

Dan Gullickson Minnesota Department of Transportation

Morning Speaker August 2 Drift Free Road and Ditch Design

Drift Free Road and Ditch Design August 2, 2023 Bolton & Menk Salt Symposium

Daniel Gullickson

Chapter 15D Design for Blowing Snow Control MnDOT Facility Design Guide <u>https://roaddesign.dot.state.mn.us/facilitydesign.aspx</u> Center for Transportation Studies Snow Control Tool website https://snowcontroltools.umn.edu/

Controlling Blowing and Drifting Snow with Snow Fences and Road Design-NCHRP Project 20-7(147) August 2003

Dan Gullickson Dennis Moline Ron Tabler May 2 and 3, 2006

Introductions

Operations Division - Shared Services Blowing Snow Control Unit

Why is Blowing Snow Control Important.

Design Considerations.

Blowing Snow Control Design Solutions.

Questions.

Agenda

What are we going to talk about today

White-Outs

- Wind blown snow reduces visibility
- Closes Roads

Why is Snow Control so Important.

White-out Problems

Snowdrifts

- Snow sculpted by wind
- Groves cause snow drifts

Why is Snow Control so Important.

Snowdrifting Problems

Blow ice

- Blowing snow adhering to the road surface
- Road Closures
 due Blow Ice

Why is Snow Control so Important.

Blow ice Problems

MnDOT is averaging approximately 100 snow plow hits per year

Why is Snow Control so Important.

Think about drift free road design from the perspective of where a snow plow casts its snow.

More iron on snow combined with preventative blowing snow control treatments helps reduce chlorides.

Mechanical Snow Removal

Drift Free Road and Ditch Design

Where will the plowed snow go? Lighting Placement Sidewalks/Trails Utilities Sign Placement

These obstacles may result in plow berms.

Snow Removal Obstacles

Identify Obstacles to Casting the Snow from the Road

Plow Berms Public Enemy # 1 Snow Drifting Impaired Visibility

Design Considerations

DEPARTMENT OF TRANSPORTATION

Operations

Snow Solution 1 to 4 inslopes Road Profile 3' higher than surrounding topography

Cleanup Operations

Design Considerations

DEPARTMENT OF TRANSPORTATION

Operations

Why the road profile should be 3 feet higher than surrounding topography?

Snow accumulation season is delimited by the dates when the average air temperature reaches 32 degrees F and defines the period in which blowing snow events result in persistent drifting.

Design Considerations

Ditch Upwind Ditch Downwind Ditch Both Sides Terrain Effect

Snowdrifting Problems

Point Cloud by Drone

Why Grading for Snow Control Matters

Cut Sections Discussion

Why Snow Drifts form in Cut Sections When: Backslope not at 1 to 3 Inslope not at 1 to 4 Ditch Depth is less then 4ft Ditch bottom width is less then 8ft

Why Grading for Snow Control Matters

1 to 4 Inslopes Strive for a Road Design Profile 3ft above terrain Outside of Clear Zone 1 to 3 Inslopes

Fill Sections

Snow Design Solutions

Fill Sections Discussion

Snow Design Solutions

Cut Sections Discussion

Upwind

1 to 4 Inslope 1 to 3 Backslope 5ft Ditch Depth Min 8ft Bottom Max 67ft Bottom Hydraulic Control 1 to 50 bottom 10ft to protect Backslope Downwind 1 to 4 Inslope 1 to 6 Backslope 5ft Ditch Depth Min 8ft Bottom

Snow Design Solutions

Cut Sections Discussion

To control drifting When Cuts are 1 to 7 foot Main cause of drifting Lengthen ditch bottom and depth Maintain 1 to 3 Backslope Cuts are 7 to 15 foot Less drifting More vertical snow storage Lengthen ditch bottom and depth Maintain 1 to 3 Backslope

Ditch Upwind 1 to 3 Backslope 1 to 4 Inslope 5ft Ditch Depth 8 to 67 Ditch Bottom

Ditch Downwind 1 to 4 Inslope 1 to 6 Backslope 5ft Ditch Depth 8 to 67 Ditch Bottom

Snow Design Solutions

Combination Cut and Fill Sections Discussion

Terraced Ditches When its not Practical to fully excavate an Enhanced ditch Backslope is 3 feet or greater above Shoulder PI **Equal Heights** 1 to 50 Bench Slope **Both Backslopes** 1 to 3 8ft Ditch Bottom

Snow Design Solutions

Cut – Terraced Sections Discussion

Interchange During Construction

In March 2013 the drift did not reach the ramp.

NW Quadrant TH 10 and TH 32

Snow Design Solutions

Enhanced Ditch Bottom Example

SP 1703-69 TH 60 cross section SP 1703-69 TH 60

Looking Westbound @ station 434+00

Snow Design Solutions

Enhanced Ditch Bottom Example

Snow Design Solutions

Horizontal Curves and Superelevation Sections Discussion

Particularly Problematic Curve bends into **Prevailing winds** 1 to 4 Inslope upwind side 1 to 8 Inslope Downwind side for 10ft then 1 to 4 Curve bends away **Prevailing winds** 1 to 8 Inslope Upwind side for 10ft Then 1 to 4

1 to 4 Inslope Downwind side

Ideally – Plan Lane Expansion without Concrete Barrier or Plate-Beam Ideally – Drainage structures Located outside of clear zone

If possible, do not use Concrete Barrier or Plate-Beam for Bridge Barriers or Transitions

If used, include snow fences in Design

Concrete Barrier Impaired Visibility Snowdrift Formation Obstruction of plow-cast snow Designing for Traffic Barrier

TRANSPORTATION

Snow Design Solutions

Longitudinal Traffic Barriers

Plate-Beam **Obstructs plow -cast** Trips wind, creates snowdrifts Both upwind and downwind Cable Is Preferred Less likely to trip the wind Minimum length of 300ft Curbs Use D curbs

Designing for Traffic Barriers

Snow Design Solutions

Longitudinal Traffic Barriers

Abutments

Cause Snowdrifting Both Upwind and Downwind

Snow Design Solutions

Bridges and Overhead Structures

To Protect Bridge Abutments

Create trip points with

Living or Structural Snow Fences

Snow Fence Design Solutions

Bridges and Overhead Structures

https://snowcontroltools.umn.edu/design-tool

Fence Porosity of 0.10 for Berms

Snow Design Solutions

Earth Berm

Thank You again!

