock geology, surficial geology and underlying aquifers. The EIS will also include a detailed floodplain assessment.

² Hobbs, Howard C. 2001. C-14 Geologic Atlas of Wabasha County, Minnesota. Plate 3-Surficial Geology. Retrieved from University of Minnesota Digital Conservancy. https://conservancy.umn.edu/handle/11299/58557.

³ Adams, Roberta. 2016. Pollution sensitivity of near-surface materials: St. Paul, Minnesota Department of Natural Resources, Minnesota Hydrogeology Atlas Series HG-02, report and plate. Available at:

https://www.dnr.state.mn.us/waters/programs/gw_section/mapping/platesum/mha_ps-ns.html.

⁴ Tipping, R., Green, J., & Alexander, E. 2001. C-14 Geological Atlas of Wabasha County, Minnesota. Plate 5 – Karst Features. https://conservancy.umn.edu/bitstream/handle/11299/58557/plate5%5b1%5d.pdf?sequence=5&isAllowed=y

⁵ MNDNR. 2021. Groundwater Provinces of Minnesota. Available at: <u>https://files.dnr.state.mn.us/waters/groundwater_section/provinces/2021-provinces.pdf</u>

b. Soils & Topography

Describe the soils on the site, giving NRCS (SCS) classifications and descriptions, including limitations of soils. Describe topography, any special site conditions relating to erosion potential, soil stability or other soils limitations, such as steep slopes, highly permeable soils. Provide estimated volume and acreage of soil excavation and/or grading. Discuss impacts from project activities (distinguish between construction and operational activities) related to soils and topography. Identify measures during and after project construction to address soil limitations including stabilization, soil corrections or other measures. Erosion/sedimentation control related to stormwater runoff should be addressed in response to Item 11.b.ii.

United States Department of Agriculture (USDA) Natural Resources Conservation Service (NRCS) Soil Maps were reviewed within and around the proposed project footprint. A soils map of the proposed site can be seen in **Appendix A, Figure 5, "Soils."**

The predominant soil types and soil component names within the proposed development area are listed in the table below. Additional information regarding the soil hydrologic classification provides insights regarding potential runoff and erosion control measures that may be needed during construction.

Map Unit Symbol	Map Unit Key	Component Name	Soils Label	Hydric Rating	Estimated Percentage of Study Area
N646A	1946882	Ceresco	N646A, Ceresco	No	18.8
N648A	1946885	Kalmarville	N648A, Kalmarville	Yes	13.9
MdA	2216395	Meridian	MdA, Meridian	No	2.4
DmA	2216322	Mt. Carroll	DmA, Mt. Carroll	No	3.8
ThA	2216437	Tell	ThA, Tell	No	1.9
		Terrace	Terrace escarpments,		
Ts	2216441	escarpments, sandy	sandy	No	3.9
GP	2216134	Udipsamments	GP, Udipsamments	No	49.7
W	2216215	Water	W, Water		5.6

Table 4: Soil Types within the Project Area⁶

Soils in Wabasha County are generally characterized in the soil survey as silty loam developed on alluvium and sedimentary bedrock. The river terrace and floodplain alluvium is composed of sand and gravel and is about 180 feet thick. This body of sand and gravel is underlain by lower permeability sedimentary bedrock.⁷

The Soil Survey Geographic Database (SSURGO) lists almost half of the project area soil as gravel pit and udipsamments. The udipsamments complex has a 0-25 percent slope, is excessively drained, and has sandy and gravelly outwash parent material. The next largest soil types within the project area are Ceresco and Kalmarville, respectively, which are somewhat poorly drained and poorly drained. The majority of the project area has minimal slopes, except for the portion listed as Ts – terrace escarpments, sandy. This soil type is listed as having steep slopes, with a slope range of 15-60 percent.

⁶ Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture. Soil Survey Geographic (SSURGO) Database. Available online at <u>https://sdmdataaccess.sc.egov.usda.gov</u>.

⁷ City of Wabasha. 2018. Hydrogeologic Assessment of the Drinking Water Source and Wells for the City of Wabasha, Part I.

The NRCS classifies soils into hydrologic soil groups, A – D:

- Group A Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands.
- Group B Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately course texture.
- Group C Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture.
- Group D Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays with high swelling potential, soils with a permanent high-water table, soils with a claypan or clay layer at or near the surface, and shallow soils over nearly impervious material.
- Group "/D" Soils with a high-water table, but if drained conform to the first letter listed before "/D" (for example, A/D, B/D).

See *Item 11.b.ii*. for a discussion of erosion/sedimentation control measures related to stormwater runoff.

Project activities during the construction phase that will impact soils include the dredging of river bottom sediment to create a navigable passage and construction of roads, weighing station, small operations structure, and barge fleeting area. Dredged sediment will be brought to an upland area of the site.

Operational activities of the proposed project will not further impact the soils and topography of the site beyond the temporary placement of transported goods on the site prior to being hauled off-site.

Topography/Land Forms

Elevations on the site range between 668 to 708 feet above mean sea level.⁸ Two-foot contour mapping shows the lowest elevations along the Mississippi River, with a steep bluff along the edge of the floodplain. A USGS topographic map of the proposed site can be seen in **Appendix A, Figure 2.**

Proposed Treatment of Topic in EIS

The EIS will include a discussion of site geology, soils, and topography, as well as a more complete assessment of potential impacts of the site layout and operations of the barge terminal facilities.

⁸ Elevations taken from MnTOPO. <u>http://arcgis.dnr.state.mn.us/maps/mntopo/</u>.

11 Water Resources

a. Surface Water & Groundwater Features

Describe surface water and groundwater features on or near the site.

Surface Water

Describe lakes, streams, wetlands, intermittent channels, and county/judicial ditches. Include any special designations such as public waters, trout stream/lake, wildlife lakes, migratory waterfowl feeding/resting lake, and outstanding resource value water. Include water quality impairments or special designations listed on the current MPCA 303d Impaired Waters List that are within 1 mile of the project. Include DNR Public Waters Inventory number(s), if any.

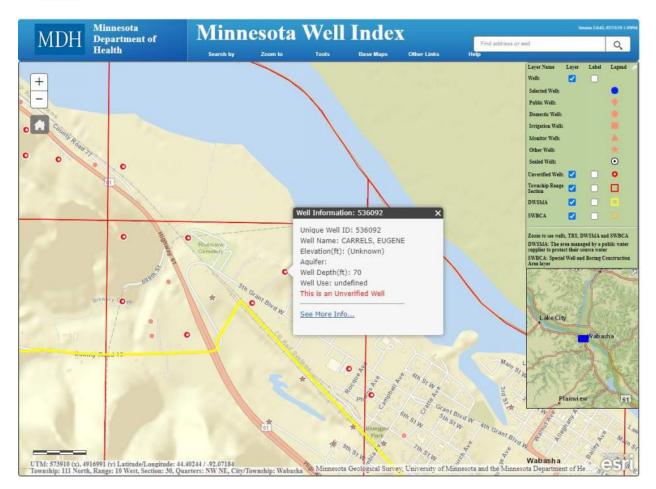
Public Waters - One Mile Search Area

The project site is within the Buffalo-Whitewater watershed (HUC8: 07040003).

	· · · · ·			
AUID	Name	Impaired Use**	Additional Impairments	Distance to Project Area
07-0400- 03-627	Mississippi River - U.S. Lock & Dam #4 Pool	-	Mercury in fish tissue PCB in fish tissue	adjacent
NA	Brewery Creek	NA	NA	~0.25 mile

Table 5. Impaired and Public Waters Within One Mile of Wabasha Barge Facility

Appendix A, Figure 7 "Surface Waters" illustrates the surface waters within close proximity of the study area.


Wetlands

Wetland delineations were completed in June 2020. The field investigation was performed to evaluate and verify the existence and boundary of any aquatic resources located within the project area. The field investigation found four wetland basins within the study area. In addition to the field investigation, an off-site hydrology assessment was performed to identify locations within agricultural field that may possess wetland signatures. Eight years of aerial imagery was reviewed, only one site was identified and reviewed. According to the off-site hydrology decision matrix, the site was not considered wetland.

Ground Water

Describe aquifers, springs, seeps. Include: 1) depth to groundwater; 2) if project is within a MDH wellhead protection area; 3) identification of any onsite and/or nearby wells, including unique numbers and well logs if available. If there are no wells known on site or nearby, explain the methodology used to determine this.

Groundwater data for the project area was obtained from the MNDNR. The site is located within the East-Central (1) Minnesota Groundwater Province and within the Quaternary water-table and buried unconfined aquiver. No springs are currently identified onsite by the MNDNR Spring Inventory. Depth to groundwater within the site is generally 0-20 ft⁹. The project site is not within an existing DWSMA or a wellhead protection area (see **Appendix A, Figure 6, "Geologic Conditions/Groundwater"**) but there are DWSMA and Wellhead protection areas located nearby. There is an existing unverified well onsite, Well ID: 536092 (see **Minnesota Well Index** image below).

b. Project Effects & Mitigations

Describe effects from project activities on water resources and measures to minimize or mitigate the effects in Item b.i. through Item b.iv. below.

Any wells encountered on site will be sealed in accordance with Minnesota Department of Health's (MDH) requirements.

⁹ Peterson, Todd A. 2005. C-14 Geologic Atlas of Wabasha County, Minnesota. Part B, Plate 8 – Hydrogeology of the Unconsolidated and Bedrock Aquifers. Retrieved from MNDNR.

https://www.dnr.state.mn.us/waters/programs/gw_section/mapping/platesum/wabacga.html.

i. Wastewater

For each of the following, describe the sources, quantities and composition of all sanitary, municipal/domestic and industrial wastewater produced or treated at the site.

If the wastewater discharge is to a publicly owned treatment facility, identify any pretreatment measures and the ability of the facility to handle the added water and waste loadings, including any effects on, or required expansion of, municipal wastewater infrastructure.

Sanitary (domestic) wastewater generated by employees at the barge terminal facility will collected and conveyed to the City of Wabasha wastewater treatment facility (WWTF) where it will be treated. No pretreatment measures are necessary for domestic wastewater and the City's WWTF has adequate capacity to handle the minor amount of additional flow from the proposed facility.

If the wastewater discharge is to a subsurface sewage treatment systems (SSTS), describe the system used, the design flow, and suitability of site conditions for such a system.

N/A

If the wastewater discharge is to surface water, identify the wastewater treatment methods and identify discharge points and proposed effluent limitations to mitigate impacts. Discuss any effects to surface or groundwater from wastewater discharges.

N/A

ii. Stormwater

Describe the quantity and quality of stormwater runoff at the site prior to and post construction. Include the routes and receiving water bodies for runoff from the site (major downstream water bodies as well as the immediate receiving waters). Discuss any environmental effects from stormwater discharges. Describe stormwater pollution prevention plans including temporary and permanent runoff controls and potential BMP site locations to manage or treat stormwater runoff. Identify specific erosion control, sedimentation control or stabilization measures to address soil limitations during and after project construction.

Stormwater Quantity

The project site and surrounding surface waters are not located within a defined watershed district or watershed management organization area. The project is located within the Buffalo-Whitewater watershed (HUC 07040003), which is part of the larger Mississippi River Watershed.

Stormwater runoff flows within the project limits north towards the Mississippi River. Ditches will be constructed around the perimeter of the active operations area to collect, store, and treat runoff prior to discharging to the Mississippi River. Areas not part of the facility operations will remain in natural habitat. Runoff from these areas should have no change from current water quantity and quality conditions, thereby causing negligible impact to receiving waters.

Stormwater Quality

During construction, the contractor will follow stormwater and erosion control best management practices as dictated by the MPCA NPDES Permit. The EPA-approved impairments for the Mississippi

River are considered non-construction related and do not require any additional best management practices or plan review for compliance with the NPDES construction stormwater permit.

The project is not located within a defined Watershed District or watershed management area, therefore NPDES guidelines for permanent stormwater treatment will be followed. The project will generate more than one acre of new impervious surfaces. Per the NPDES construction stormwater permit, a water quality volume equal to one-inch time the net increase of impervious surfaces needs to be treated by permanent stormwater treatment systems constructed as a part of the project.

iii. Water Appropriation

Describe if the project proposes to appropriate surface or groundwater (including dewatering). Describe the source, quantity, duration, use and purpose of the water use and if a DNR water appropriation permit is required. Describe any well abandonment. If connecting to an existing municipal water supply, identify the wells to be used as a water source and any effects on, or required expansion of, municipal water infrastructure. Discuss environmental effects from water appropriation, including an assessment of the water resources available for appropriation. Identify any measures to avoid, minimize, or mitigate environmental effects from the water appropriation.

A DNR water appropriations permit is not anticipated for operations of the proposed barge terminal facility. An extension of City watermain to serve the facility and a water service connection to the watermain system will be constructed as a part of the project.

iv. Surface Waters

Describe any anticipated physical effects or alterations to wetland features such as draining, filling, permanent inundation, dredging and vegetative removal. Discuss direct and indirect environmental effects from physical modification of wetlands, including the anticipated effects that any proposed wetland alterations may have to the host watershed. Identify measures to avoid (e.g., available alternatives that were considered), minimize, or mitigate environmental effects to wetlands. Discuss whether any required compensatory wetland mitigation for unavoidable wetland impacts will occur in the same minor or major watershed and identify those probable locations.

Wetlands

Figure 8, located in Appendix A, "Wetlands", illustrates the NWI areas and approved delineated wetland boundaries within and surrounding the project area. On June 18 and 25, of 2020, a field investigation was performed to evaluate and verify the existence and boundary of any aquatic resources located within the Wabasha Barge Terminal project area. The field investigation found a total of four wetlands within the study area. In addition to the field investigation, an off-site hydrology assessment was performed to identify locations within agricultural field that may possess wetland signatures. Eight years of aerial imagery was reviewed, only one site was identified and reviewed. According to the off-site hydrology decision matrix, the site was not considered wetland.

Permitting and Sequencing Information

Impacts to the delineated wetlands are proposed as part of the proposed barge facility. Approximately 0.4 acres of impacts will occur and are considered to be permanent. These impacts result from fill being placed in the area adjacent to the barge/dock and off-loading area, which contains the material hauler, hopper, scale, and conveyor system. These impacts will be permitted.

Impact Avoidance

Early in the planning process, several scenarios to avoid wetland impacts were identified. A no-build alternative would not impact wetlands but would not address the need for this facility.

Other site plans alternatives included additional impacts as a result of the access road and placement of other ancillary uses (e.g., scale house and kiosk system). Due to these additional impacts, the preferred site plan was redesigned to avoid wetland impacts to the extent practicable.

Minimization

Minimization will be achieved by limiting disturbance limits within wetlands to the greatest extent allowable and ensuring appropriate erosion control measures are in place to prevent sedimentation of non-impacted wetlands and any receiving waters. Impacts were further minimized by avoiding impacts to the approximately 14 acre wetland found on the western portion of the project area.

