

Alex Mathews Kansas State University

Morning Speaker August 1 *Reuse of Water Plant Residuals as Deicing Chemicals*

REUSE OF WATER PLANT RESIDUALS AS DEICING CHEMICALS

Alexander P. Mathews, Professor Emeritus Department of Civil Engineering Kansas State University, Manhattan, KS

August 1, 2023

OUTLINE

- Chloride deicing salts, use and impacts
- Organic deicers use and impacts
- Water plant residuals
- Deicers from water plant residuals
- Freezing point depression and ice melting studies
- Conclusions

Chloride salts as deicers

Chloride deicers commonly used: NaCl, CaCl2, MgCl2

s s s s

Road salt use Mt/yr

Salt consumption

Year	Amount used	P *
1950	0.5	151
2020	22	330

***P: Population (M)**

Figure 1. Salt use and consumption in the United States by (A) all end users, 1975–2003 (data from U.S. Geological Survey, 2005b), and (B) consumption by use or industry, 1975–2005 (data from U.S. Geological Survey, 2005b; Kostick and others, 2007).

Environmental Impacts Of Road Salt Usage Groundwater, surface water, and soil contamination, vegetation damage

Chloride increase in stream: Duchess County, NY, Kelly et al, *Environ Sci Technol* **42**: 410–15.

Sodium increase in stream: Duchess County, NY.

EPA (Environmental Protection Agency). 2012. National Aquatic Resource Surveys data. Washington, DC: EPA.

Chloride concentrations in lakes

Chloride concentrations in rivers

Hintz, et al, Road salts, human safety and the rising salinity of waters, Front Ecol Environ 2022.

Kaushal et al, Freshwater salinization syndrome: from emerging global problem to managing risks, Biogeochemistry, 2021.

Corrosion Related Damages from chloride deicers Accelerated corrosion of automobiles Damage to bridge decks and pavements Damage to buildings and parking garages

Damage to underground utilities

Corrosion of concrete and rebar

Damage to vegetation

Transportation problems from snow and ice in winter

Biodegradable deicers as alternatives

- **Biodegradable deicers: acetates and formates** CMA, KA, NaA, KF, NaF
- Advantages: Acetates and formates degrade to CO2 CMA: Ca and Mg improve soil properties
- Disadvantages: High cost
 - CMA: ~\$2,000/ton; Road salt: ~\$100/ton
- Oxygen depletion in receiving waters

Use additives to mitigate oxygen depletion

* Deicing agents containing oxygen release compounds, Patent No. 11,384,269, Issue Date: July 12, 2022, Inventor: Alexander P. Mathews

Goals

Reduce cost of raw materials for CMA synthesis

- **Reuse lime softening** water plant sludge as a source of Ca and Mg
- Acetic acid produced via chemical synthesis is costly with a high carbon footprint
- Use bioprocess to obtain acetic acid from renewable resources

*Low pH Process for Fermentation of Sugars from Carbohydrates for the Production of Organic Acids and Biodegradable Deicers, Inventors: A. P. Mathews and S. S. Veeravalli, U.S. Patent 11,186,852 Issue Date: November 30, 2021.

Water plant residuals

- Coagulation process for turbidity removal Coagulant sludge: Al(OH)₃, or Fe(OH)₃ and clays, oxides, etc from turbidity removed
- Water softening for hardness removal Water softening sludge: CaCO₃, Mg(OH)₂, plus contain coagulant sludge

Quantities of dry residuals: Coagulation*

Population	Flow (mgd)	Low Mt*/yr	High (Mt/yr)
30,000	4.5	132	593
110,000	16.5	484	2,174
400,000	60	1,760	7,904
1,000,000 *Roth et al., AWWA Jo	150 ournal, 2008	4,400	19,761

*Mt – metric tons

Quantities of dry residuals: Water treatment plants with softening*

Population	Flow	Low	High	
	(mgd)	Mt/yr*	(Mt/yr)	
30,000	4.5	1,406	3,466	
110,000	16.5	5,155	12,709	
400,000	60	18,744	42,955	
1,000,000	150	43,555	107,388	
*Roth et al., AWWA Jou	rnal, 2008			

*Mt/yr: Metric tons/yr

Water plant sludge management

Regulations

Discharge to receiving waters prohibited Landfills: RCRA regulations

Management alternatives
 Storage in lagoons, drying, land application
 Mechanical dewatering and land application
 Mechanical dewatering, calcination, reuse

