

Laura Sevcik Minnesota Technical Assistance Program

Morning Speaker August 1

How Industry Can Identify and Minimize Chloride Use to Reduce Costs and Prevent Pollution

Reducing Chloride Use in Industry

Laura Sevcik, Associate Engineer

August 1st, 2023

Minnesota Technical Assistance Program

UNIVERSITY OF MINNESOTA Driven to Discover®

Minnesota Technical Assistance Program

Strengthening Minnesota businesses by improving efficiency while saving money through energy, water, and waste prevention.

Minnesota Technical Assistance Program - MnTAP

- University of Minnesota
- Confidential, no cost, non-regulatory
- Engineering technical assistance for MN businesses
- Minnesota Materials Exchange
- Intern program

Chloride sources at MN WWTPs

- Household water softening 49%
- Industrial (water softening and other use) 21%
- Commercial water softening 16%
- The remaining 14%
 - Drinking water source
 - Human excreta
 - Commercial products
 - Drinking water chlorination
 - Household products
 - Wastewater chlorination

Overbo et al. Science of the Total Environment 764 (2021) 144179

Chloride Use in Industry

Strategies for Conservation

Maintain

Identify and quantify resource use

Repair existing processes

Manage

Optimize existing processes and equipment

Modify

Change process or equipment to improve

Water Softening

- Avoid impacts of hard water such as scaling
- Ion exchange systems
 - Resin beads with ion-exchange sites
 - Initially, contains sodium (Na) or potassium (K)
 - Sodium exchanges with calcium (Ca) and magnesium (Mg)
 - Once the sodium is depleted, a brine solution (NaCl or KCl) is used to regenerate the resin

Water Softening

- Avoid impacts of hard water such as scaling
- Ion exchange systems
 - Resin beads with ion-exchange sites
 - Initially, contains sodium (Na) or potassium (K)
 - Sodium exchanges with calcium (Ca) and magnesium (Mg)
 - Once the sodium is depleted, a brine solution (NaCl or KCl) is used to regenerate the resin

Water Softening

- Avoid impacts of hard water such as scaling
- Ion exchange systems
 - Resin beads with ion-exchange sites
 - Initially, contains sodium (Na) or potassium (K)
 - Sodium exchanges with calcium (Ca) and magnesium (Mg)
 - Once the sodium is depleted, a brine solution (NaCl or KCl) is used to regenerate the resin

Mg²⁺, Ca²⁺, Na⁺, Cl

Industrial Water Softening BMPs

- 2021 MnTAP Intern Sidharth Laxminarayan
- Identified Best Management Practices (BMPs) for industrial water softening
- Developed resources:
 - Report
 - Flowchart: Identify optimization for your softeners
 - Coming soon: MnTAP water softening calculator

http://www.mntap.umn.edu/resources/tools-calculators/chloride-reduction-tool/

Water Softener Optimization Flowchart

Water Softener Optimization Calculator

Original Programmed Settings		Optimization		
Annual water softened	gal	Change Hardness Setting		
Annual salt use	lbs	Feedwater hardness setting	gpg	
Age of softener	years	Change Salt Dosage		
Resin volume	ft ³	Salt dosage setting	lbs/ft ³	
Feedwater hardness setting	gpg	Operating capacity	gr/ft ³	
Unit capacity	grains	Replace Resin Bed		
Reserve capacity (optional)	%	Cost of new resin bed	\$	
Backwash time	min	Reserve capacity	%	
Brine and slow rinse time	min	New Operation		
Brine time	min	Assuming 1% Resin Volume Loss Per Ye	ar	Assuming 3% Resin Volume Loss Per Year
Slow rinse time	min	Remaining resin volume	ft ³	ft ³
Rapid Rinse time	min	New unit capacity	grains	grains
Brine tank fill (Refill) time	min	Brine refill quantity	gal	gal
Backwash flowrate	gpm	Regeneration water use	gal	gal
Brine and slow rinse flowrate	gpm	Annual regenerations		
Brine flow rate	gpm	Annual regeneration water use	gal	gal
Slow rinse flow rate	gpm	Salt use per regeneration	lbs	lbs
Rapid rinse flowrate	gpm	Annual salt use	lbs	lbs
Brine tank fill (Refill) flowrate	gpm	Efficiency	grains/lb	grains/lb
Salt dosage	lbs/ft ³	New Settings		
Operating capacity	grains/ft ³	New unit capacity	grains	grains
Cost		Brine and slow rinse time	min	min
Salt cost	\$/lb	Brine refill time	min	min
Water cost	\$/gal	Savings		
Calculated Values		Annual salt savings	lbs	lbs
Annual regenerations		Annual water savings	gal	gai
Salt use per regeneration	lbs/regen	Annual cost savings		
Annual salt use	lbs	Payback period	yrs	yrs
Brine refill	gal			
Regeneration water use	gal/regen			
Annual regeneration water use	gal			
Efficiency	grains/lb			