Mitigation

The proposed project will impact a total of up to 0.4 acres of wetland within Bank Service Area (BSA) 7 and the Mississippi River Watershed. It is anticipated mitigation for these impacts at a minimum of a 2:1 ratio (i.e., 0.8 acres of wetland replacement for every acre of wetland impact) through a purchase of wetland credits within BSA 7. All mitigation efforts will be completed in accordance with local, state and federal regulations. The proposer will work closely with agency staff to identify requirements and ensure all potential concerns are addressed. Permits and all required plans will be submitted for review to appropriate state and federal agencies prior to proposed wetland impacts.

Other Surface Waters

Describe any anticipated physical effects or alterations to surface water features (lakes, streams, ponds, intermittent channels, county/judicial ditches) such as draining, filling, permanent inundation, dredging, diking, stream diversion, impoundment, aquatic plant removal and riparian alteration. Discuss direct and indirect environmental effects from physical modification of water features. Identify measures to avoid, minimize, or mitigate environmental effects to surface water features, including in-water Best Management Practices that are proposed to avoid or minimize turbidity/sedimentation while physically altering the water features. Discuss how the project will change the number or type of watercraft on any water body, including current and projected watercraft usage.

Proposed Treatment of Topic in EIS

The EIS will include a discussion and further assessment of both surface and groundwater resources. An impact analysis of the proposed site layout will include an assessment of floodplain impacts and a discussion of existing jurisdictional wetlands on the site, avoidance alternatives, minimization measures considered, wetland impacts and proposed mitigation. Impacts of the barge terminal facility on the water table, and impacts associated with other surface waters (e.g., dredging in Mississippi River) will also be conducted and discussed in the EIS.

12 Contamination/Hazardous Materials/Wastes

a. Pre-project Site Conditions

Describe existing contamination or potential environmental hazards on or in close proximity to the project site such as soil or ground water contamination, abandoned dumps, closed landfills, existing or abandoned storage tanks, and hazardous liquid or gas pipelines. Discuss any potential environmental effects from preproject site conditions that would be caused or exacerbated by project construction and operation. Identify measures to avoid, minimize or mitigate adverse effects from existing contamination or potential environmental hazards. Include development of a Contingency Plan or Response Action Plan.

According to the MPCA's "What's in My Neighborhood" interactive mapping database, there are six existing potential environmental hazards within ½-mile of the project area. Table 6 and Figure 11, located in Appendix A, "Potentially Contaminated Sites" identifies those uses within a half-mile radius from the proposed site.

Site Number	Site Name	Distance of Proposed Site
No Number Available	J & S Storage	0.4 miles
SP 079-070-010	No Information Available	0.3 miles
No Number Available	Wabasha 2019 New Storage Building	0.3 miles
No Number Available	KP RUS Cardinal Health	0.35 miles
No Number Available	Timm Lawn Care	0.45 miles
No Number Available	Gunderson St. Elizabeth Medical Center	0.35 miles

Table 6: MPCA "What's In My Neighborhood" Sites within 1/2-mile

A Phase I Environmental Site Assessment was completed in January 2020 and determined that there is no potential risk for contamination due to recognized environmental conditions and previous land uses on the project site. The potential for impacts to the proposed site are considered as a low potential for encountering contaminated materials during project operations. Any potentially contaminated materials encountered during construction and operations will be handled and treated in accordance with applicable federal, state and local regulations. A Phase II Environmental Site Assessment was not recommended for the project site.

b. Project Related Generation/Storage of Solid Wastes

Describe solid wastes generated/stored during construction and/or operation of the project. Indicate method of disposal. Discuss potential environmental effects from solid waste handling, storage and disposal. Identify measures to avoid, minimize or mitigate adverse effects from the generation/storage of solid waste including source reduction and recycling.

Debris from clearing land prior to operating the Wabasha Barge Facility will be disposed of in compliance with local and state regulations.

No solid wastes will be generated or stored at the site during construction and/or operations of the facility.

c. Project Related Use/Storage of Hazardous Materials

Describe chemicals/hazardous materials used/stored during construction and/or operation of the project including method of storage. Indicate the number, location and size of any above or below ground tanks to store petroleum or other materials. Discuss potential environmental effects from accidental spill or release of hazardous materials. Identify measures to avoid, minimize or mitigate adverse effects from the use/storage of chemicals/hazardous materials including source reduction and recycling. Include development of a spill prevention plan.

The site operator's equipment will require fuel (diesel and/or gasoline) and oils (lubricating and hydraulic). If it is determined that these products will be stored onsite, a Spill Prevention and Response Plan will be prepared to address accidental spills or the release of any hazardous material or petroleum products. The plan would be required to include the following measures to avoid and/or minimize spills:

- Fueling and equipment maintenance would not be allowed within 100 feet of the river's edge without deploying spill capture methods.
- The site operator shall maintain fuel spill containment kits and trained spill response personnel on the site at all times.
- Any spill or release of a hazardous material or petroleum products would be reported to the site supervisor who would take immediate action to minimize the potential for groundwater or surface water pollution.
- In the event of a spill or release of a hazardous material or a petroleum product, the project site supervisor would immediately deploy on-site supplies and equipment to contain the spill and contact the DNR, MPCA and the Minnesota Duty Officer, according to emergency procedures identified in Minnesota Rules, 7045.0574.
- Temporary, above ground, on-site fuel storage would not be allowed within the 100-year floodplain.
- Below ground storage tanks would not be allowed.

d. Project Related Generation/Storage of Hazardous Wastes

Describe hazardous wastes generated/stored during construction and/or operation of the project. Indicate method of disposal. Discuss potential environmental effects from hazardous waste handling, storage, and

disposal. Identify measures to avoid, minimize or mitigate adverse effects from the generation/storage of hazardous waste including source reduction and recycling.

Please see Items 12b and 12c.

Proposed Treatment of Topic in EIS

The EIS will verify and summarize known contaminated/hazardous sites in the study area. The EIS will evaluate the extent of hazardous materials being used and/or stored onsite and will include a discussion of mitigation measures that may be employed to address potential impacts should remedial action be necessary.

13 Fish, Wildlife, Plant Communities, & Sensitive Ecological Resources (Rare Features)

a. Resources/Habitats/Vegetation

Describe fish and wildlife resources as well as habitats and vegetation on or near the site.

The proposed project area is located at (URM Mile 760) within the Lower Pool 4 of the Mississippi River. This stretch of the river, which is 44 miles long, extends from Lock and Dam 3 at Red Wing, MN to Lock and Dam 4 at Alma, WI, and includes Lake Pepin. Pool 4 features a wide variety of aquatic habitats including fast flowing main channels, variable width and depth side channels, and backwater areas. In 2007, the Upper Mississippi River Restoration Program conducted a long-term fish collection effort from Pool 4. Over 15,342 fish were sampled, representing 59 species and two hybrids. Commonly sampled sport fish included walleye, sauger, yellow perch, white bass, bluegill, black crappie, smallmouth bass, largemouth bass, northern pike, channel catfish, and freshwater drum.¹⁰

Lower Pool 4 of the Mississippi River also hosts large assemblages of aquatic invertebrates and mussels. Invertebrate diversity can be attributed to the variety of habitats found in the area. Specialized invertebrates that rely on running water can be found in a range of water velocities near the project area. Several mussel surveys have been completed within Lower Pool 4, many of which were associated with channel maintenance and dredging activities. In 2002, 2015, and 2021, the Corps of Engineers completed mussel skimmer dredge transects along the stretch of the river located immediately adjacent to the Barge Terminal Facility. According to the Corps mussel survey data, only two live mussels of two common species (Threehorn Wartyback and Threeridge) were found in 2002. No live mussels were found in this stretch of the Mississippi River during the 2015 or 2021 surveys.

The Wisconsin Department of Natural Resources (WIDNR) conducted a survey of unionid mussels throughout the Upper Mississippi River. Findings concluded that 115 specimens were collected in the

¹⁰ https://www.umesc.usgs.gov/reports_publications/ltrmp/fish/2007/pool_4/summary_p4.html

Lower Pool 4, of which 15 species were documented, the most abundant being Threeridge, Pigtoe, and Pimpleback¹¹.

In addition to the construction of dock and barge facilities within and along the river, access roads, stock piling facilities, and a terminal pad are proposed at the site. Much of the terrestrial portion of the project area has been substantially disturbed by historic mining activities. Site observations indicate that reclamation of the site never took place and remains largely disturbed, to this day large stockpiles, abandoned equipment, and debris litter the upland portion of the site. A large portion of the site, northwest area, is a seasonally flooded wetland, and is dominated by silver maple, black willow, and green ash. These seasonally flooded backwaters provide habitat for a variety of species including racoon, muskrat, beaver, mink, river otter, white -tailed deer, reptile species, amphibian species, and numerous waterfowl/migratory bird species.

b. Rare Features

Describe rare features such as state-listed (endangered, threatened or special concern) species, native plant communities, Minnesota County Biological Survey Sites of Biodiversity Significance, and other sensitive ecological resources on or within proximity to the site. Provide the license agreement number (**LA-1069**) and/or correspondence number (ERDB XXXX) from which the data were obtained and attach the Natural Heritage letter from the DNR. Indicate if any additional habitat or species survey work has been conducted within the site and describe the results.

A query of the Natural Heritage Information System (NHIS) database was completed to assess the potential presence of state-listed threatened, endangered, and species of special concern within a one-mile radius of the project area. The review identified several occurrences of invertebrate animals, vascular plants, and vertebrate animals, including the following:

State Listed Species

- Black Sandshell Mussel (Ligumia recta) Special Concern
- Butterfly Mussel *(Ellipsaria lineolate)* Threatened
- Monkeyface Mussel (Theliderma metanevra) Threatened
- Mucket Mussel (Actinonaias ligamentina) Threatened
- Purple Wartyback Mussel (Cyclonaias tuberculate) Endangered
- Round Pigtoe Mussel (*Pleurobema sintoxia*) Special Concern

- Sheepnose Mussel (Plethobasus cyphyus) Endangered
- Spectaclecase Mussel (Cumberlandia mondonta) Endangered
- Spike Mussel (Euryna dilatate) Threatened
- Wartyback Mussel (Quadrula nodulata) Threatened
- Cattail Sedge (Carex typhina) Special Concern
- Gray's Sedge (Carex grayi) Special Concern
- Green Dragon (Arisaema dracontium) Special Concern
- Muskingum Sedge (Carex muskingumensis) Special Concern

¹¹ Thiel, P. A. (1981). A Survey of Unionid Mussels in the Upper Mississippi River (Pools 3 through 11). Madison: Wisconsin Department of Natural Resources.

- American Eel (Anguilla rostrata) Special Concern
- Blue Sucker (Cycleptus elongatus) Special Concern
- Mississippi Silvery Minnow (Hybognathus nuchalis) Special Concern
- Paddlefish (Polyodon spathula) Threatened
- Peregrine Falcon (Falco peregrinus) Special Concern
- Pirate Perch (Aphredoderus sayanus) Special Concern
- Timber Rattlesnake (Crotalus horridus) Threatened

In addition to the NHIS query, a regulatory review for federally-listed species surrounding the project area was conducted using the U.S. Fish and Wildlife Service's (USFWS) Information for Planning and Consultation (IPaC) tool. The following species and migratory birds were identified during the review:

USFWS - Federally Listed Species

- Northern Long-eared Bat (Myotis septentrionalis) Threatened
- Higgins Eye Mussel (Lampsilis higginsii) -Endangered

Migratory Birds

- Bald Eagle (Haliaeetus leucocephalus) -Protected
- Black-billed Cuckoo (Coccyzus erythropthalmus)
- Golden Eagle (Aqulla chrysaetos) Protected

- Spectaclecase Mussel (Cumberlandia monodonta) Endangered
 - Lesser Yellowlegs (Tringa flaviper)
 - Red-headed Woodpecker Melanerpes erythrocephalus)
 - Rusty Blackbird (Euphagus carolinus)
 - Short-billed Dowitcher (Limnodromus griseus)

c. Project Effects

Discuss how the identified fish, wildlife, plant communities, rare features and ecosystems may be affected by the project. Include a discussion on introduction and spread of invasive species from the project construction and operation. Separately discuss effects to known threatened and endangered species.

The project is expected to impact existing habitat areas on site and within the Mississippi River. Based on the information provided by the Corps of Engineers, live mussel species in the area appear to be limited based on the 2015 and 2021 surveys.

Any existing mussel species may experience direct mortality and short-term impacts because of the proposed project (dredging activities). Ongoing coordination with Corps of Engineers and MnDNR staff will determine if further mussel surveys are needed as part of the EIS. Other rare feature impact assessments will further describe details of potential direct impacts (e.g., vegetation loss and direct mortality) and indirect impacts (e.g., noise, dust) on rare species. As needed, mitigation measures will be proposed in the Draft EIS.

Transportation of construction equipment and materials associated with the project site carries the risk of spreading invasive plant species. Preventing the spread of invasive species during construction and

operation of the barge terminal facility will occur as part of BMPs measures that will be put in place to control and appropriately manage vegetation and any invasive species. Disturbed areas on the site will primarily be replaced with gravel surfaces (access road, loading and stockpile areas). Reseeding and landscaping materials will predominantly be native seed mixes and free of invasive plants or plant parts.

d. Control Measures

Identify measures that will be taken to avoid, minimize, or mitigate adverse effects to fish, wildlife, plant communities, and sensitive ecological resources.

While no substantial impacts are anticipated, the project site plan may be modified to reduce potential impacts identified during the EIS process. Minimizing areas of disturbance, including natural vegetation and tree removals, will be limited to the extent possible.

Erosion control BMPs will be used on newly exposed soils. These may include the use of wildlife friendly natural fiber, erosion control blankets, silt fencing, synthetic fiber-free hydro-mulch, and rock checks; specifications for BMPs and allowed materials would be included in construction contracts and specifications. Exposed areas of sediment would be stabilized as soon as possible and seeded with an approved seed mix to establish vegetative cover. Invasive plant species would be monitored and managed to ensure success of native species establishment.

Additional coordination with MnDNR will occur in order to determine the potential for impacts and/or takings of state-protected mussel species in the Mississippi River dredge areas. If impacts are identified, a qualified surveyor would conduct a mussel survey and or/relocation in any potential mussel habitat prior to disturbance within these habitats. No work in the riverbed would occur until potential impacts to mussels have been resolved. In addition, if mussels are found, they would be relocated to an area of the river that is not impacted by the construction and activities associated with the barge terminal facility.

Proposed Treatment of Topic in EIS

The EIS will address impacts of the project on state and/or federal threatened and endangered species, rare plant communities and other sensitive ecological resources. The EIS will use species range and distribution maps, scientific literature, and site survey information to determine whether these resources are present in the Wabasha Barge Terminal Facility study area, and if present, the extent of and potential impact to the resource.