 Cost of land disposal: ~\$30 to \$120/ton

Sustainable management

 Reuse water softening sludge to produce deicing chemicals

Calcium magnesium acetate (CMA)
Calcium magnesium propionate (CMP)
CMA and CMP are biodegradable and noncorrosive road deicers

Current CMA synthesis By reacting petroleum-derived acetic acid with Ca and Mg oxides or dolomite

Softening sludge production (U.S.): ~3.1 million tons/yr Potential CMA production: ~5.2 million tons/yr

Deicer production options

 Water treatment plant with integrated deicer production facility

Regional deicer production facility

Annual lime sludge production and stockpiles for selected Iowa cities, (van Leeuwen, et al, 2011)

City (Iowa)	Population	Dewatering method	Drying method	Dry weight (tons/yr)	Stockpiled dry weight (tons)
Des Moines	400,000	Filter press	Kiln, air dry	30,700	166,000
Cedar Rapids	128,000	Centrifuge, lagoon	Air dry	16,000	10,500
West Des Moines	52,000	Filter press	Kiln, air dry	3,600	500
Ames	50,000	Lagoon	Air dry	5,170	79,000
Newton	21,000	Lagoon	Kiln, Air dry	3,500	86,000
Boone	17,000	Lagoon	Air dry	3,300	14,700
Indianola	13,000	Lagoon	Air dry	600	6,000
Pella	9,900	Lagoon	Air dry	1,600	9,100
Totals	690,900			64,470	371,800

Studies to evaluate sludge reuse potential

- Evaluate use of water softening sludge for CMA and CMP deicer synthesis
- Compare ice melting rates of synthetic CMA and softening sludge-CMA
- Compare ice penetration depths for synthetic CMA and softening sludge-CMA
- Examine freezing point depression prediction model results

Freezing point depression model

Activity coefficient γ

$$\ln \gamma = \frac{-A_1\sqrt{I}}{(1+B\sqrt{I})} + Cm$$

Determine γ of CaA vs concentration

• Osmotic coefficient ϕ

 $\phi = 1 + \frac{A_1}{B^3 I} \left[-\left(1 + B\sqrt{I}\right) + 2\ln\left(1 + B\sqrt{I}\right) + \frac{1}{2Cm}\right] + \frac{1}{2Cm}$

• Freezing point depression θ

 $\theta = \phi (\lambda_0 + \lambda_1 \phi + \lambda_2 \theta^2 + \lambda_3 \theta^3) \nu m$

Mathews, Effectiveness of water softening residuals as components of road deicing chemicals: Model analysis of freezing point depression, Journal of Environmental Management, 2021

Experimental Methods

- CMA and CMP prepared by reacting acetic and propionic acids with Ca and Mg hydroxides
- Sludge-CMA and Sludge-CMP obtained by reacting filtered sludge with acetic and propionic acids
- Freezing point determination ANSI/ASTM D 1493-67 method
- Ice melting and ice penetration depth studies (Strategic Highway Research Program protocols)

CMA from softening
sludge slurryCMA from dolomite

Temp. controlled test enclosure

- 1. Plexi-glass test dish
- 2. Access hole
- 3. Thermo-couple
- 4. Wall thermometer

- 5. Freezer temp. control
- 6. Light bulb
- 7. Fluorescent lamp
- 8. Peep-hole

Ice melting rate determination Ice melting penetration depth

Experimental and Modeling Results

Freezing point depression model predictions for CMA and CMP (Ca:Mg 3:7)

Ice melting rate studies

Ice melting rates at -7 C and -11.5 C for deicers

Ice penetration depth studies

Conclusions

 CMA obtained from water softening sludge can be effectively used for road deicing

Sludge-CMA deicer contains ~ 5 to 20% inerts

Synthetic CMA: Ca to Mg mole ratio 3:7 S-CMA: Ca to Mg mole ratio of ~ 9:1

High Ca to Mg ratio **minimizes** concrete deterioration as Mg is expansive

- Theoretical FPD model based on estimation of electrolyte activities is accurate
- Model is useful for design of deicing salt mixtures

Conclusions

- Deicing salts are the largest contributors to the high chloride concentrations in freshwater systems
- There is an urgent need to protect freshwater biota and drinking water supplies from salt inputs
- Regulations to increase the use of substitute deicers that are biodegradable are needed
- Reuse of water softening residuals can help reduce the overall cost of CMA deicers
- Oxygen depletion effects of biodegradable deicers can be mitigated by using ORCs as additives

THANK YOU

alex@ksu.edu