Common BMPs

- Track salt and water use
- Adjust hardness setting
- Reduce salt dosage
- Replace resin bed

Track Salt and Water Use

- Track salt purchases and/or salt additions to brine tank
- Add submetering to track how much water is softened
- Use soft water only when necessary
- Quantify savings opportunities with data

Adjust Hardness Setting

- Check hardness setting on softener
 - Check user manual for how to access or check with service provider
- Check incoming water hardness
 - Use test strips
 - Check with water utility
 - Send to a lab for testing
- Match the hardness setting with the incoming water hardness

Reduce Salt Dosage

- Salt efficiency is the grains of hardness removed per pound of salt
- Salt dosage is the amount of salt used per cubic foot of resin during regeneration
- Reducing the salt dosage:
 - Reduces salt use
 - Increases annual regenerations
 - Increases water use
- BMP: minimum salt efficiency of 4,000 grains/lb at a minimum salt dosage of 5 lbs/ft³

DuPont de Nemours Inc., "TapTec HCR Softening Resin Product Information," 1999

Replace Resin Bed

- Softeners lose 1-3% of the resin bed volume annually
- Reduced volume decreases softening capacity
- Replacing the resin bed returns the softener to its original capacity
- Recommended every 10 years
- Service provider can test the resin bed to see how degraded it is

2021 Intern Project Recommendations

Company	Recommendation	Annual Reduction	Annual Savings	
А	Change Salt Dosage and	Salt: 90,000 lbs	\$12,000	
Ha	Hardness Settings	Water: 252,000 gal		
В	Change Salt Dosage and	Salt: 13,000 lbs	\$1,200	
Har	Hardness Settings	Water: 10,500 gal	\$1,200	
C	Change Salt Dosage setting Water: 41,70	Salt: 29,000 lbs	40.000	
		Water: 41,700 gal	\$2,000	

Process Aids and Ingredients

Industry	Process/Use
Cheese	Brining
Pickles	Brining
Meat Processing	Curing, dehydrating, flavoring, brining, preserving
Rendering	Preservation, brining, pickling
Leather Tanning	Hide preservation, curing
Brewing	Additives for flavor and hardness
Ethanol	Cooling towers
Metal Fabrication	Salt baths, chemical mixing
Industrial drilling	Drilling fluid

2013 Intern Project – Gedney Foods

Goals:

- Reduce water use
- Operate within wastewater capacity
- Reduce wastewater impact
- Save on salt costs

Recommendation	Reduction	Annual Savings
Reroute pasteurizer overflow	22,000 therms 3,085,000 gallons water	\$10,600
Reuse fermentation tank brine	213,000 lbs salt 214,500 gallons water	\$21,300
Reduce salt storage level	364,500 lbs salt 383,000 gallons water	\$36,450
Reduce fermentation and salt storage level	460,500 lbs salt 543,200 gallons water	\$46,500
Fix water leaks	2,220,400 gallons water 790 therms	\$380

http://www.mntap.umn.edu/wp-content/uploads/simple-filelist/Intern/2010-2019/2013/Ryan-Venteicher-Gedney-Foods-summary.pdf

Thank you!

Laura Sevcik Isevcik@umn.edu 612-624-8192

www.mntap.umn.edu www.mnexchange.org MnTAP Intern Symposium August 16, 2023 In-person and virtual Register now!

www.mntap.umn.edu/interns/symposium