14 Historic Properties

Describe any historic structures, archeological sites, and/or traditional cultural properties on or in close proximity to the site. Include: 1) historic designations, 2) known artifact areas, and 3) architectural features. Attach letter received from the State Historic Preservation Office (SHPO). Discuss any anticipated effects to historic properties during project construction and operation. Identify measures that will be taken to avoid, minimize, or mitigate adverse effects to historic properties.

A Phase 1A Archaeological Literature Review has been completed for the study area. The Phase 1A reviewed existing literature, historic imagery, and historic maps available through July 2021. The findings of the report include a recommendation for a Phase I archaeological reconnaissance survey for areas of the site with the potential to contain intact Holocene spoils, namely in areas not previously disturbed from the mining operation that previously occupied the site.

Early notification information was submitted to the State Historic Preservation Office (SHPO) in July 2021 and a response was received on September 20, 2021, recommending a Phase 1 archaeological survey be completed (SHPO No. 2021-2509) for areas identified in the Phase 1A literature review.

Proposed Treatment of Topic in EIS

A review of the site layout and recommended limits of the Phase 1 survey will be conducted during the development of the Draft EIS. If the site plan encroaches on previously undisturbed areas, the EIS will include the results of the Phase 1 survey and any additional findings and recommendations.

15 Visual

Describe any scenic views or vistas on or near the project site. Describe any project related visual effects such as vapor plumes or glare from intense lights. Discuss the potential visual effects from the project. Identify any measures to avoid, minimize, or mitigate visual effects.

The existing visual aesthetic of the project site is primarily woodlands with an assortment of left behind construction equipment and materials (scrap metal and various vehicle parts) that were abandoned following the mining operation that previously occupied this site.

The northern and northwestern portions of the project site contain wetlands and provide views of the Mississippi River. The eastern, western, and southern borders of the project site provide views of the surrounding agricultural land and the forested hillside located west of US Highway 61.

The proposed project would alter the existing visual aesthetic of the project site with the introduction of trucks, barges, other industrial equipment, storage facilities, and the temporary introduction of construction vehicles and equipment. This altered visual aesthetic would be visible from neighboring parcels, roadways, the Mississippi River, and from the surrounding hillside.

Proposed Treatment of Topic in EIS

The EIS will evaluate and summarize the extent of visual impacts associated with the proposed project on adjacent land uses and lines of sight. Mitigation measures will address site design and landscaping measures to reduce visual impacts over the course of the project's lifespan.

16 Air

a. Stationary Source Emissions

Describe the type, sources, quantities and compositions of any emissions from stationary sources such as boilers or exhaust stacks. Include any hazardous air pollutants, criteria pollutants, and any greenhouse gases. Discuss effects to air quality including any sensitive receptors, human health or applicable regulatory criteria. Include a discussion of any methods used assess the project's effect on air quality and the results of that assessment. Identify pollution control equipment and other measures that will be taken to avoid, minimize, or mitigate adverse effects from stationary source emissions.

Construction and facility operations have the potential to create air emissions, particularly fugitive dust sources, as described in Item 16c below. Stationary processing equipment and associated activities will be primarily located along the northern boundary of the site and will be in conjunction with the barge/dock unloading area. The initiation of site activities will result in a slight increase of emissions from dredge material transport equipment/operations (dredge material haulers/hoppers, and conveyors and vehicle hauling, but is not anticipated to be excessive or at level of concern.

Site owners will assess the air emissions relative to proposed operations and apply for an MPCA Air Emissions Permit, if needed and as required by state regulations. Pending current or future requirements, this permit would regulate operating parameters and require routine performance tests, record keeping, and monitoring to ensure compliance with State and Federal ambient air standards.

b. Vehicle Emissions

Describe the effect of the project's traffic generation on air emissions. Discuss the project's vehicle-related emissions effect on air quality. Identify measures (e.g., traffic operational improvements, diesel idling minimization plan) that will be taken to minimize or mitigate vehicle-related emissions.

There are no vehicle-related emissions generated on the existing project site. The proposed project would include no more than ten parking spaces for employee and operator parking. The site would generate less than 500 daily trips, and the construction and operation of the site is not anticipated to adversely impact traffic conditions at intersections within or near the study area.

Construction-related vehicle emissions from the proposed project would be minor and temporary in nature, generated by the use of construction vehicles and equipment, as well as barges, during the construction of the barge terminal dock, storage pad, access road, dock/mooring piles, truck loading area, and scale house/field office building.

Vehicle-related emissions during the operation of the proposed project would be generated from trucks and barges used to transport dredged material to and from the project site, as well as from the personal vehicles of employees traveling to and from the project site.

All construction vehicles and equipment, trucks, and barges would meet MPCA and EPA emission standards. Construction-related emissions would meet the conformity requirements under Section 176 (c) of the Clean Air Act and 40 CFR 93.153.

c. Dust & Odors

Describe sources, characteristics, duration, quantities, and intensity of dust and odors generated during project construction and operation. (Fugitive dust may be discussed under item 16a). Discuss the effect of dust and odors in the vicinity of the project including nearby sensitive receptors and quality of life. Identify measures that will be taken to minimize or mitigate the effects of dust and odors.

As described in *Item 9* above, the project site is currently of vacant land use. There are no activities currently occurring on the project site that contribute existing dust- or odor-related effects.

The proposed project may generate minor dust-related impacts during construction and operation because of vehicles operating within the site along internal roads. Dust may also be generated from the offloading of materials, transportation, and processing operations. All dust-related impacts are anticipated to be minor and typical of an industrial facility located in a rural setting.

The proposed project is not anticipated to generate any nauseous odors during construction or operation.

Proposed Treatment of Topic in EIS

The EIS will review the proposed project's detailed construction plans to confirm the project's effect on air quality and anticipated vehicle-related emissions. As appropriate, mitigation measures will be utilized during the construction and operation of the proposed project.

The EIS will include an assessment and discussion of dust-related impacts based on the detailed construction plans and introduce mitigation measures, including a potential Wet Dust Suppression Plan, to be utilized during the construction or operation of the project. Odors will not be further addressed in the EIS.

17 Noise

Describe sources, characteristics, duration, quantities, and intensity of noise generated during project construction and operation. Discuss the effect of noise in the vicinity of the project including 1) existing noise levels/sources in the area, 2) nearby sensitive receptors, 3) conformance to state noise standards, and 4) quality of life. Identify measures that will be taken to minimize or mitigate the effects of noise.

a. Existing Noise

Existing sources of noise in the vicinity of the proposed project include vehicle traffic on 5th Grant Boulevard West (County Road 59), noise from farming located on parcels adjacent to the project site, and an active freight railroad line located approximately 300 feet south of the project site.

The project site is bounded by the Mississippi River to the north and active agricultural land to the south, east, and west. Some of the agricultural lots adjacent to the project site contain houses, however the nearest lots to the project site that are primarily of residential use are located approximately 0.25 miles southeast of the project site. Additional noise receptors in the vicinity of the proposed project include: the Riverview Cemetery, approximately 250 feet west of the project site; the Gunderson St.

Elizabeth Hospital, approximately 2,000 feet east of the project site; and a couple rural residents south of 5th Grant Blvd (County Road 59), approximately 1,600 and 1,750 feet south.

b. Operational Noise

Construction-related noise effects from the proposed project would be minor and temporary in nature, generated by the use of construction vehicles and equipment, as well as barges, during the construction of the barge terminal pad, access road, dock/mooring piles, barge staging winch system, loading truck scale, and scale house/field office building. See *Table 7, "Typical Construction Equipment Noise Levels at 50 Feet,"* for typical noise levels of construction equipment measured at 50 feet.

	Manufacturers Sampled	Total Number of Models in Sample	Peak Noise Level (dBA*)	
Equipment			Range	Average
Backhoes	5	6	74-92	83
Front Loaders	5	30	75-96	85
Dozers	8	41	65-95	85
Graders	3	15	72-92	84
Scrapers	2	27	76-98	87
Pile Drivers	N/A	N/A	95-105	101

Table 7: Typical Construction Equipment Noise Levels at 50 Feet

* Units of "A-weighted decibels"

Source: United States Environmental Protection Agency and Federal Highway Administration

Noise resulting from the proposed project's operational activities would be generated by the loading and unloading of barges and trucks, from trucks and barges used to transport dredged material to and from the project site, as well as from the personal vehicles of employees traveling to and from the project site, and internal site operations equipment (e.g., material haulers: hoppers, conveyors, etc.).

The State of Minnesota rules (MN Statute 7030.0020) define daytime hours as 7am to 10pm, and nighttime hours as 10pm to 7am. All construction and operational activities associated with the proposed project would conform with the State of Minnesota noise standards listed in *Table 8, "Noise Standards (MN Statute 7030.0040)."*

Table 8: Noise Standards	(MN Statute 7030.0040)
Table 0. Noise Standards	

Noise Area Classification	Daytime	Daytime		Nighttime	
	L ₅₀	L ₁₀	L50	L ₁₀	
1 (Residential)	60	65	50	55	
2 (Commercial)	65	70	65	70	
3 (Industrial)	75	80	75	80	

 $^{\ast}L_{10}$ is the sound level, expressed in dBA, which is exceeded 10% of the time for one hour

 L_{50} is the sound level, expressed in dBA, which is exceeded 50% of the time for one hour

c. Traffic Noise

The proposed project would generate traffic-related noise from trucks hauling construction materials during the construction of the proposed project, trucks hauling dredged materials during the operation of the proposed project, and from employees using personal vehicles to travel to and from the project site. However, because the proposed project would include no more than ten parking spaces for employee and operator parking and would generate less than 250 vehicle trips during peak hour operations and less than 2,500 daily trips, traffic congestion and traffic-related noise are not anticipated to adversely affect surrounding areas or sensitive receptors.

Proposed Treatment of Topic in EIS

A detailed noise analysis will not be completed as part of the Draft EIS. However, the EIS will assess potential noise-related impacts of the proposed project and discuss any associated mitigation measures that could be utilized during the construction or operation of the project.

18 Transportation

a. Project-Related Traffic

Describe traffic-related aspects of project construction and operation. Include: 1) existing and proposed additional parking spaces, 2) estimated total average daily traffic generated, 3) estimated maximum peak hour traffic generated and time of occurrence, 4) indicate source of trip generation rates used in the estimates, and 5) availability of transit and/or other alternative transportation modes.

Existing and Proposed Parking Spaces

The project site does not presently include any parking spaces. It is anticipated the proposed project location will incorporate no more than ten parking spaces for employee and operator parking.

Existing Traffic

Transport roads to and from the proposed project location include Wabasha County Road 59 (Grant Blvd), State Trunk Highway (TH) 61, and County Road 10. Existing (2018) annual average daily traffic (AADT) for these roadways are as follows:

- 5th Grant Blvd (County Road 59): AADT ranges from 870 trips near the site entrance to 2,050 trips to the south near the Gundersen St. Elizabeth Hospital
- TH 61: this segment of state highway has approximately 4,850 daily trips
- County Road 10: near the intersection with TH 61 has 550 trips

The facility operations will cause traffic to increase in each direction on these roads, including an increase in heavy commercial truck traffic. Traffic will be generated by employees; haul trucks, and miscellaneous supply trucks/vehicles. A traffic study will be completed as part of the Draft EIS that will further analyze the impact of the proposed project on the local and regional transportation network.

b. Potential Congestion

Discuss the effect on traffic congestion on affected roads and describe any traffic improvements necessary. The analysis must discuss the project's impact on the regional transportation system. If the peak hour traffic generated exceeds 250 vehicles or the total daily trips exceeds 2,500, a traffic impact study must be prepared as part of the EAW. Use the format and procedures described in the Minnesota Department of Transportation's Access Management Manual, Chapter 5 (available at: http://www.dot.state.mn.us/accessmanagement/resources.html) or a similar local guidance,

A detailed traffic impact study has not been prepared as the proposed operations are not anticipated to exceed 250 vehicles during peak hour operations or exceed 2,500 trips per day during peak hauling operations. The number of daily trips, during summer operating peaks, is anticipated to be less than 500 per day. Winter hauling to/from the site is anticipated to be minimal as river barge operations would halt during winter months. A traffic analysis is planned to be completed as part of the Draft EIS, however due to the rural nature of the study area and proximity to 5th Grant Blvd (County Road 59) and Highway 61, traffic congestion on the local and regional transportation system is not anticipated to be a concern for the project as proposed.

Proposed Treatment of Topic in EIS

The EIS will include a discussion of the traffic analysis and results of the traffic study. Intersection and roadway operations and safety conditions will be addressed in the Draft EIS along with any identified mitigation measures (e.g., geometric improvements, cautionary signage, etc.) that may be needed.

Ongoing coordination with the Wabasha County Highway Department and MnDOT will occur through the preparation of the Draft and Final EIS.

19 Cumulative Potential Effects

a. Geographic Scales & Timeframes

Describe the geographic scales and timeframes of the project related environmental effects that could combine with other environmental effects resulting in cumulative potential effects.

It is currently estimated that the barge facility operations will operate for at least 20 years and continue to facilitate the transfer of dredged material from USACE channel maintenance activities on the Mississippi River within a stretch of the river near the City of Wabasha. Throughout the life of the site, it is expected that dredged material will be transported offsite for use as reclamation material for existing sand and gravel mines and other beneficial reuse, outside the geographic boundary of this cumulative potential effects analysis.

b. Future Projects

Describe any reasonably foreseeable future projects (for which a basis of expectation has been laid) that may interact with environmental effects of the proposed project within the geographic scales and timeframes identified above.

Cumulative potential effects may include private land use developments in portions of the city planned for future development and redevelopment. Transportation projects are likely to be planned and programmed for construction may involve safety, capacity, pavement preservation, and active transportation modes (ped/bike). These projects will be carried out by MnDOT, Wabasha County, or the city.

c. Discussion/Summary of Cumulative Potential Effects

Discuss the nature of the cumulative potential effects and summarize any other available information relevant to determining whether there is potential for significant environmental effects due to these cumulative effects.

Impacts may include changes in land cover type (e.g., increased impervious and vegetation/habitat loss), impacts to wetlands and other water resources, increases in traffic volumes and changes in demand for non-motorized transportation options. While not anticipated to involve significant social, economic, or environmental effects, all future projects would be subject to applicable local, state, and federal environmental reviews and permitting.

Proposed Treatment of Topic in EIS

The EIS will include a discussion of cumulative potential effects. Additional research and coordination with local and state agencies will occur to identify specific projects, including timing, magnitude and estimated impacts.

20 Other Potential Environmental Effects

If the project may cause any additional environmental effects not addressed by items 1 to 19, describe the effects here, discuss the how the environment will be affected, and identify measures that will be taken to minimize and mitigate these effects.

None

RGU CERTIFICATION

The Environmental Quality Board will only accept **SIGNED** Environmental Assessment Worksheets for public notice in the EQB Monitor.

