Laura Fay Western Transportation Institute

Speaker

Not All Pavements are Equal for Winter Maintenance

Not all Pavements are Equal for Winter Maintenance

Laura Fay Salt Symposium August 3, 2022

- For the purpose of this presentation when the term deicing is used it refers to all methods of application and products unless specified.
- Pavement Types Discussed
 - PFSs Permeable Friction Surfaces
 - Wearing course friction layers (ex. open graded, ultrathin, and permeable friction courses)
 - PAPs Porous Asphalt Pavements
 - DGFs Dense Grade Friction Surfaces
 - Traditional asphalt and concrete

Structural profile of various permeable pavements (Zhang and Kevern, 2021)

What the literature tells us...

- The purpose of PFSs is to drain water off the roadway surface.
- Rain on PFSs that are not frozen will drain water from the road surface and prevent ice formation.
- High textured PFSs can break up thin ice layers when trafficked
- A driver may not notice the difference between PFSs and DGFs under heavy traffic

- Traffic
 - Brings moisture back to the road surface caused by "air pumping" from vehicle tires
 - Causes PFSs to dry slower
 - Deicers applied that appear lost in PFSs voids, can be "pumped" back to the road surface by heavy traffic.
 - Road managers can encourage this by redirecting traffic to one lane or reducing vehicle speed.

- Compacted snow bonds more strongly to PFSs, yet FRICTION was significantly GREATER than traditional DGPs after snow removal. Even with the use of salt (deicers).
- This is due greater frictional properties of open graded, ultrathin, and permeable friction courses.

• PFSs appeared more white and snowier than DGPs.

- Visual or optical road surface state assessment of PFSs may provide misleadingly low pavement state or friction values.
- This may contribute to unnecessarily high application rates of deicers.

Plowing Recommendations

PFSs can be more easily damaged by plowing than DGPs.

- Compacted snow bonds more strongly to PFSs

- Shoes should be used to keep the plow blades just above the pavement surface.
- Rubber-edged plow blades can be used.

College of

Recommendations

 Icing and frost formation occur more often on PFSs than DGPs during cold clear night when located close near bodies of surface water.

Treatment Recommendations

- Sand and abrasives are not recommended for use on PFSs.
- To avoid losing deicing material in the pavement matrix:
 - Liquid deicer application on PFSs should use flood or fan nozzles instead of stream nozzles.
 - Solid deicers application on PFSs should use larger grain material

Treatment Recommendations

- Anti-icing before the storm is recommended if pavement temperature are above 20°F and snow is NOT blowing/drifting.
- Application rates
 NaCl: 20-40 gal/l-m

Treatment Recommendations

- Deicing can be used during and after a storm.
- Until additional field testing occurs, deicer application should be 25% to 50% greater than DGPs application rates.
- PAPs allow lower salts application due to the rapid responses to ambient temperatures and prompt drainage of meltwater (Zhang and Kevern, 2021)

MONTANA College of ENGIN

Maintenance Recommendations

- Regular maintenance can only restore the permeability of PAPs partially but are critical to maintain longer performance
 - Mechanical sweeping
 - pressure washing
 - vacuum sweeping
- Shallow surface milling (Zhang and Kevern, 2021)

 Friction and Snow-Pavement Bond after Salting and Plowing Permeable Friction Surfaces

https://journals.sagepub.com/doi/10.1177/ 0361198120949250

 Snow and Ice Control on Porous and Permeable Pavements – literature review and state of the practice <u>https://trid.trb.org/view/1288499</u>

Thank you

Laura Fay laura.fay1@montana.edu

Design considerations

- High frost-susceptible soils PAP thickness should be down to the frost penetration depth.
- Polymer modified asphalt binder with higher binder content (or anti-stripping additives) can improve freeze thaw durability and reduce raveling.