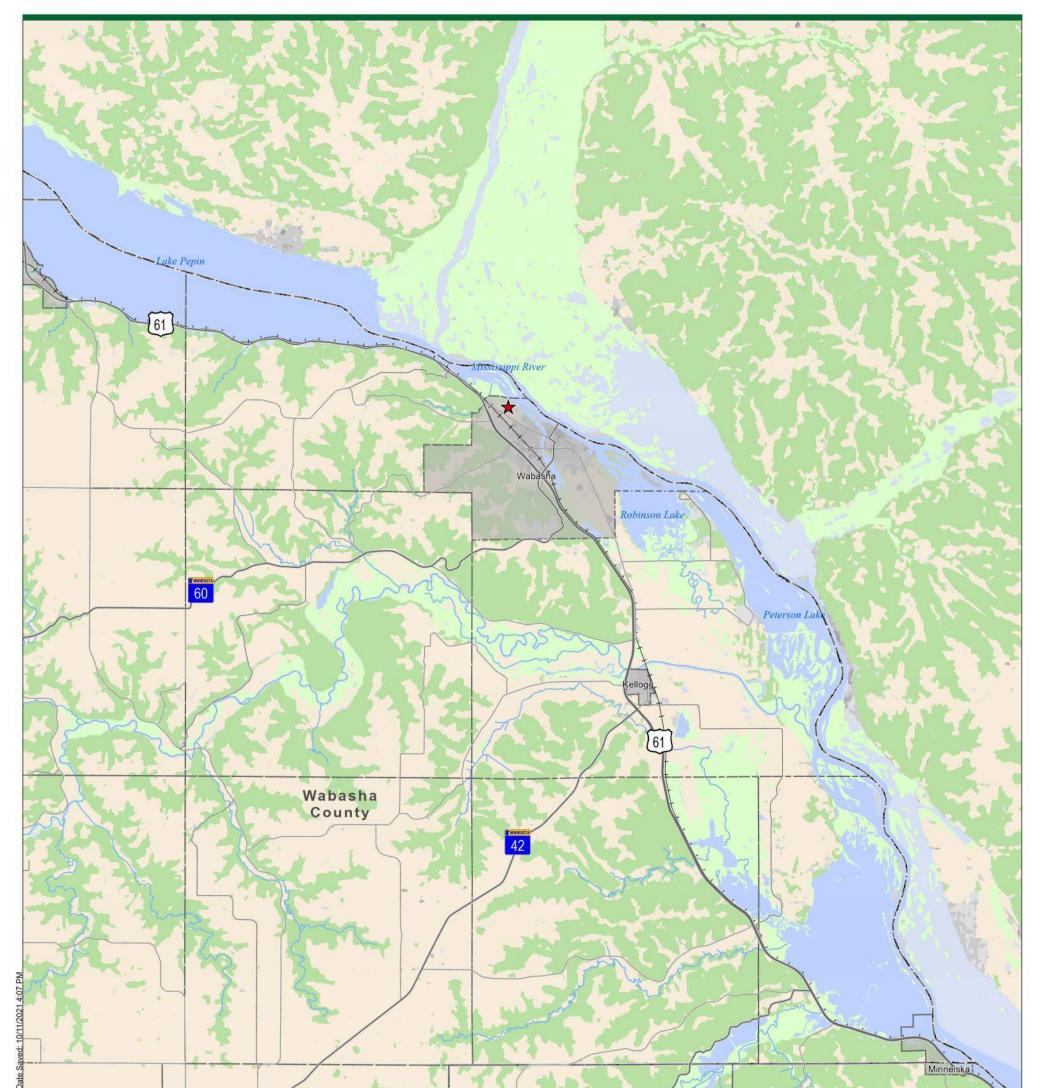
I hereby certify that:

- The information contained in this document is accurate and complete to the best of my knowledge.
- The EAW describes the complete project; there are no other projects, stages or components other than those described in this document, which are related to the project as connected actions or phased actions, as defined at Minnesota Rules, parts 4410.0200, subparts 9c and 60, respectively.
- Copies of this EAW are being sent to the entire EQB distribution list.

Signature <u>Caroline</u> Gregerson

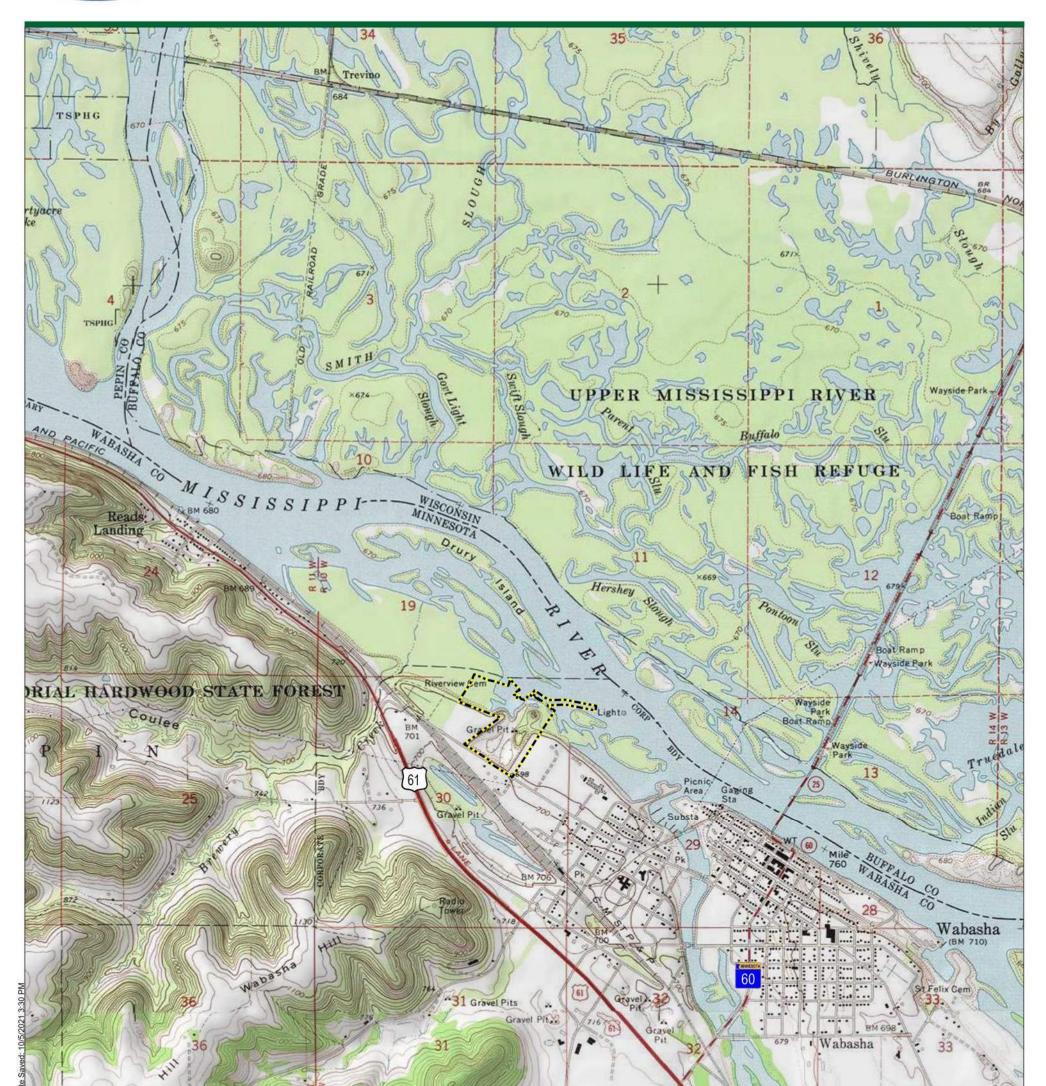
Date 6/7/2022

Title Caroline Gregerson



Appendix A: Figures

Environmental Assessment Worksheet



Environmental Assessment Worksheet

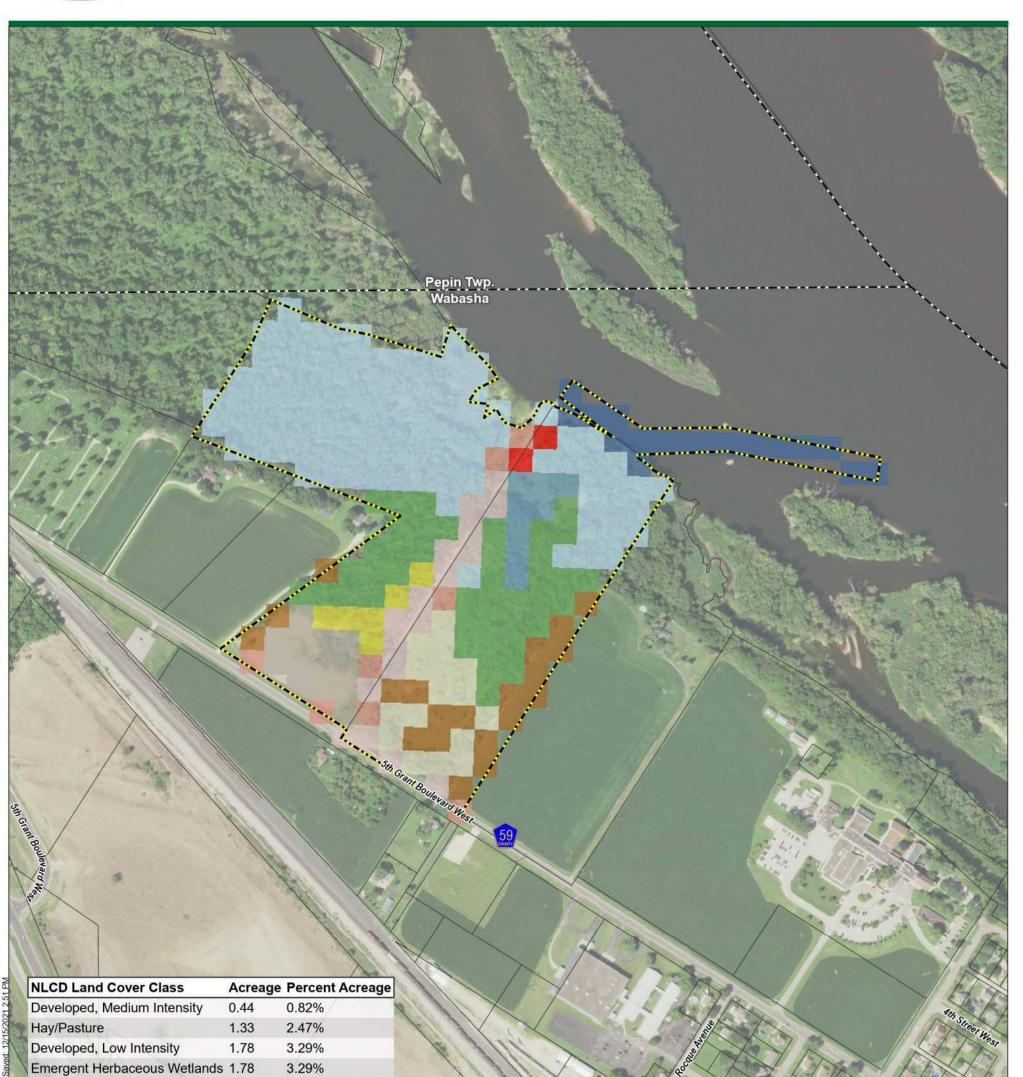


Figure 3: Existing Conditions

Environmental Assessment Worksheet

WABASHA

Figure 4: Land Cover Classification

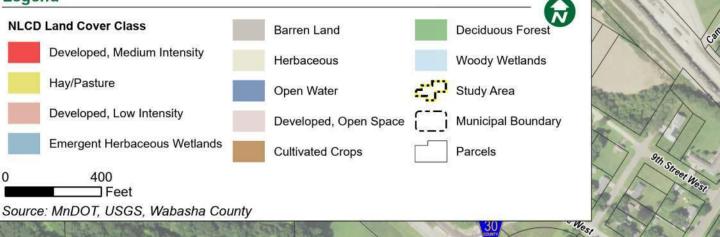

Wes

64

We

Environmental Assessment Worksheet

December 2021


Barren Land	2.89	5.35%
Herbaceous	3.56	6.58%
Open Water	3.78	7%
Developed, Open Space	3.78	7%
Cultivated Crops	4.45	8.23%
Deciduous Forest	9.12	16.87%
Woody Wetlands	21.13	39.09%

Legend

MNNH19114

HA CI

0

Environmental Assessment Worksheet

Figure 5: Soils October 2021

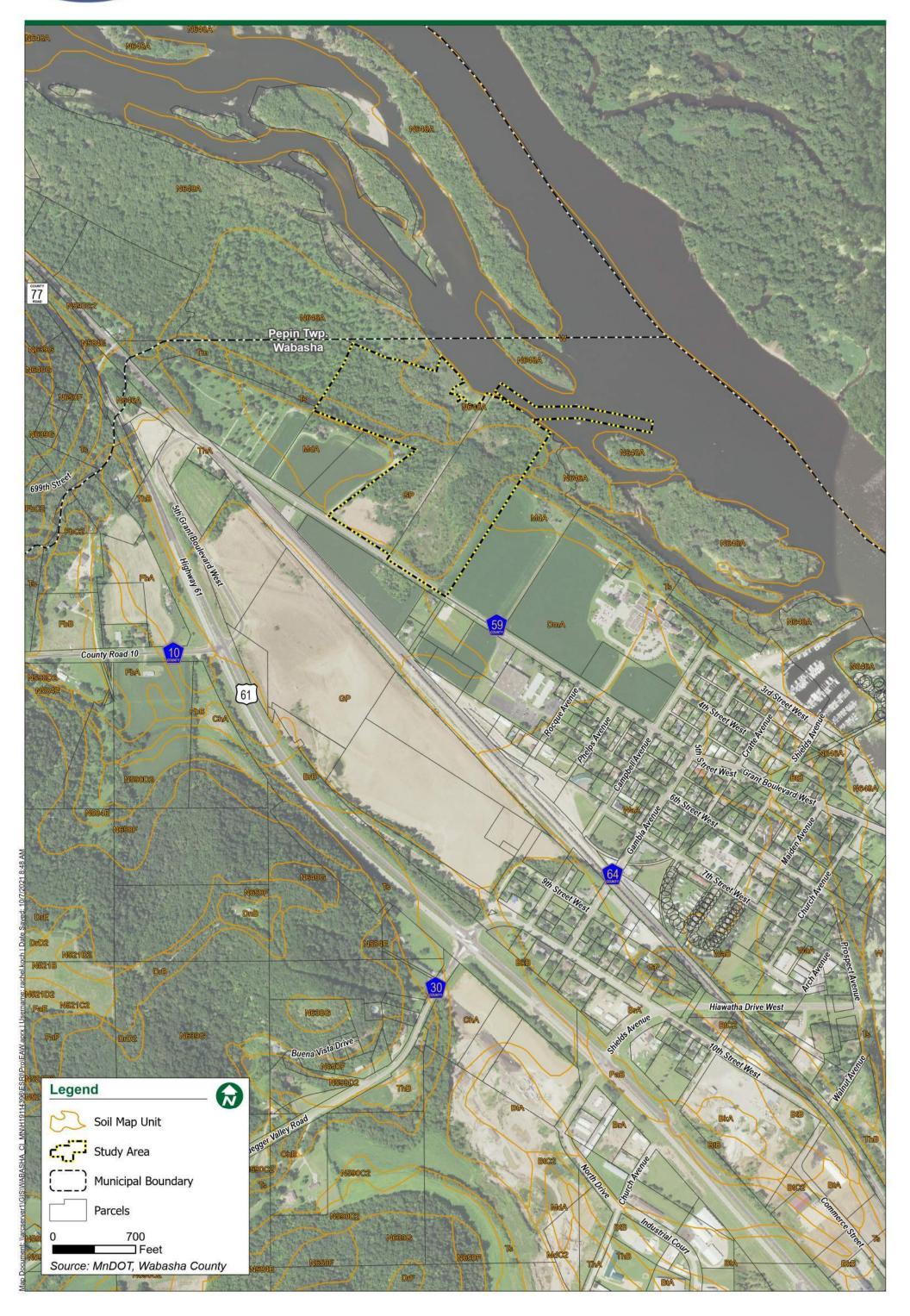
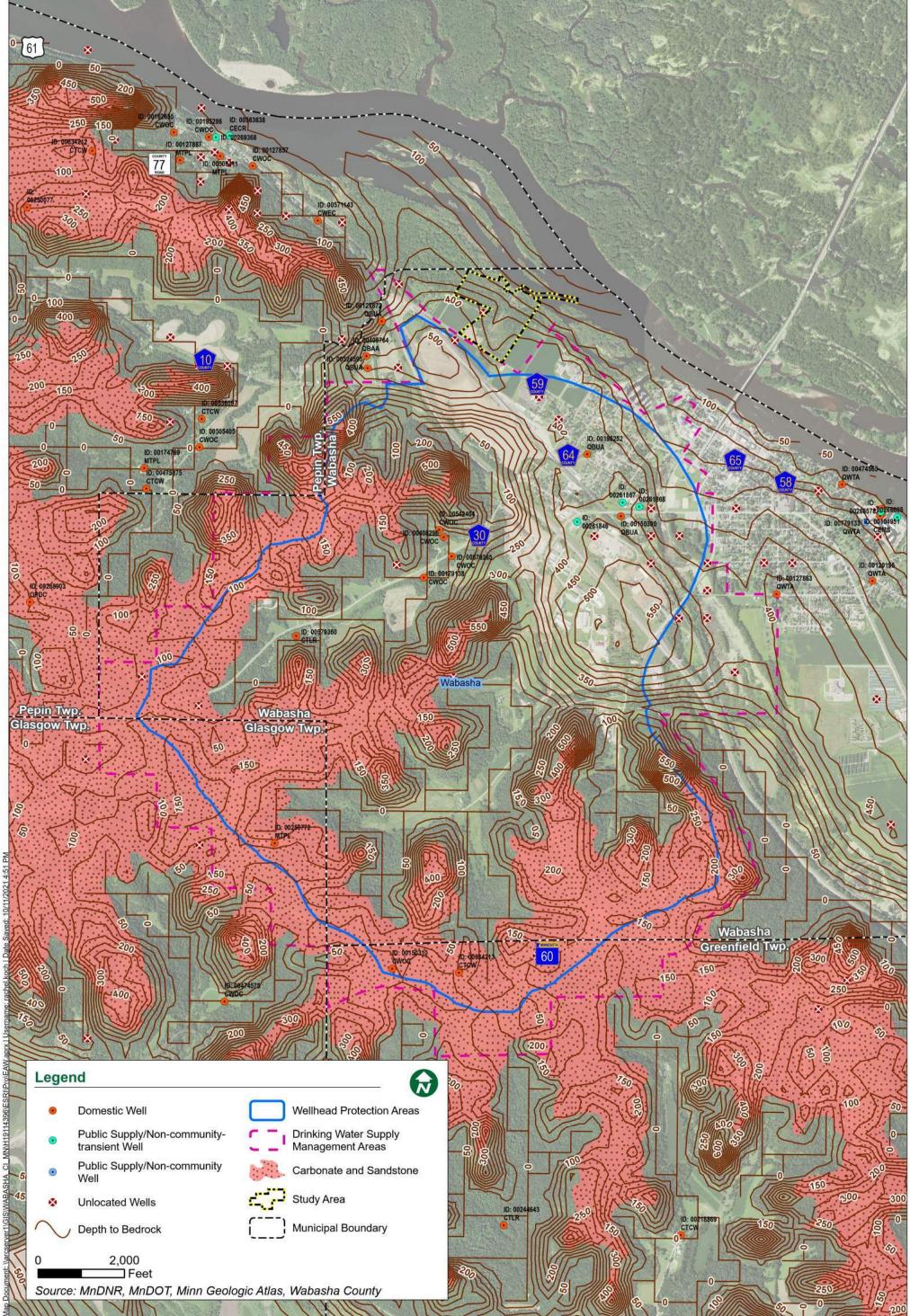



Figure 6: Geologic Conditions/Groundwater

Environmental Assessment Worksheet

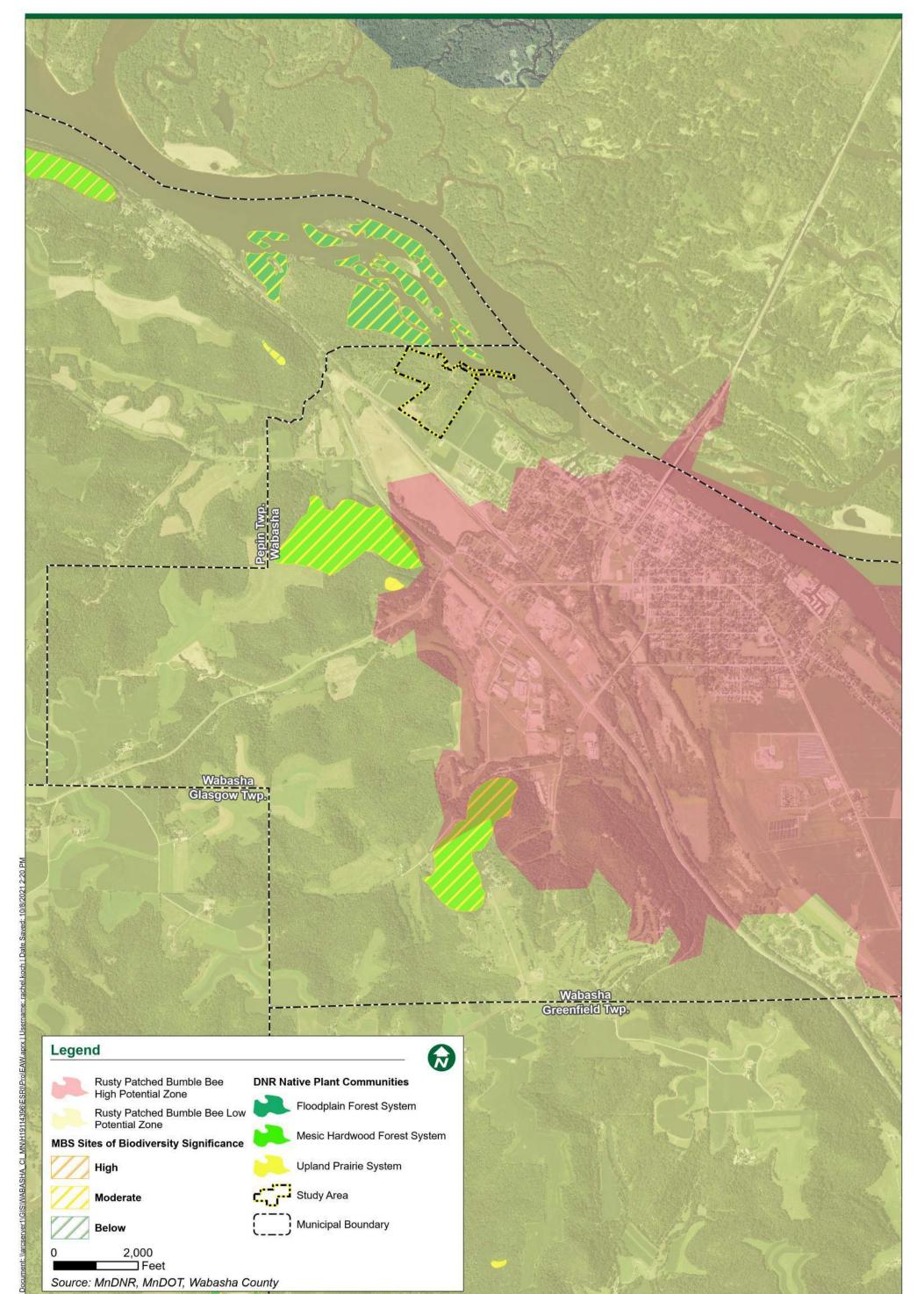


Environmental Assessment Worksheet

Figure 7: Surface Water October 2021

Environmental Assessment Worksheet

Figure 8: Wetlands October 2021



Environmental Assessment Worksheet

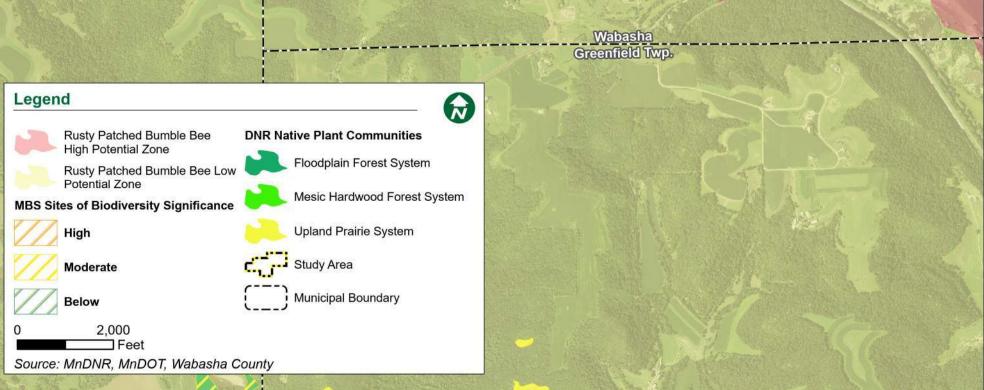


Figure 10: Outdoor Recreation

Environmental Assessment Worksheet

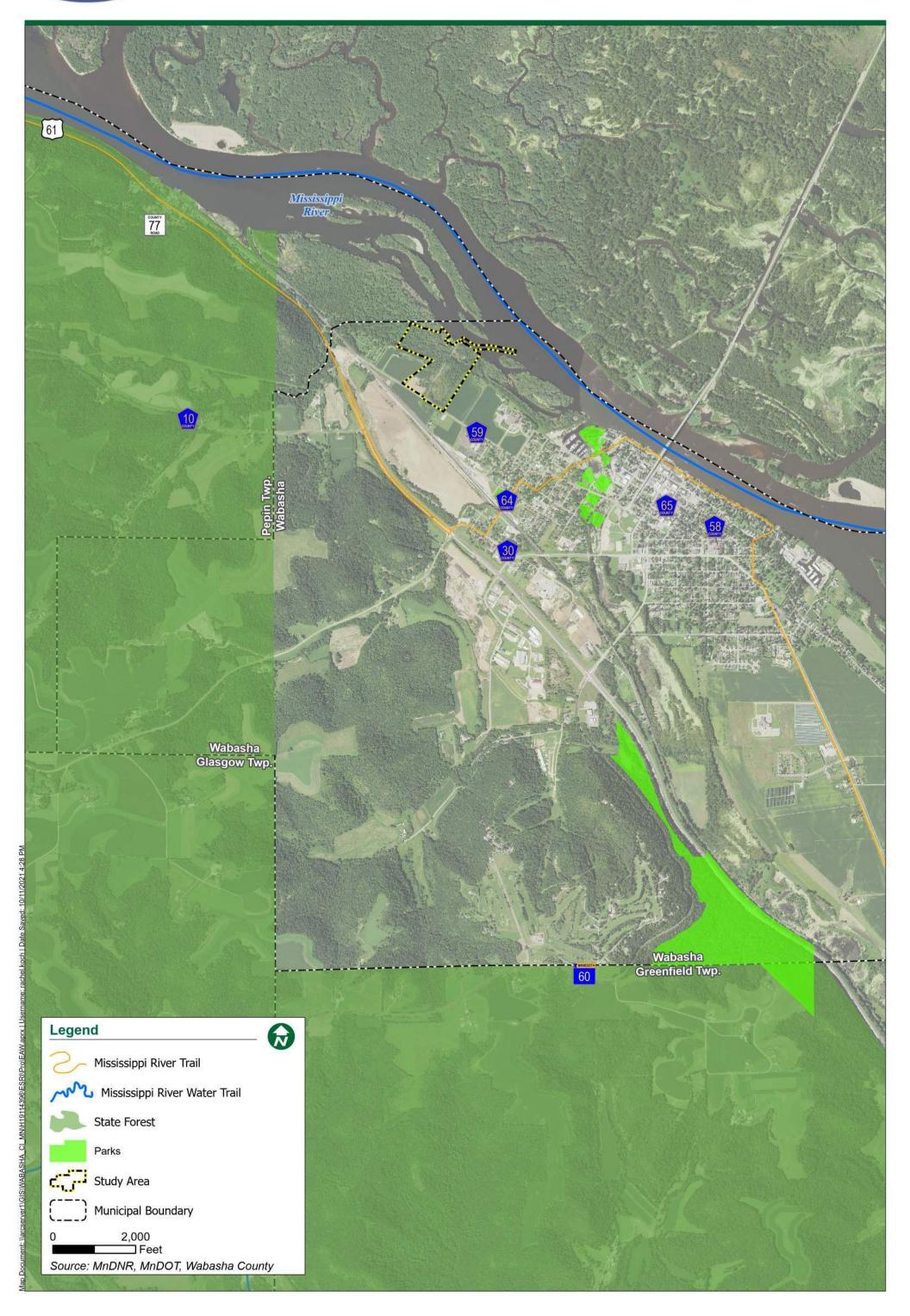
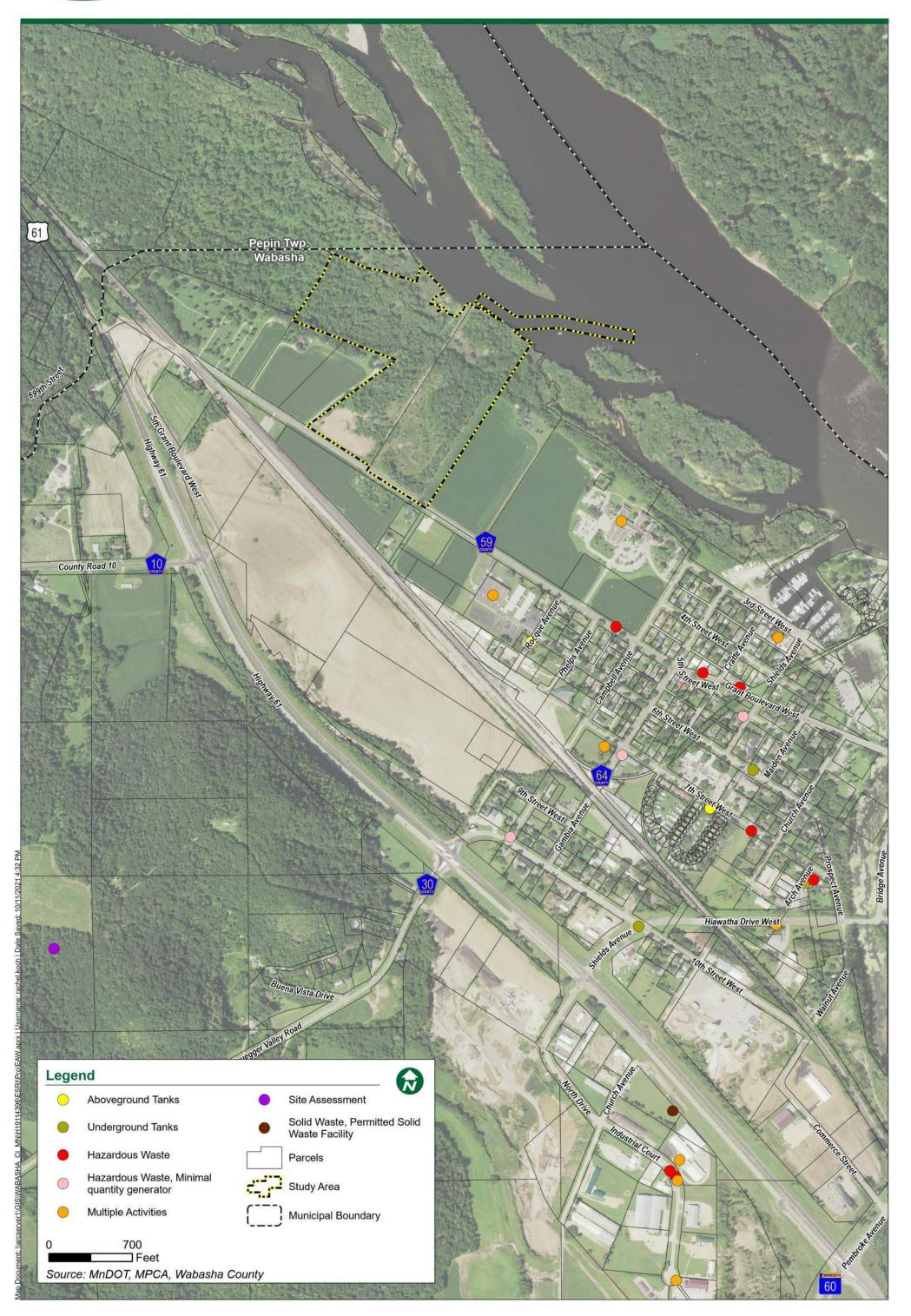



Figure 11: Potentially Contaminated Sites

Environmental Assessment Worksheet

Wabasha Barge Facility

City of Wabasha, MN

Figure 12: Site Plan May 2022

LEGEND

WETLANDS
WETLAND (FILLED IN WITH PROJECT)
DOCK
AGGREGATE SURFACING
AGGREGATE SURFACING (SHOULDER)
DITCH BOTTOM
DREDGE AREA
WATER SERVICE PIPE
SANITARY SERVICE PIPE
PROPOSED WATERMAIN

APPENDIX J

Comments Received on Scoping EAW

DEPARTMENT OF NATURAL RESOURCES

Division of Ecological and Water Resources Region 3 Headquarters 1200 Warner Road Saint Paul, MN 55106

July 21, 2022

Caroline Gregerson, City Administrator Wabasha Port Authority 900 Hiawatha Drive E Wabasha, Minnesota 55981

Dear Ms. Gregerson:

Thank you for the opportunity to review the Wabasha Barge Facility Scoping Environmental Assessment Worksheet (SEAW) and Wabasha Barge Terminal Draft Scoping Decision Document (DSDD). The Minnesota Department of Natural Resources (DNR) recognizes the challenges inherent to dredged material management and the importance of maintaining a safe and reliable 9-foot navigation channel on the Upper Mississippi River. It is in this context that we offer these comments and express DNR's commitment to continuing to work with the Wabasha Port Authority as the Responsible Governmental Unit (RGU) on this important environmental review.

Purpose, Need and Alternatives Analysis

The purpose and need for this project appears to be limited to the need to transport dredged material generated by the U.S. Army Corps of Engineers (USACE). It is important to both the environmental review process as well as for DNR's subsequent consideration of a Public Waters Work permit application that the purpose and need be clearly articulated and not be so narrow as to preclude the analysis of meaningful alternatives. More specifically, the Minnesota Environmental Policy Act (Minn. Stat. § 116D.04, subd. 6) precludes "state actions significantly affecting the quality of the environment" if there is a "feasible and prudent alternative consistent with the reasonable requirement of the public health, safety, and welfare of the state's paramount concern for the protection of its air, water, land, and other natural resources from pollution, impairment, or destruction." Courts have consistently ruled that the statement of need and purpose cannot be so narrow and vague as to undermine any meaningful review of alternatives, particularly where the project is a government project. Courts have also noted that the statement of need and purpose should not sanction a specific project plan but rather should focus on the general goal of the project, which here seems to be delivering dredged

material to the storage site. If there is an additional purpose and need for this project, that is unclear from the DSDD.

If the primary or exclusive purpose and need for the project is to transfer dredged material to the storage site, there appear to be other alternatives that should be considered. These alternatives might include the use of hydraulic dredging with a pipeline to the storage site (such as that proposed at Read's Landing), that could minimize environmental impacts.

The DNR also observes that, if a barge facility is the selected alternative, that alternative will require a Public Waters Work Permit from the DNR. For the reasons outlined below, that unless the Environmental Impact Statement (EIS) evaluates project alternatives, the document will likely be of limited use in the permit review process. Therefore, the importance of a clearly articulated purpose and need statement that then informs the identification and evaluation of project alternatives extends beyond the environmental review process to the consideration of permit applications.

Scoping EAW Comments

- 1. Page 2, Project Description. The impetus for the project seems to be entirely for the purpose of aiding the USACE in the storage of dredged material. No other purpose or use for the barge facility is provided. It is, therefore, our understanding that the sole purpose of this project is for the storage of dredged material generated by USACE and that, after that work is completed, this facility will be closed and restored. If this understanding is correct, a restoration plan will be required, consistent with the requirements for other USACE dredged material placement sites, and should be described or referenced within the EIS. Alternatively, if there is an intent by the City to use this facility after dredging has ceased, the environmental review document should so state and articulate the general need of the City for the facility.
- 2. Page 3, Project Description. This section states that dredging will occur in an "existing access channel." Anecdotally available information indicates there might not be an existing access channel, despite previous dredging in this area in 1982, some 40 years ago. This might be better worded as "Dredging an access channel within the footprint of the 1982 dredged access channel impact area," or similar.
- 3. Page 3, Project Description and Alternatives Analysis. This section states that the proposer will "dredge an area to accommodate barge maneuvering and docking." We realize that final plans are not yet available, but final plans are not a prerequisite to crafting a statement of a project need and purpose that meets MEPA standards. The need should reflect the project's general goals, objective and needs (i.e., addresses why this project is needed) to allow identification and analysis of the full range of alternatives. Additionally, please include as much information as possible to facilitate a comprehensive evaluation of potential alternatives. Examples of useful additional information would include: a description of how many barges would be needed to transport the dredged material, a description of how many barges would need to dock at the facility at any one time, whether the project purpose requires that there be fleeting or mooring areas, and whether there are less impactful solutions than construction of a barge facility to transport dredge material to the dredge storage site.

- 4. Page 4, Previous Development. This site is identified as one of several sites within the USACE's Lower Pool 4 Dredged Material Management Plan (DMMP), which is a federal Environmental Assessment document, and should be mentioned as previous environmental review.
- 5. Page 5, Permits and Approvals. Under Local Agencies, City of Wabasha on Table 3, "Floodplain Permit" should be added as a Type of Application/Permit.
- 6. Page 5, Permits and Approvals. The City is currently working through the rare species survey process for its proposed project with DNR. This analysis will need to be undertaken for all of the proposed alternatives analyzed during environmental review. For any alternative analyzed, a DNR Permit to Take may be needed for any state-listed threatened and endangered species that cannot be avoided. Thus, a DNR Permit to Take should be listed on Table 3.
- 7. Page 5, Permits and Approvals. If during the construction of the proposed facility, or any project alternative, it is necessary to appropriate water, including for construction site dewatering during the installation of utilities, and the volume of water taken exceeds 10,000 gallons per day, or one million gallons per year, then a DNR Water Appropriation Permit would be required. Thus, a DNR Water Appropriation Permit should also be listed on Table 3.
- 8. Page 5, Permits and Approvals. Part of the proposed storage site is currently included under the USACE's approved Channel Maintenance Management Plan and Dredged Material Management Plan. Based on these plans, the DNR has authorized the USACE to deposit dredge material at part of this site under DNR's General Permit 1994-5082. The EIS should clearly identify dredge spoil authorizations between City and USACE jurisdictions.
- 9. Page 6, Land Use. This section states that for the City's preferred alternative "there are no identified parks, trails or recreational resources within the project site." This area of the Upper Mississippi River has a substantial amount of fishing and boating activities. Small boats frequently use this area to access the side channel to the west of Drury Island and there are also primitive camping sites on the interior of the island complex.

There is no mention in the Land Use section of the U.S. Fish and Wildlife Service (USFWS) property associated with the Upper Mississippi River National Wildlife Refuge (NWR) that is located immediately adjacent to the preferred alternative project parcel. The Paragraph referencing "Appendix A, Figure 3 "Existing Conditions"" and the figure itself would lead the reader to believe that USFWS refuge lands bordering the property are agricultural in nature instead of federal refuge lands. Similarly, the paragraph referencing "Appendix A, Figure 10, "Outdoor Recreation"" and the figure itself would lead the reader to believe that the USFWS lands are not publicly accessible recreational resources.

In general, the scoping document appears to downplay the amount of recreational use that occurs in the vicinity. The proposed facility will have an effect on recreational opportunities and these impacts should be addressed in greater detail. As part of the required MEPA analysis of project alternatives, the EIS should identify each alternative's potential impacts on recreation and consider differences among them.

10. Page 15, Stormwater. If more than one acre of new impervious surfaces will be installed, will a Stormwater Pollution Prevention Plan (SWPPP) be developed for the various alternatives for the project?

- 11. Page 16, Wetlands. The proposed project is within a site identified by the Minnesota Biological Survey (MBS) as a Site of Moderate Biodiversity Significance. Sites of Biodiversity Significance have varying levels of native biodiversity and are ranked based on the relative significance of this biodiversity at a statewide level. Sites ranked as Moderate contain occurrences of rare species and/or moderately disturbed native plant communities, and/or landscapes that have a strong potential for recovery. Green dragon (*Arisaema dracontium*), Gary's sedge (*Carex grayi*), and cattail sedge (*Carex typhina*), all state-listed plant species of special concern, have been documented within the site and may be adversely affected by this project. As part of the required MEPA analysis of project alternatives, the EIS should identify each alternative's potential impacts on these wetland resources and consider differences among the alternatives in terms of their potential to avoid or minimize wetland impacts. This analysis should consider the quality of the wetland plant community being impacted, as well as the potential to degrade plant communities within close proximity to the facility that could be effected by sedimentation, barge traffic, and the introduction of invasive species.
- 12. Page 19, Rare Features. Please see the enclosed DNR Natural Heritage Review (NHIS) letter dated, July 8, 2022, which contains an assessment of rare features and species that may be adversely affected by the proposed project. Please note that this letter contains required avoidance measures for state-listed species known to occur within the project area, including in-water work restriction dates, as well as instructions regarding a required mussel survey. A robust alternative analysis of locations, technology and site design is needed to document consideration of avoidance measures. Minnesota's Endangered Species Statute (*Minnesota Statutes*, section 84.0895) and associated Rules (*Minnesota Rules*, part 6212.1800 to 6212.2300 and chapter 6134) prohibit the take of threatened or endangered species without a permit. Therefore, no project work may proceed until potential impacts to state-listed rare species have been addressed, either via approved avoidance measures or a DNR Permit to Take.
- 13. Page 19, Rare Species. The fish community description appears incomplete and outdated. Notably, it cites Long Term Resource Monitoring (LTRM) data from 2007. The LTRM Upper Mississippi River Restoration Program has done annual sampling from 1993 to present. The EAW states that 59 fish species are present in Pool 4; however, over the history of this program, 87 species have been collected in Pool 4. Furthermore, Pitlo 1995 indicates that there are 99 species present in Pool 4, and there is new information from the Upper Mississippi River Conservation Committee (UMRCC) <u>Fisheries Compendium 4th edition</u> by Schlesser 2020 that shows status and distribution of fishes. The EIS should use the most complete and current information available to assess potential impacts to the fish population within Lower Pool 4 from the proposed project and all project alternatives evaluated. This assessment should include all fish Species of Greatest Conservation Need (SGCN).
- 14. Page 21, Rare Features. The river corridor is one of the most significant migratory routes in North America. The project directly borders the Audubon Society's <u>Upper Mississippi River</u> <u>National Wildlife Refuge Important Bird Area</u> (IBA). Please reference the Audubon Society's <u>site</u> <u>report</u> for a full list of migratory birds that utilize the project area. A robust alternatives analysis is needed to avoid and minimize impacts to this important area.
- 15. Page 21 Rare Features. This section should also describe rare plant communities and ecological features including Minnesota Biological Survey (MBS) Sites of Biodiversity Significance, Lakes of

Outstanding Biological Significance, and DNR Native Plant Communities. The proposed project's proximity to the Upper Mississippi River National Wildlife Refuge and all of the species that depend upon it should be discussed comprehensively within the EIS, including identifications of alternatives to avoid or minimize impacts. Please see the list of recommendations in the enclosed July 8, 2022 DNR NHIS letter regarding work within an MBS Site.

- 16. Page 21, Project Effects. This section should thoroughly consider the potential impacts of all of the project alternatives, including the impact of all alternatives to each state-listed and federally-listed species. Section 13.d. Control Measures, should address what measures will be taken for each alternative to avoid impacting these species. Please see the enclosed NHIS letter for requirements and avoidance measures pertaining to the Timber rattlesnake, mussels, and rare fish species. The EIS should also include a detailed discussion of avoidance and mitigation measures for each alternative.
- 17. Page 23, Visual. Given the proximity to the Upper Mississippi River National Wildlife Refuge and the Audubon Society's IBA, any proposed lighting associated with any of the alternatives analyzed could impact migratory birds and other wildlife present in the area. Lighting for each alternative should be described in greater detail within the EIS.
- 18. Page 27, Traffic. This section focuses solely on land-based transportation impacts of one alternative (the City's preferred alternative). Each of the alternatives should be analyzed for impacts on both land-based and water-based transportation.
- 19. Page 28, Cumulative Potential Effects. For each alternative, the SEAW and future EIS process should address the potential loss of fish spawning habitat, disruption of fish movement to the side channel, the resuspension of sediments as barges are maneuvered, and possible entrainment of fish in barge propellers. It is likely that the proposed project and any other project alternatives involving dredging will also require future dredging to maintain functionality of the site. As a result, the impacts of sedimentation and future site disturbance should be described for each alternative involving dredging.

The narrative of what appears to be the City's preferred alternative would be enhanced by including a description of the previous wetland violation and restoration that occurred at this site.

DNR Work in Public Waters Permitting Needs

One of the fundamental purposes of the EIS is to inform entities that will ultimately need to make permitting decisions of the environmental impacts of the proposed project and its alternatives. Under Minnesota law, the bar for obtaining a DNR Public Waters Work Permit for a new barge facility within such a sensitive and valuable natural resource is high, making the alternatives analysis a particularly important part of this EIS and any subsequent permitting process.

As proposed, this project would require a DNR Public Waters Work Permit to dredge a channel, create a barging facility, and deposit spoils below the Ordinary High Water Level (OHWL) of the Mississippi River. Any project alternatives identified and evaluated may also have elements requiring a DNR Public Waters Work Permit. The DNR is required to evaluate an application for a Public Waters Work Permit for consistency with *Minnesota Statutes* 103G and *Minnesota Rules* 6115.0150 through 6115.0280. Therefore, the EIS should address:

- 1. For any proposed filling, the EIS should address the criteria in Minn. Rules 6115.0190 and 6115.0191.
- 2. For any proposed excavation, the EIS should address the criteria in Minn. Rules 6115.0200 and 6115.0201.
- 3. For any proposed barge facility, the EIS should address the requirements in Minn. Rules 6115.0210 and 6115.0211.
- 4. The permit application, when submitted, must be consistent with Minn. Rule 6115.0240. To inform permit decision-making, the EIS should discuss project alternatives and address how the proposed project is the minimum impact solution with respect to all other alternatives.
- 5. The City must meet the 'who may apply' requirements of Minn. Rule 6115.0240 Subp.2, requiring that the City obtain any necessary property rights.
- 6. The DNR permit decision must be consistent with Minn. Rule 6115.0250. If the project is consistent with all public waters requirements and a permit is issued, it must include requirements for mitigation. Therefore, to inform permit decision-making, the EIS should address mitigation strategies.

Thank you again for the opportunity to review these documents. We look forward to further coordination with the City of Wabasha and the US Army Corps of Engineers. Please let me know if you have any questions.

Sincerely,

Katie Digitally signed by Katie Smith Smith Date: 2022.07.21 16:09:58 -05'00'

Enclosure: July, 8 2022 DNR Natural Heritage Letter

Equal Opportunity Employer

DEPARTMENT OF NATURAL RESOURCES

Minnesota Department of Natural Resources Division of Ecological & Water Resources 500 Lafayette Road, Box 25 St. Paul, MN 55155-4025

July 8, 2022 Correspondence # MCE 2022-00127

> Robert Rogers Bolton & Menk, Inc.

RE: Natural Heritage Review of the proposed Wabasha Barge Terminal Project, T111N R10W Section 30; Wabasha County

Dear Robert Rogers,

As requested, the <u>Minnesota Natural Heritage Information System</u> has been reviewed to determine if the proposed project has the potential to impact any rare species or other significant natural features. Based on the project details provided with the request, the following rare features may be impacted by the proposed project:

Ecologically Significant Areas

The proposed project is within a site identified by the Minnesota Biological Survey (MBS) as a Site
of Moderate Biodiversity Significance. Sites of Biodiversity Significance have varying levels of
native biodiversity and are ranked based on the relative significance of this biodiversity at a
statewide level. Sites ranked as Moderate contain occurrences of rare species and/or moderately
disturbed native plant communities, and/or landscapes that have a strong potential for recovery.
Green dragon (Arisaema dracontium), Gary's sedge (Carex grayi), and cattail sedge (Carex
typhina), all state-listed plant species of special concern, have been documented within this Site
and may be impacted by this project.

We encourage you to consider project alternatives that would avoid or minimize disturbance to this ecologically significant area. Actions to minimize disturbance may include, but are not limited to, the following recommendations:

- Minimize vehicular disturbance in the MBS Site (allow only vehicles/equipment necessary for construction activities);
- Do not park equipment or stockpile supplies in the MBS Site;
- Do not place spoil within MBS Site or other sensitive areas;

- Retain a buffer between proposed activities and the MBS Site;
- If possible, conduct the work under frozen ground conditions;
- Use effective erosion prevention and sediment control measures;
- Inspect and clean all equipment prior to bringing it to the site to prevent the introduction and spread of invasive species;
- As much as possible, operate within already-disturbed areas;
- Revegetate disturbed soil with native species suitable to the local habitat as soon after construction as possible; and
- Use only weed-free mulches, topsoils, and seed mixes. Of particular concern are birdsfoot trefoil (Lotus corniculatus) and crown vetch (Coronilla varia), two invasive species that are sold commercially and are problematic in prairies and disturbed open areas.

MBS Sites of Biodiversity Significance and DNR Native Plant Communities community can be viewed using the <u>Minnesota Conservation Explorer</u> or their GIS shapefiles can be downloaded from the <u>MN Geospatial Commons</u>. Please contact me if you do not have access to the appropriate mapping services. For information on interpreting the data, reference the <u>MBS Site</u> <u>Biodiversity Significance</u> and <u>Native Plant Community</u> websites.

Pool 4 of the Mississippi River has been identified as a Lake of *Outstanding* Biological Significance.
 Lakes of Biological Significance were ranked as *Outstanding*, *High*, *or Moderate* based on unique plant and animal presence. It is important that effective erosion prevention and sediment control practices be implemented and maintained near lakes throughout the project. Indirect impacts, such as the introduction or spread of invasive species, should also be considered and minimized.

State-listed Species

- Several state-listed fish including paddlefish (*Polyodon spathula*), a state-listed threatened fish species have been documented in the Mississippi River near the proposed project. In Minnesota, paddlefish spawn in the spring in temporarily flooded tributaries to the large rivers. Minnesota's Endangered Species Statute (Minnesota Statutes, section 84.0895) and associated Rules (Minnesota Rules, part 6212.1800 to 6212.2300 and 6134) prohibit the take of threatened or endangered species without a permit. To protect this species, work within the water needs to be avoided from April to mid-June. Contact the DNR Endangered Species Environmental Review Coordinator, Lisa Joyal (Lisa.Joyal@state.mn.us or 651-259-5109) if this is not feasible as additional action may be needed.
- Timber rattlesnakes (*Crotalus horridus*), a state-listed threatened species, have been reported from the vicinity of the proposed project and may be encountered on site. In Minnesota, the ideal habitat for this species is forested bluffs, south-facing rock outcrops, and bluff prairies, particularly in the Mississippi River Valley. Nearby forests, prairies, and agricultural lands are used as summer feeding grounds. Two necessary habitat components are open areas for thermoregulation, and dens for overwintering. The dens are often located on steep, south or

west-facing hillsides with rock outcroppings and ledges. Timber rattlesnakes emerge from their dens in late April to early May and return to them in late September to early October. In the spring and fall, timber rattlesnakes are active during the day; while during the hottest months of summer, they are mostly active at night.

Timber rattlesnake mortality in Minnesota is most commonly caused by poaching, vehicle collisions, and habitat destruction. The loss of a single adult, especially a female, can impact the population significantly. As such, crews working in the area should be advised that if they encounter any snakes, the snakes should not be disturbed. The use of <u>erosion control</u> blanket shall be limited to 'bio-netting' or 'naturalnetting' types, and specifically not products containing plastic mesh netting or other plastic components. Also, be aware that hydro-mulch products may contain small synthetic (plastic) fibers to aid in their matrix strength. These loose fibers could potentially re-suspend and make their way into Public Waters. As such, please review mulch products and not allow any materials with synthetic (plastic) fiber additives in areas that drain into Public Waters. Be aware, that there are also other species of snakes in the area that will mimic rattlesnakes. Contact the DNR Regional Nongame Wildlife Specialist, Bridgette Timm (952-207-9769 or <u>bridgette.timm@state.mn.us</u>) if timber rattlesnakes are encountered on-site or if you have any questions regarding this species.

 Please visit the <u>DNR Rare Species Guide</u> for more information on the habitat use of these species and recommended measures to avoid or minimize impacts. For further assistance with these species, please contact the appropriate <u>DNR Regional Nongame Specialist</u> or <u>Regional Ecologist</u>.

Federally Protected Species

Several federally and state-listed mussels, including the sheepnose (*Plethobasus cyphyus*), a
federally and state-listed endangered species, have been documented in the Mississippi River in
the vicinity of the proposed project, some as recently as 2021. As mussels are particularly
vulnerable to deterioration in water quality, especially increased siltation, it is important that
effective erosion prevention and sediment control practices be implemented and maintained
near the river.

Minnesota's Endangered Species Statute (Minnesota Statutes, section 84.0895) and associated Rules (Minnesota Rules, part 6212.1800 to 6212.2300 and chapter 6134) prohibit the take of threatened or endangered species without a permit. In order to determine the potential for a take of state-protected mussels, a qualified surveyor (see attached list) will need to conduct a mussel survey and/or relocation in any potential mussel habitat prior to construction within these habitats.

The surveyor will need to obtain a permit from the DNR Endangered Species Coordinator, Bridget Henning-Randa (<u>Bridget.Henning-Randa@state.mn.us</u> or 651-259-5073) before conducting any mussel surveys and will need to follow the <u>mussel survey and relocation protocol</u>. The extent of

the mussel survey should include all areas of the riverbed that will be directly impacted by excavation, pile driving, placing of fill or riprap, driving of equipment, or dewatering; as well as any areas downstream that will receive sediment from project activities. Please send the results of all survey work to the DNR Endangered Species Environmental Review Coordinator, Lisa Joyal. **No work in the riverbed shall occur until potential impacts to mussels have been resolved** to the satisfaction of the DNR's Endangered Species Coordinator, Bridget Henning-Randa.

• To ensure compliance with federal law, conduct a federal regulatory review using the U.S. Fish and Wildlife Service's (USFWS) online Information for Planning and Consultation (IPaC) tool.

Environmental Review and Permitting

• Please include a copy of this letter and the MCE-generated Final Project Report in any state or local license or permit application. Please note that measures to avoid or minimize disturbance to the above rare features may be included as restrictions or conditions in any required permits or licenses.

The Natural Heritage Information System (NHIS), a collection of databases that contains information about Minnesota's rare natural features, is maintained by the Division of Ecological and Water Resources, Department of Natural Resources. The NHIS is continually updated as new information becomes available, and is the most complete source of data on Minnesota's rare or otherwise significant species, native plant communities, and other natural features. However, the NHIS is not an exhaustive inventory and thus does not represent all of the occurrences of rare features within the state. Therefore, ecologically significant features for which we have no records may exist within the project area. If additional information becomes available regarding rare features in the vicinity of the project, further review may be necessary.

For environmental review purposes, the results of this Natural Heritage Review are valid for one year; the results are only valid for the project location and project description provided with the request. If project details change or the project has not occurred within one year, please resubmit the project for review within one year of initiating project activities.

The Natural Heritage Review does not constitute project approval by the Department of Natural Resources. Instead, it identifies issues regarding known occurrences of rare features and potential impacts to these rare features. Visit the <u>Natural Hertiage Review website</u> for additional information regarding this process, survey guidance, and other related information. For information on the environmental review process or other natural resource concerns, you may contact your <u>DNR Regional</u> Environmental Assessment Ecologist.

Thank you for consulting us on this matter, and for your interest in preserving Minnesota's rare natural resources.

Sincerely,

Samantha Bump

Samantha Bump Natural Heritage Review Specialist Samantha.Bump@state.mn.us

James Drake

James Drake Natural Heritage Review Specialist James.F.Drake@state.mn.us

Cc: Melissa Collins, Bridgette Timm, and Bridget Henning-Randa

MINNESOTA POLLUTION CONTROL AGENCY

520 Lafayette Road North | St. Paul, Minnesota 55155-4194 | 651-296-6300 800-657-3864 | Use your preferred relay service | info.pca@state.mn.us | Equal Opportunity Employer

July 20, 2022

Caroline Gregerson City Administrator Wabasha Port Authority 900 Hiawatha Drive East Wabasha, MN 55981

Re: Wabasha Barge Facility Environmental Assessment Worksheet

Dear Caroline Gregerson:

Thank you for the opportunity to review and comment on the Scoping Environmental Assessment Worksheet (EAW) for the Wabasha Barge Facility project (Project) located in Wabasha, Wabasha County, Minnesota. The Project consists of a new barge facility for the transfer of sand from Mississippi River channel dredging activities. Regarding matters for which the Minnesota Pollution Control Agency (MPCA) has regulatory responsibility and other interests, the MPCA staff has the following comments for your consideration.

Permits and Approvals (Item 8)

- This section indicates that a Clean Water Act (CWA) Section 404 Permit from the U.S. Army Corps of Engineers (USACE) for project related wetland impacts may be necessary. The EIS (Environmental Impact Statement) should clarify that if a USACE Section 404 Individual Permit is required for any Project activity, then an MPCA CWA Section 401 Water Quality Certification or waiver must also be obtained as part of the permitting process. You can find additional information about the MPCA's 401 Certification process at: <u>https://www.pca.state.mn.us/water/clean-water-act-section-401water-quality-certifications.</u> For further information about the 401 Water Quality Certification process, please contact Bill Wilde at 651-757-2825 or <u>William.wilde@state.mn.us</u>.
- Please note that the project may require a State Disposal System Permit for the use/disposal of dredged material in upland areas depending on how this is completed and who is doing the work. More information regarding a permit can be found at: <u>http://www.pca.state.mn.us/water/dredgedmaterials.html</u>. Questions regarding disposal of dredged material should be directed to Emily Schnick at 651-757-2699.

Soils and Topography (Item 10)

- As stated above, the access dredging for the barge facility may need a permit depending on how that is completed and who is doing the work. It is not clear if this dredging will be conducted by the USACE as part of their permit or another entity. This should be clarified in the EIS.
- Additional information should be provided in the EIS regarding the access dredging volume and how will it be reused or disposed.
- The Scoping EAW states that the dredged material will be brought to an upland area of the site but is not clear if this is for dewatering or reuse and if there is any sampling data on this material. Since this is not part of the navigational channel, it is assumed that the material is silty and would require sampling. This should be discussed in the EIS.

Caroline Gregerson Page 2 July 20, 2022

• It is not clear if this new site will have dredge storage and dewatering activities and if so, what is planned. This may require the Wabasha Port Authority to obtain a permit for the management of dredged material separate from the USACE permit. Please clarify in the EIS.

Water Resources (Item 11)

Surface Water

- The EIS should clarify that if the USACE Section 404 permit or the Section 10 permit is required and in accordance with Minnesota Statutes, the Project should include the MPCA as a regulator of all surface waters as defined by Minn. Stat. § 115.01, subd. 22 Waters of the state. Even though there may be surface waters that are determined to be USACE non-jurisdictional or exempt from the Wetland Conservation Act, all surface waters are regulated by the MPCA, and any surface water impact needs to be described in the application and may require mitigation.
- In addition, if any of the USACE permitting vehicles are required, the 401 Water Quality Certification
 must also be included and becomes an enforceable component of the associated federal license or
 permit, issued under either Section 404 of the Clean Water Act or Section 10 of the Rivers and
 Harbors Act. The scope of a Clean Water Act Section 401 certification is limited to assuring that a
 discharge from a federally licensed or permitted activity will comply with water quality
 requirements. In addition, the Project proposer must also submit to the MPCA the Antidegradation
 Assessment in accordance with water quality standards Minn R. 7050.0265 and should review the
 Antidegradation requirements in 7050.0285.

Stormwater

- It appears the Project location is on a reach of the Mississippi River that does not have a construction-related impairment, therefore additional best management practices (BMPs) are not required. However, since the Project borders the river and several wetlands are also located within the project area, the MPCA National Pollutant Discharge Elimination System/State Disposal System (NPDES/SDS) Construction Stormwater Permit (CSW Permit) requires redundant down gradient sediment controls if soil disturbance will encroach within the existing 50 feet of natural buffer to any of the waterbodies.
- The planned permanent stormwater management for new impervious surface will consist of ditches constructed around the perimeter of the site. Please note that the CSW Permit requires use of a volume reduction method, such as infiltration, to treat the first 1 inch of stormwater volume that is not discharged to the receiving water. If infiltration is not feasible due to prohibitions at the site, the Project proposer can also consider stormwater reuse or other method to limit stormwater discharges from the site. Questions regarding Construction Stormwater Permit requirements should be directed to Roberta Getman at 507-206-2629 or <u>Roberta.Getman@state.mn.us</u>.

Caroline Gregerson Page 3 July 20, 2022

We appreciate the opportunity to review this Project. Please provide your specific responses to our comments and notice of decision on the need for an Environmental Impact Statement. Please be aware that this letter does not constitute approval by the MPCA of any or all elements of the Project for the purpose of pending or future permit action(s) by the MPCA. Ultimately, it is the responsibility of the Project proposer to secure any required permits and to comply with any requisite permit conditions. If you have any questions concerning our review of this EAW, please contact me by email at <u>Karen.kromar@state.mn.us</u> or by telephone at 651-757-2508.

Sincerely,

Karen Kroman

This document has been electronically signed.

Karen Kromar Planner Principal Environmental Review Unit Resource Management and Assistance Division

KK:rs

cc: Dan Card, MPCA, St. Paul Bill Wilde, MPCA, St. Paul Emily Schnick, MPCA, St. Paul Roberta Getman, MPCA, Rochester Wayne Cords, MPCA, Mankato

United States Department of the Interior

FISH AND WILDLIFE SERVICE Upper Mississippi River National Wildlife and Fish Refuge 102 Walnut Street, Suite 204 Winona, Minnesota 55987

July 20, 2022

Caroline Gregerson Wabasha Port Authority 900 Hiawatha Drive East Wabasha, MN 55981

RE: Scoping Document, Wabasha Barge Facility, Wabasha County; and Wabasha Barge Terminal, Draft Scoping Decision Document

Dear Ms. Gregerson,

This letter serves as transmittal for comments regarding the two referenced documents related to the Wabasha Port Authority's Barge Terminal proposal. Comments are listed below and reference enclosures attached to this letter.

The Draft Scoping Decision Document "Modified Designs or Layouts" section includes a statement that "modified design or layout alternatives were evaluated... along with the location, size, and orientation of the dredge material storage areas were considered." Neither referenced document nor the Site Plan map address dredge material storage by location or quantity. Material storage has the potential to significantly impact the site and must be addressed. Additionally, the cover page of the Scoping Document lists "transportation of agricultural products and shipping containers" neither of which are discussed.

The following comments reference only the Scoping Document.

On Page 2, the Scoping Document states this is a City of Wabasha Port Authority project though the tax parcel numbers identified within the Project Area are owned by the Kohner Sand and Gravel Company and account for 26.75 acres of the 54.0 acre Study Area. The remaining 27.25 acres are assumed to be the areas outlined within the backwaters of the Mississippi River, however, the Site Plan appears to encompass a much smaller acreage. There needs to be clarity regarding what features and uses are being evaluated and ownership of the parcels included in the evaluation (private, City, State, Federal). Documentation as to the ownership of the river shoreline and river bottom in the areas planned for dredging will be required.

On Page 6 - Outdoor Recreation, the discussion and corresponding maps have completely overlooked the U.S. Fish and Wildlife Service's (FWS) Upper Mississippi River National Wildlife and Fish Refuge (Refuge) which is the adjacent land owner to this project (Attachments 1 and 2) and manages nearly 14,000 acres in Lower Pool 4. The Nelson-Trevino Bottoms is also owned in fee-title by the FWS not the Wisconsin Department of Natural Resources as stated in the document.

On Page 7 – Zoning, the project is located within an area zoned for Low-Density Residential as well as a S1 Shoreland Overlay Zone which has, among others, the goal of protecting surface water quality which is in direct contradiction to this project. However, 9b Project Compatibility, states that the proposed project is compatible with the zoning. An explanation of this compatibility declaration will be needed.

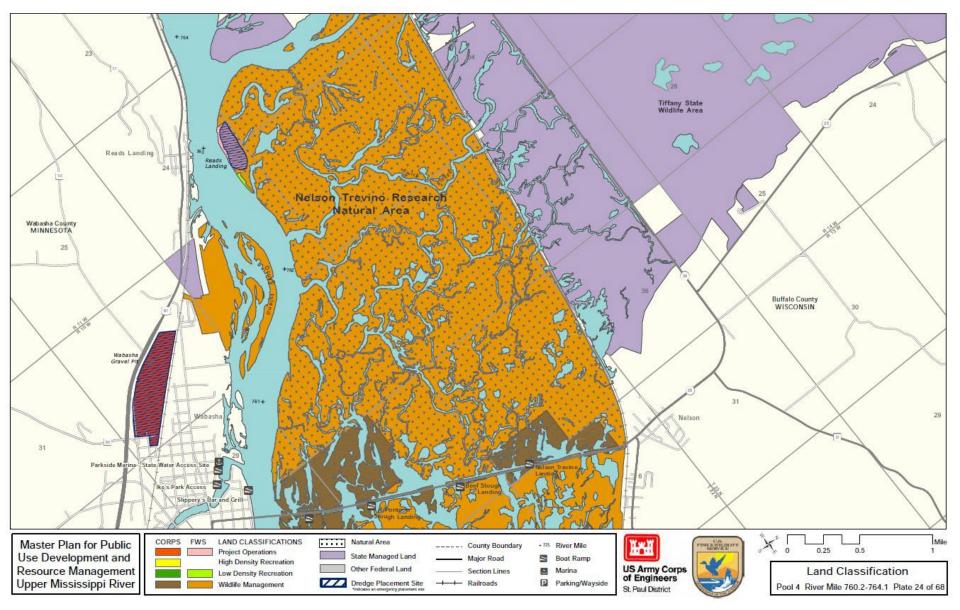
On Page 12 – Wetlands, in addition to the four wetland basins delineated on the upland, the entire area to be dredged for access is a wetland and impacts to this area need to be accounted for in the document.

On Page 14 – Stormwater, the description of stormwater quantity states that the water will be treated prior to release to the Mississippi River. A description of how and where that treatment will occur is needed.

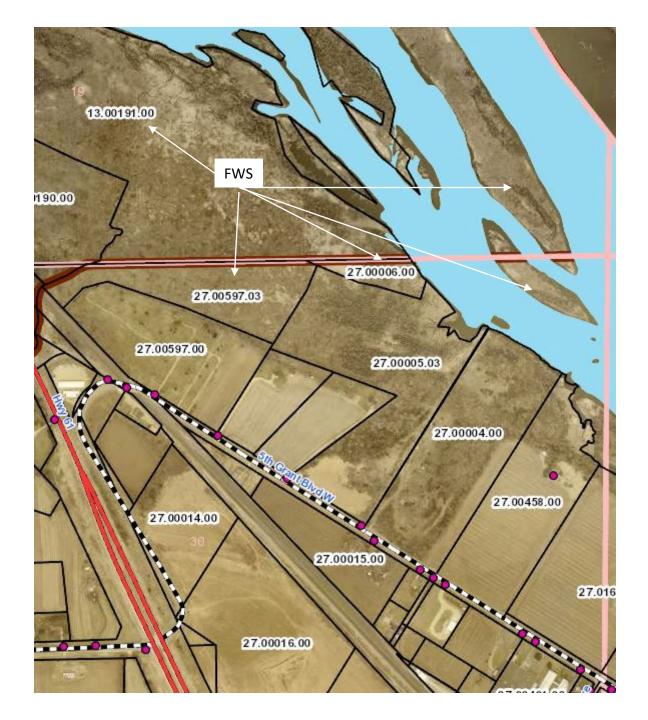
On Pages 19-21 – Fish, Wildlife, Plant Communities, & Sensitive Ecological Resources, this section provides no discussion regarding aquatic plant communities, eagle nests, or the nearby great blue heron nesting colony. Although not all are active, there are approximately 60 bald eagle nests in Lower Pool 4 with three in the general vicinity of this project. Additional surveys will be required prior to beginning this project to determine nesting activity in the immediate area. In the "Rare Features" section there is reference to conducting a regulatory review through the FWS Ecological Services (ES) office utilizing the Information for Planning and Consultation (IPaC) system. While this consultation is adequate for a determination on properties located outside of the Refuge boundary, the findings are not sufficient for determinations or for obtaining a Special Use Permit (SUP) for activities within the Refuge boundary.

Finally, as was addressed in comments to USACE regarding the Pool 4 Dredge Material Management Plan (DMMP) the use of this property was identified and evaluated as the "Carrels Site" which has led to confusion on this project. The DMMP noted that 18 acres of this Project Area are approved in the Channel Maintenance Management Plan (CMMP) (Attachment 3). A discussion regarding how this predetermined use will impact the development of a barge terminal needs to be addressed. As was expressed to USACE, the Refuge has concern over the development of a barge terminal at this location. As indicated on your Site Plan there is limited area for barges to maneuver and an expectation that they will enter the terminal at an angle. It is likely that the island directly in-front (riverward) of the proposed terminal, which is FWS fee-title, will become a point for barges to nose-in which leads to damaged or downed trees and erosion which will be exaggerated by propwash from barges turning and passing.

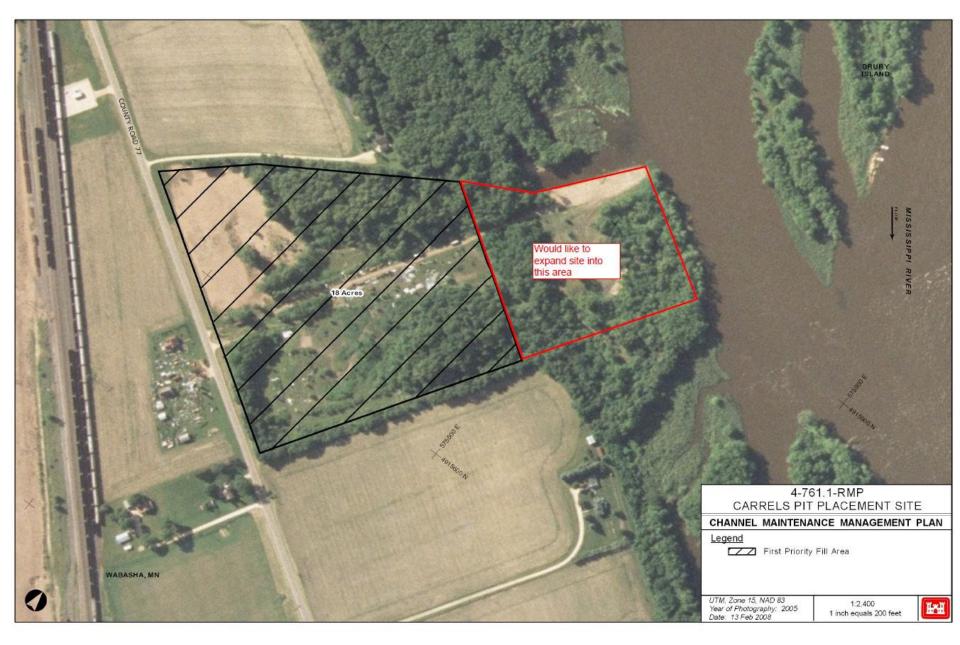
We look forward to future involvement with the team preparing the Wabasha Barge Facility Environmental Impact Statement (EIS) for this project. Please do not hesitate to contact Winona District Manager Mary Stefanski at mary_stefanski@fws.gov or 507-494-6229 if there are questions.


Sincerely,

e hard


Sabrina Chandler Refuge Manager

Enclosures


Attachment 1. Land ownership and classification.

Attachment 2. FWS ownership.

Attachment 3. Drawing from the 2008 CMMP showing location for dredged material placement.

From: BJRaney <<u>brianjraney@gmail.com</u>>
Sent: Thursday, July 21, 2022 6:09 PM
To: Caroline Gregerson <<u>cityadmin@wabasha.org</u>>
Subject: Comments on Proposed Wabasha Terminal Facility

To Whom It May Concern,

I have two concerns with the proposed Wabasha Barge Facility. The first concern, though somewhat addressed in the reduction of traffic and congestion in other Wabasha neighborhoods, has to do with cost/benefit: how much will this cost, who pays for it, and what's the return on this investment? Particularly, if the Army Corps of Engineers chooses not to use it. Their recent dredging plan did not lock them into using the facility, it only mentions it as a potential option. My next concern is with the dredging material itself. I don't see much discussion of the pollutants that might be in the material, and thus exposed to the citizens of Wabasha via this facility. Unfortunately, for many years the Mississippi has been a convenient dumping place for cities and companies that are along it. Though much of this has been stopped, the dredge material could still be holding it. This can contain what we are recently finding more and more as water contamination, Per- and polyfluoroalkyl substances (PFAS), also known as "forever chemicals." They are resistant to breakdown, and linger in the environment "forever." PFAS has been linked to a number of health issues. PFAS compounds have been found in dust accumulations, even in indoor spaces. My concern is by bringing this dredging material to shore where such pollutants can become airborne, that we increase this risk to our community. Will there be a plan in place to sample the dredge material for these and other pollutants, and an appropriate action plan to address their discovery?

Brian Raney